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Abstract

We address the mining of sequential activity patterns from document logs given
as word-time occurrences. We achieve this using topics that models both the co-
occurrence and the temporal order in which words occur within a temporal win-
dow. Discovering such topics, which is particularly hard when multiple activities
can occur simultaneously, is conducted through the joint inference of the tempo-
ral topics and of their starting times, allowing the implicit alignment of the same
activity occurrences in the document. A current issue is that while we would like
topic starting times to be represented by sparse distributions, this is not achieved
in practice. Thus, in this paper, we propose a method that encourages sparsity,
by adding regularization constraints on the searched distributions. The constraints
can be used with most topic models (e.g. PLSA, LDA) and lead to a simple modi-
fied version of the EM standard optimization procedure. The effect of the sparsity
constraint on our activity model and the robustness improvement in the presence
of difference noises have been validated on synthetic data. Its effectiveness is also
illustrated in video activity analysis, where the discovered topics capture frequent
patterns that implicitly represent typical trajectories of scene objects.

1 Introduction

Topic models, which allow to extract dominant patterns in the data from simple un-ordered feature
counts, have given encouraging results in several areas of computer vision. This is the case in
automatic activity analysis from large volumes of video footages encountered for instance in the
surveillance domain. There, one would like to automatically discover typical activity patterns, their
start and end, or predict an object’s behavior. Such information can be useful in better understanding
the scene content and its dynamics, or to provide context for other tasks like object tracking. By
considering quantized spatio-temporal visual features (e.g. optical flow) as words and short video
clips as documents, topic models like pLSA [1] or LDA [2] have been used to discover scene level
activity patterns and detect abnormal events [3, 4, 5].

However, activities occurring in scene are implicitly temporally ordered and using unordered word
co-occurrence within a time window fails to represent their sequential nature. Recently, several
topic models have been proposed to include sequential information, e.g. by modeling single word
sequences [6, 7], or at the high level, i.e. by modeling the dynamics of topic distributions over
time [8]. Many of these temporal models have been adapted for activity analysis. For instance,
[9] introduced a Markov chain on scene level behaviors, but each behavior is still considered as a
mixture of unordered (activity) words. And [10] exploits [11] to mine topical trends within a traffic
signal cycle which requires explicit manual synchronization of clips to signal cycles.

Still, unlike in text analysis, a common situation in visual scenes is that multiple temporal activity
patterns are happening simultaneously without being necessarily synchronized at the high level (e.g.
motions of pedestrians and cars are independent, unless people want to cross the street). None of the
above models actually were designed to handle this case. In [12], we introduced the Probabilistic



Latent Sequential Motif (pLSM) topic model to discover dominant activity patterns from sensor data
logs represented by word xtime count documents. Its main features are i) estimated patterns are not
merely defined as static word distribution but also incorporate the temporal order in which words
occur; ii) data with the temporal overlap between several activities can be dealt with; iii) automatic
estimation of activity pattern starting times is done.

One common issue in non-parametric topic models is that distributions are often loosely constrained,
resulting in non-sparse process representations which are often not desirable in practice. For in-
stance, in PLSA, one would like each document d to be represented by few topics z with high
weights p(z|d), but nothing encourages this. The same applies to LDA models despite the presence
of priors on the multinomial p(z|d) [13]. This sparsity issue has been rarely dealt with in the litera-
ture. Very recently, [13] proposed a model that decouples the request for sparsity and the smoothing
effect of dirichlet prior, by introducing explicit selector variables determining which terms appears
in a topic. The Focused topic model of [14] addresses sparsity for Hierarchical Dirichlet Process by
exploiting an Indian Buffet Process to impose sparse yet flexible document topic distributions.

In this paper, our contribution is to propose an alternative and simple approach to this problem. The
main idea is to guide the learning process towards sparser (more peaky) distributions characterized
by a smaller entropy. To simplify the learning, we achieve this indirectly by adding a regularization
constraint in the EM optimization procedure that maximizes the Kullback-Leibler distance between
the uniform distribution (maximum entropy) and the distribution to be learnt. This results in a simple
procedure that can be applied to any distribution for which such a sparsity constraint is desirable. In
this paper, we apply and demonstrate the usefulness of this approach for our model.

In the rest of the paper, we introduce our pLSM model, along with the proposed learning proce-
dure that incorporates our sparsity constraints. The model and its properties are then validated on
synthetic experiments and illustrated on real surveillance videos.

2 Probabilistic Latent Sequential Motif Model

In this section, we provide an overview of the generative model and then present our inference
process, explaining how we enforce sparsity on some model distributions.

2.1 Model overview and generative process

Figure la illustrates how documents are generated. Let D be the number of documents d in the
corpus, each spanning 7}; discrete time steps. Let V = {wz}f\]:“’1 be the vocabulary of words that
can occur at any given instant ¢, = 1,..7,;. A document is described by its count matrix n(w, t,, d)
indicating the number of times a word w occurs at the absolute time ¢,. These documents are
generated from a set of N, topics {z; })*, assumed to be temporal patterns p(w, t,.|z) with a maximal
duration of T, time steps (¢, denotes the relative time at which a word occurs within a topic) and
that can start at any time instant ¢, within the document. Qualitatively, documents triplets (w, t,, d)
are generated by sampling words in the topic temporal patterns and placing them in the document
relatively to a sampled starting time according to (cf Fig.1a):

e draw a document d with probability p(d);

e draw a latent topic z ~ p(z|d);

e draw the starting time ¢; ~ p(ts|z,d), where p(ts|z,d) denotes the probability that the
topic z starts at time ¢, within the document d;

e draw a word w ~ p(w|z);

e draw the relative time ¢, ~ p(t.|w, z), where p(¢.|w, z) denotes the probability that the
word w within the topic z occurs at time ¢,.;

e sett, = ts+t,, which assumes that p(t,|ts, t.) = d(tq — (ts +tr)), that is, the probability
density function p(t,|ts, t,-) is a Dirac function.

The main assumption with the above model is that the occurrence of a word only depends on the
topic, not on the time instant when a topic occurs. given the deterministic relation between the three
time variables (t, = ts + t,.), the joint distribution of all variables can be written as:

p(w,te,d, 2, ts) = p(d)p(z|d)p(ts|z, d)p(w|2)p(ts — ts|w, 2) (1)
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Figure 1: a) document n(w, ¢, d) generation. Words (w, t, = ts-+t,) are obtained by first sampling
the topics and their starting times from the p(z|d) and p(ts|z, d) distributions, and then sampling the
word and its temporal occurrence within the topic from p(w, ¢,.|z). b) graphical model.

2.2 Model inference and sparsity

Our goal is to discover the topics and their starting times given the set of documents n(w, ¢, d).
The model parameters © can be estimated by maximizing the log-likelihood of the observed data
D, which is obtained through marginalization over the hidden variables Y = {¢, z}:

D N, Ty N. Tgs
LDO) =" n(wtsd)log) > plw,ta,d,z,t.) 2)
d=1w=1t,=1 z=1ts=1

Such an optimization can be performed using an Expectation-Maximization (EM) approach, max-
imizing the expectation of the complete log-likelihood. However, as motivated in the introduction,
the estimated distributions may exhibit a non-sparse structure that is not desirable in practice. In
our model this is the case of p(ts|z, d): one would expect this distribution to be peaky, exhibiting
high values for only a limited number of time instants ¢;. To encourage this, we propose to guide
the learning process towards sparser distributions characterized by smaller entropy, and achieve this
indirectly by adding to the data likelihood a regularization constraint to maximize the Kullback-
Leibler distance D1, (U||p(ts|z, d)) between the uniform distribution U (maximum entropy) and
the distribution of interest. After development and removing the constant term, our constrained
objective function is now given by:

Az
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The EM algorithm can be easily applied to the modified objective function. In the E-step, the
posterior distribution of hidden variables is calculated as (the joint probability is given by Eq. 1):

(o, tafu, £, d) = DL 0 2o ts) ot ) = ii tard, 2 ts) @)
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In the M-step, the model parameters (the probability tables) are updated according to:
Tds T,—

<) Z Z n(w,ts + tr, d)p(z, ts|w, ts + tr, d) (5)

ts=1t,=0 w=1

N, T.—1 \
p(tslz, d)ocmax(OZZ n(w,ts + tr, d)p(z, ts|w, ts + t,,d) — zd) ©6)

T
w=1 t,=0 ds
D Tys T,—1

x> Z (w,ts + tr, d)p(2, ts|w, ts + t,,d) (7)

d=1ts=11,.=0
D Tys

b (tlw, 2) 00> 0> n(w, by + by, d)p(z, tow, t + e, d) (8)
d=1ts=1

Qualitatively, in the E-step, the responsibilities of the topic occurrences in explaining the word pairs
(w,ty) are computed (high responsibilities are obtained for informative words, i.e. words appearing
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Figure 2: Synthetic experiments. (a) the five topics, (b) a segment of a generated document, (c,d) the
same segment perturbed with: (c) uniform noise (o5, = 1), (d) Gaussian noise (c = 1) added to
each word time occurrence t,. (e) the true topic occurrences (only 3 of them are shown for clarity)
in the document segment shown in (b). (f-i) the recovered topic occurrences p(ts|z, d); (f) the clean
document (cf b) and no sparsity constraint A = 0 (g) and A = 0.5; (h) the noisy document (c) and
A = 0.5 (i) the noisy document (d) and A = 0.5.
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Figure 3: Recovered topics without (a,c,e) and with (b,d,f) sparsity constraints A = 0.5 (a,b) from
clean data; (c,d) from documents perturbed with random noise words, os,, = 1, cf Fig.2c; (e,f)
from documents perturbed with Gaussian noise on location o = 1, cf Fig.2d.

in only one topic and at a specific time), whereas the M-steps aggregates these responsibilities to
infer the topic patterns and occurrences. Importantly, thanks to the E-steps, the multiple occurrences
of an activity in documents are implicitly aligned in order to learn its pattern.

Finally, when looking at Equation 6, we see that the effect of the introduced constraint is to set to 0

the probability of terms which are lower than ATzd‘d thus increasing the sparsity as desired.

3 Experiments on synthetic data

Synthetic data is used to demonstrate the strength of our model and the effect of the sparsity con-
straint. Using a vocabulary of 10 words, we created five topics with duration ranging between 6 and
10 time steps (see Fig. 2a). Then, we created 10 documents of 2000 time steps assuming equiprob-
able topics and 60 random occurrences per topic. In the rest of the article, average results from the
10 documents and corresponding error-bars are reported. One hundred time steps of one document
are shown in Fig. 2b, where the intensities represents the word count (larger counts are darker), and
Fig. 2e shows the corresponding starting times of three out of the five topics. As can be noticed,
there is a large amount of overlap between topics. Finally, in Eq. 6 we defined X, 4 = )\n—‘i, where
ng denotes the total number of words in the document, and use A to denote the sparsity level. Note

that when \ = 1, the correction term );dd is, on average, of the same order of magnitude than the

first part of the right hand side in Eq. 6.

Results on clean data. Figures 3a and 3b illustrate the recovered topics with and without the sparsity
constraint. As can be seen, without sparsity, two of the obtained topics are not well recovered. This
can be explained as follows. Consider the first of the five topics. Samples of this topic motif starting
at a given instant ¢4 in the document can be equivalently obtained by sampling words from the learnt
topic 3a and sampling the starting time from three consecutive ¢, values with lower probabilities
instead of one. This can be visualized in Fig.2f, where the peaks in the blue curve p(ts|z = 1,d) are
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Figure 4: Average topic correlation between the estimated and the ground truth topics for different
sparsity weight A and for different levels of (a) the uniform noise, (b) the Gaussian noise on a word
time occurrence t,. (¢) Average entropy of p(ts|z, d) in function of the sparsity A.
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Figure 5: Flowchart for discovering sequential activity motifs in videos.

three times wider and lower than in the ground truth. When using the sparsity constraint, the topics
are well recovered, and the starting time occurrences better estimated.

Robustness to Noise and sparsity effect. Two types of noise were used to test the method’s ro-
bustness. In the first case, words were added to the clean documents by randomly sampling the time
instant ¢, and the word w from a uniform distribution, as illustrated in Fig. 2c. The amount of noise
is quantified by the ratio o, = N2°%¢/N!™e where, N/°i*¢ denotes the number of noise words
added and N/""¢ the number of words in the clean document. The learning performance is evalu-
ated by measuring, the average correlation between the learned topics p(t,-, w|z) and the true topics
p(tr, w|z) (.e. N% >t w D(tr, w|2).p(t,, w|2) ) (See Fig. 4). Noise can also be due to variability in
the temporal execution of the activity. This ’location noise’ was simulated by adding random shifts
(sampled from Gaussian noise with ¢ € [0, 2]) to the time occurrence ¢, of each word, resulting in
blurry documents (see Fig. 2d). Fig. 2¢c-f illustrates the recovered topics. Without sparsity constraint,
the topic patterns are not well recovered (even the vertical topic). With the sparsity constraint, topics
are well recovered, but reflect the effects of the generated noise, i.e. uniform noise in the first case,
temporal blurring in the second case. Fig. 4 shows that the model is able to handle quite a large
amount of noise in both cases, and that the sparsity approach provide significantly better results.
Finally, we validate that, as desired, there is an inverse relation between the sparsity constraint and
the entropy of p(ts|z, d) which is clearly seen in Fig. 4c.

Number of Topics and Topic Length. In [12], it was shown that requesting longer topics than in
the ground truth or more topics than necessary does not affect learning, but that performance are
usually significantly worse with no sparsity constraint.

4 Scene activity patterns

4.1 Activity words

We also applied our pLSM model to discover temporal activity patterns from real life scenes. This
work flow is summarized in Fig. 5. To apply the pLSM model on videos, we need to define the
words w forming its vocabulary. Instead of using low-level features directly, we perform a dimen-
sionality reduction step on the low level features as done in [12] by applying pLSA on location, and
optical flow velocity features obtained from the video. Thus, we obtain temporally and spatially
localized activity (TSLA) patterns from the low-level features and use the occurrences of these as
our words to discover sequential activity motifs (SM) in pLSM model.Thus, N4 dominant TSLA
patterns obtained from pLSA define our words for PLSM i.e. N,, = N4. The word counts defining
the PLSM documents d are then built from the amount of presence of these TSLA patterns in the
sequence of d;, documents.

4.2 Results

Experiments were carried out on two complex scenes. The Far Field video contains 108 minutes
of a three-road junction captured from a distance, where typical activities are moving vehicles. As
the scene is not controlled by a traffic signal, activities have large temporal variations. The Traffic
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Figure 6: a)Interpolated Precision/Recall curves for the detection of 4 types of events mapped onto 4
topics evaluated on a 10 minute test video.b)p(ts|z, d) for two activities without sparsity constraint,
c)p(ts|z, d) with sparsity constraints.

Junction video is 45 minutes long and captures a portion of a busy traffic-light-controlled road
junction. Activities include people walking on the pavement or waiting before crossing over the
zebras, and vehicles moving in and out of the scene.

In the interest of space and better illustration we have provided sample clips and comprehensive re-
sultsat http://www.idiap.ch/paper/1930/sup.html [15]. Given the scene complexity
and the expected number of typical activities, we arbitrarily set the number NV, of sequential motifs
(SM) to 15 and the motif duration 7, to 10 time steps (10 seconds). Top ranking SMs from the
datasets, (provided in the web-page [15]) exactly correspond to the dominant patterns in the scene
namely, vehicle moving along the main road in both directions in the far field data. In the Traf-
fic Junction scene, despite the low amount of data, the motifs represent well vehicular movements,
pedestrian activities, and complex temporal interactions between vehicles and pedestrians.

Event detection. We also did a quantitative evaluation of how well pLSM can be used to detect
particular events. We can create an event detector by considering the most probable occurrences
p(ts, z|d) of a topic z in a test document d. By setting and varying a threshold on p(t5, z|d) we can
control the trade-off between precision and completeness. For this event detection task, we labelled
a 10 minute video clip from the far field scene, distinct from the training set, and considered 4 events
depicted in Fig. 6. To each event type, we manually associated a topic, built an event detector and
varied the decision threshold to obtain precision/recall curves. Fig. 6 shows the obtained results.

4.3 Sparsity effect

The Sparsity constraint employed on p(t, z|d) distribution resulted in clear peaks for the motif start
times (see Fig. 6¢) as opposed to smoother distributions obtained without the sparsity constraint
(Fig. 6b). This was useful in removing some of the false alarms and improving the quantitative
results in the event detection task. However, looking at the motifs qualitatively revealed that a
sparse p(ts, z|d) distribution results in smoother motifs: the uncertainty in start times is transfered
to the time axis of the motifs. This effect can be clearly observed on synthetic data (in Fig. 3f vs
Fig. 3b) and the examples in the web page [15].

5 Conclusion

In this article, we extended a topic-based method for temporal activity mining. The underlying
model used here extracts temporal patterns from documents where multiple activities occur simul-
taneously. Our contribution is to encourage sparsity in the model demonstrated specifically on the
motif start times.

We introduced sparsity by adding a regularization constraint on learnt distributions. The effect of
sparsity on both synthetic data under variety of noise and real life data was studied. Results in
both settings show that sparsity constraint improves the quality of recovered activity patterns and
increases the model’s robustness to noise. The formulation of the regularization constraint as an
entropy minimization makes it straightforward to introduce in the EM optimization, and can be
similarly introduced in most topic models like pLSA and LDA.
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