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Abstract
Multistream diarization is an effective way to improve the di-
arization performance, MFCC and Time Delay Of Arrivals
(TDOA) being the most commonly used features. This paper
extends our previous work on information bottleneck diariza-
tion aiming to include large number of features besides MFCC
and TDOA while keeping computational costs low. At first
HMM/GMM and IB systems are compared in case of two and
four feature streams and analysis of errors is performed. Results
on a dataset of 17 meetings show that, in spite of comparable
oracle performances, the IB system is more robust to feature
weight variations. Then a sequential optimization is introduced
that further improves the speaker error by5 − 8% relative. In
the last part, computational issues are discussed. The proposed
approach is significantly faster and its complexity marginally
grows with the number of feature streams running in0.75 real
time even with four streams achieving a speaker error equal to
6%.
Index Terms: Speaker diarization, Information bottleneck,
Multistream diarization, Sequential IB.

1. Introduction
Including multiple feature streams is an effective method to im-
prove the performance of speaker diarization systems recorded
in meeting rooms using multiple distant microphones. The most
common feature combination is based on spectral features, e.g.,
MFCC and Time delay of arrivals features (TDOA). Other stud-
ies have proposed the combination of MFCC with prosodic or
long term features, i.e. extracted from a long time span of the
signal [1]. However, the speaker error reduction with multiple
feature streams happens at the cost of an increased computa-
tional complexity. In our previous work [2], it was shown that
up to four feature streams (MFCC, TDOA, Modulation Spec-
trum features and Frequency Domain Linear Prediction[3]) can
simultaneously be integrated in a non-parametric diarization
system for further reduction in the speaker error. This paper
advances the previous work by three contributions. The IB sys-
tem is compared side by side with a conventional HMM/GMM
system both using two and four features streams. The study
aims to analyze the robustness of the two systems to the stream
weights. While a greedy agglomerative method was used in
previous works, this paper introduces a sequential optimization
method to find the global minimum of the objective function.
The sequential method (sIB) acts as purification step to im-
prove the partition produced by the agglomerative clustering.
The application of sIB to multistream system is investigated.
The last contribution of the paper is the study of computational
costs of the proposed non-parametric system versus a paramet-

ric HMM/GMM system when multiple feature streams are used.
The remainder of the paper is organized as follows: Sec-

tion 2 and Section 3 describe the HMM/GMM system and the
agglomerative IB system. Section 4 describes the sequential op-
timization method. Experiments both on two and four feature
streams are presented in Section 5 and complexity analysis is
presented in Section 6. The paper is concluded in Section 7.

2. GMM based diarization
Conventional speaker diarization systems are based on
HMM/GMM models in which each speaker is represented by
an HMM state with GMM emission probability [4]. The di-
arization starts with a uniform linear segmentation of the in-
put into a large number of clusters (speakers). Successively at
each step a cluster pair is merged based on a distance measure
like the BIC or its modified version [4]. The merging stops
when all the BIC values are less than zero. After each merge,
a realignment of speaker boundaries is performed with the es-
timated speaker models. Whenever multiple feature streams
{xi

t}, i = 1, . . . , M are available, the system can be extended
by considering a separate GMM model for each stream. Let
bi
c(x

i
t) be the GMM model of clusterc corresponding to the fea-

ture streamxi
t. The BIC criterion is extended using a combined

likelihood lc(xt) computed as a weighted linear combination of
individual likelihoods:

lc(xt) =
X

i

Pi log
h

b
i
c(x

i
t)

i

(1)

wherePi represents the weight of the feature streamxi
t and is

estimated on a development dataset. The most common features
used are MFCC and TDOA [5] but also other feature sets have
been considered recently [1]. Details on the initialization and
the number of gaussian components per feature stream can be
found in [6],[5].

3. IB based Speaker Diarization
This section briefly summarizes the IB speaker diarization sys-
tem that operates in a space of relevance variables proposed
in [7]. The Information Bottleneck is a distributional clustering
technique introduced in [8]. Consider a set of input variables
X. The Information Bottleneck principle depends on a rele-
vance variables’ setY that carries important information about
the problem. According to IB principle, any clusteringC should
be compact with respect to the input representation (minimum
I(X,C)) and preserve as much mutual information as possible
about relevance variablesY (maximumI(C, Y )). This corre-



sponds to the maximization of:

F = I(C, Y ) −
1

β
I(X,C) (2)

whereβ is a Lagrange multiplier. The IB criterion is optimized
w.r.t. the stochastic mappingp(c|x) using iterative optimization
techniques. The agglomerative Information Bottleneck (aIB)
clustering is a greedy way of optimizing the IB objective func-
tion [9]. The algorithm is initialized with each input element
x ∈ X as a separate cluster. At each step, two clusters are
merged such that the reduction in mutual information w.r.t rel-
evance variables is minimum. It can be proved that the loss in
mutual information in merging any two clustersc1 and c2 is
given in terms of a Jensen-Shannon divergence that can directly
be computed from the distributionp(y|x) as:

∆F(c1, c2) = [p(c1) + p(c2)]JS[p(y|c1), p(y|c2)] (3)

The Jensen-Shannon divergenceJS[p(y|c1), p(y|c2)] is given
by:

π1Dkl [p(y|c1)||q(y)] + π2Dkl [p(y|c2)||q(y)] (4)

whereπj =
p(cj)

p(c1)+p(c2)
, q(y) represents the distribution of rel-

evance variables after the cluster merge andDkl denotes the
Kullback-Leibler divergence between two distributions. The
number of clusters is determined by using a threshold on the
Normalized Mutual Information given byI(C,Y )

I(X,Y )
.

In order to apply this method to speaker diarization, the set
of relevance variablesY = {yn} is defined as the components
of a background GMM(M) trained on the entire audio record-
ing [7]. The input to the clustering algorithm is uniformly seg-
mented speech segmentsxt. The posterior probabilityp(yn|xt)
is computed using Bayes’ rule. The speech segments with the
smallest distance (the Jensen-Shannon divergence) are then it-
eratively merged until the model selection criterion is satisfied.

Whenever multiple features are available, the combination
is performed in the space of relevance variablesy [10]. Sepa-
rate GMMs with the same number of components are trained
for each feature stream. The individual components are kept
aligned. i.e, the same component of two different GMMs are
estimated using the features with same time indices. In other
words, there is a one-to-one correspondence between the GMM
components. Let{Mi} be the background model for the fea-
ture streamxi. The combined distributionp(y|x) is then esti-
mated as:

p(y|x) =
X

i

p(y|xi
,Mi)Pi (5)

where Pi corresponds to the weights ofith feature stream
(
P

Pi = 1). This corresponds to averaging the different
p(y|xi,Mi) obtained with GMMs trained on different feature
streams.

After clustering, the speaker boundaries are realigned. In-
stead of using HMM/GMMs, the realignment is performed in
the space of relevance variablesp(y|x) using an HMM-KL di-
vergence (Kullback-Leibler) based system described in [10].

The entire diarization algorithm including clustering, fea-
ture combination and realignment depends only on the rele-
vance variable distributionp(y|x).

4. Sequential IB
Being a greedy algorithm, the aIB may not converge to the
global optimum of the objective function. A sequential op-
timization referred as sequential Information Bottleneck(sIB)

was proposed in [11] and aims at finding the global maximum
of the objective function.

Consider an initial partition of the dataX into K clusters
{c1, . . . , cK}. An elementx ∈ X is drawn at random out of its
clustercold and is represented as a singleton cluster. This sin-
gleton cluster is then merged into a new clustercnew according
to:

cnew = arg min
c

∆F(x, c) (6)

where∆F(x, c) is the loss in IB function in merging the sin-
gleton clusterx with any clusterc. This information loss is
again represented in terms of a Jensen-Shannon divergence i.e.
Eqn. 3. It can be shown that ifcnew 6= cold the IB objective
function improves [11]. Thus in each step the IB functional im-
proves or stays the same. This reassignment is repeated several
times until there is no change in the clustering assignments.

We propose here the use of this sequential optimization on
the agglomerative clustering partition. In this scenario,sIB re-
fines the clusters by reassigning the elements similar to theclus-
ter purification algorithms [12]. In case of multistream diariza-
tion, the distributionp(y|x) calculated by (5) can be employed.
As the aIB, the sIB algorithm also requires only the distribution
p(y|x) as the input.

5. Experiments
The experiments are conducted on 17 meeting recordings from
five different meeting rooms (CMU,EDI,NIST,TNO,VT) cor-
responding to data collected for the NIST RT06/RT07 evalua-
tions [13]. The amount of speech data is more than twice more
as compared to our previous experiments [2]. At first mul-
tiple channels are beamformed using theBeamformIttoolkit.
MFCC and TDOA features are then extracted from the beam-
formed output (details about the front-end are available in[5]).
Two additional sets of features – filtered trajectories of criti-
cal band energies, i.e., Modulation Spectrum (MS), and FDLP
features[3] are also extracted from long temporal windows,dif-
fering from both location features like TDOA or spectral fea-
tures like MFCC. The current work studies speaker diarization
based on the combination of two features (MFCC and TDOA)
and four features (MFCC, TDOA, FDLP and MS) as well as
their complementarity. The MFCC, and FDLP features have a
dimensionality of 19 while MS features are 26 dimensional and
the dimensionality of TDOA features changes with the number
of microphones in the array.

A critical part of multi-stream methods consists of deter-
mining the weights of different feature sets. In this work, these
weights are estimated from a development dataset composed of
12 recordings across 6 meetings rooms. The weights that min-
imize a smoothed version of speaker error [2] are selected in
order to avoid local minima. The system performance is eval-
uated using Diarization Error Rate (DER) that is the sum of
speech/non-speech segmentation and speaker errors. Sincewe
use the same speech non-speech segmentation across all the ex-
periments only speaker error is reported for the purpose of com-
parison.

Experiments report the performance obtained by both op-
timal weights and estimated weights from development data.
Optimal weights represent the best performance possible with
the feature combination. They are obtained by varying the fea-
ture weightsPi from 0 to 1 under the constraint

P

i Pi = 1 and
choosing the weights that corresponds to the minimum speaker
error. Results for the HMM/GMM, the agglomerative and se-
quential IB systems are reported in the following.
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Figure 1: Optimal weights for IB and baseline systems obtained
with an oracle experiment for the four stream system.
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Figure 2: Meeting-wise Speaker Error in case of HMM/GMM and
aIB with weights estimated from development data.

Table 1: Baseline and aIB speaker errors corresponding to two
and four feature combination systems (optimal and estimated
weights).

HMM/GMM aIB
2 feat 4 feats 2 feats 4 feats

optimal wts 5.1 2.6 5.8 2.8
estimated wts 12.4 16.3 11.6 6.3

5.1. HMM/GMM system

Table 1(second column) reports the results corresponding to
the MFCC and TDOA combination with estimated weights
and oracle weights. Weights estimated on development data
are (Pmfcc, Ptdoa) = (0.9, 0.1). The speaker error ob-
tained with estimated weights is more than 7% worse than
performance with optimal weights. Let us now consider
the combination of four features (MFCC, TDOA, MS and
FDLP). The results are presented in Table 1 (third col-
umn). The estimated weights from the development data
are(Pmfcc, Ptdoa, Pms, Pfdlp) = (0.69, 0.20, 0.01, 0.10). In
spite of the improvement in the optimal performance, the
speaker error of the baseline system increases when weightsare
estimated from development data.

5.2. Agglomerative IB system

Let us now consider the performance of the agglomerative IB
system reported in Table 1 in case of MFCC and TDOA features
(fourth column) and four features (fifth column). The optimal
performances of the IB system are similar to the optimal perfor-
mance of the HMM/GMM showing that in case of oracle stream
weighting the two systems are equivalent. However in case of
estimated weights it consistently outperforms the baseline.

The selected weights in case of two
[(Pmfcc, Ptdoa) = (0.7, 0.3)] and four feature streams
[(Pmfcc, Ptdoa, Pms, Pfdlp) = (0.5, 0.20, 0.05, 0.25)] are
quite different from the GMM scenario. The speaker error
decreases in case of four features largely outperforming the
baseline system.

To study the system performance in detail, let us consider
the meeting-wise optimal weights depicted in Figure 1 in case of
four streams. Optimal weights for the HMM/GMM system span
a wider range compared to those of the aIB. A possible reason
for this could be the variable dimension of the TDOA features
which affects the order of magnitude of the log-likelihoodsof

Eqn. ( 1). In case of aIB, the combination is performed using
probabilities (Eqn. 5) rather than log-likelihoods and optimal
weights are observed to be in the similar magnitude range. Fig-
ure 2 compares the meeting-wise speaker errors; the baseline
system performs considerably worse in case of meetings with
higher number of microphones while it has comparable perfor-
mances on the remaining. In summary, while the two systems
have comparable oracle performances, the aIB seems consider-
ably more robust when weights are obtained from a develop-
ment data set.

To further analyze the two systems, we investigate the vari-
ance of the speaker error on the development data in a±0.05
neighborhood of the estimated weights . The variance is equal
to 2.0 in the HMM/GMM case and0.68 in case of aIB. This
implies that the second one is less sensitive to weights thanthe
first.

5.3. Sequential IB

The sIB algorithm is performed to further improve the diariza-
tion output as described in Section 4. Table 2 reports the re-
sults in case of two and four feature streams. The sequential
framework improves the performance by8% relative in the first
case (from11.6% to 10.7%) and by5% relative in the second
case (from6.3% to 6.0%). The improvement obtained by the
sequential optimization decreases while the number of streams
increases and the speaker error becomes very low.

aIB aIB + sIB
2 feats 11.6 10.7 (+8%)
4 feats 6.3 6.0 (+5%)

Table 2: aIB and sIB performance in case of two and four fea-
ture streams.

6. Complexity
This section investigates the computational complexity ofthe
HMM/GMM and the IB diarization systems. Both systems use
an agglomerative clustering and this requires the estimation of
the distance between every pair of clusters, i.e.,1

2
k(k − 1) dis-

tance calculations wherek is the number of clusters. In case of
HMM/GMM, the distance is represented by the BIC distance.
Its calculation involves the estimation of a new GMM model us-
ing the Expectation-Maximization algorithm. Whenever multi-
ple streams are available, a GMM must be estimated for each of



Table 3: Complexity analysis - Real time factors:
(a)algorithm time used by different steps in the IB system

aIB aIB+sIB
estimate IB KL estimate IB KL
p(y|x) clstrng realgn p(y|x) clstrng realgn

2 feat 0.24 0.08 0.09 0.25 0.10 0.09
4 feat 0.52 0.09 0.11 0.52 0.10 0.11

(b) comparison with baseline
Baseline aIB aIB+sIB

2 feats 3.8 0.41 0.43
4 feats 11.3 0.72 0.75

them (see Eqn. 1) thus increasing the computational complexity.
In contrast to this, the IB system estimates a background

GMM for each feature only once (before the clustering) and
the combination happens in the space of distributionsp(y|x)
(Eqn. 5). The distance measure (the Jensen-Shannon divergence
of Eqn. 3) is obtained in close form and does not depend on
the number of features streams. This happens since the dimen-
sion of the relevance variablesY depends only on the number
of components in the mixture model. Thus the clustering and
the realignment complexities remain the same. The extra cost
comes only in the estimation of distributionp(y|x).

The algorithms are benchmarked on a normal desktop Ma-
chine (AMD AthlonTM 64 X2 Dual Core Processor 2.6GHz,
2GB RAM). The run-time of the algorithms are averaged across
multiple iterations. Table 3(a) reports the real time factors taken
by various steps in the IB diarization for two and four feature
streams. The clustering and the realignment complexities re-
main almost constant with the addition of new features. The
largest part of the computational time is spent in the distribu-
tion estimation step – roughly60% in case of two stream com-
bination and70% in case of four streams. In both cases the
additional complexity introduced by sIB is minimal (12% of
the clustering time). Table 3(b) compares the real time factors
for IB and baseline systems.

The IB diarization is8 times faster than the HMM/GMM
system in the two stream case and14 times faster in the four
stream case. It can also be noticed that the introduction of two
additional features increases the computing time by a factor of
3 in the HMM/GMM system while this factor is only1.7 in the
IB system.

7. Conclusions
Speaker diarization based on combination of multiple streams
has been an active field during last years. In the previous
work [2] we have shown that up to four feature streams can be
simultaneously integrated in a non-parametric diarization sys-
tem for further reducing the speaker error. To our best knowl-
edge this was the first successful attempt of including otherfea-
tures together with MFCC and TDOA.

This work aims at comparing a conventional HMM/GMM
diarization system with a system based on the Information Bot-
tleneck principle. While the first performs the combinationby
averaging log-likelihoods the second one operates in a space of
relevance variables and avoids any log-likelihood combination.
The investigation is carried on 17 meeting recordings from five
meeting rooms in case of two features (MFCC and TDOA) and
with four features (MFCC, TDOA, MS and FDLP). Results re-
veal that the two systems have comparable oracle performance
(obtained manually choosing the optimal weights) in both cases.

Whenever weights are estimated from the development

data, the baseline performance degrades considerably in case
of four features. Comparatively the IB system performance de-
grades only by3.5%(Table 1) achieving a speaker error equal
to 6.3%. Analysis of sensitivity to the weights shows that the
IB combination scheme is more robust to variations in feature
weights as revealed by the speaker error variance.

The paper also proposes and investigates a sequential opti-
mization method for refining the partition obtained by the ag-
glomerative clustering. In contrast to the greedy aIB algorithm
that might converge to a local minimum, sIB tries to find the
global optimum. Experiments reveal that the algorithm im-
proves the performance by8% relative in the two stream case
and by5% relative in case of four streams. This shows that pu-
rification methods are effective even at very low speaker errors.

In addition, the analysis of the algorithm complexities
shows that the IB algorithms are much faster than the baseline
system. The algorithms perform in realtime, the majority of
the running time being spent by the estimation of distributions
p(y|x). The clustering and realignment algorithm complexities
remain almost same in spite of increase in number of features.
The sequential optimization only marginally increases thecom-
putational time. Remarkably, even when four feature streams
are used, the system runs in0.75 times real-time achieving a
speaker error of6.0%.

In summary, results show that the proposed system provides
a very robust way of integrating multiple features with a limited
increase in the computational complexity.
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