IDIAP RESEARCH REPORT

%chlao

RESEARCH INSTITUTE

PHONOLOGICAL KNOWLEDGE GUIDED
HMM STATE MAPPING FOR
CROSS-LINGUAL SPEAKER ADAPTATION

Hui Liang John Dines

Idiap-RR-17-2011

JUNE 2011

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T+41 2772177 11 F+4127 72177 12 info@idiap.ch www.idiap.ch






Phonological Knowledge Guided HMM State Mapping for Crosstingual
Speaker Adaptation

Hui Liang'2, John Dine$
! |diap Research Institute, Martigny, Switzerland

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Laes&@witzerland
hl i ang@ di ap. ch, dines@di ap. ch

Contents
1 Introduction 1
2 Current Mapping Construction Method 2
3 Phonological Knowledge Guided State Mapping Constructio 3
3.1 Basicidea. . . . ... e 3
3.2 Data-driven fashion for state classification . . . . . . ... ... ... . . o 3
3.21 Questiondesign . . . . .. e 3
3.2.2 Question selection criterionforeachnode . . . . . . .. ... .. ... ... L L. 3
4  Experiments and Analysis 4
4.1 Speakersandspeechdata. . . . . . . . . . L e e 4
4.2 Cross-lingual adaptation approaches . . . . . . . . . . .. oo 4
4.3 Objective evaluation . . . . . . . . . e e e 4
4.4 Impact of phonological knowledge on mappingrules . . ...... . . . . .. ... L. 4
4.5 Questions used forrootnode splitting . . . . . . . . .. 5
4.6 Subjective evaluation . . . . . . . L e e e 5
5 Conclusions 6
6 Acknowledgements 6
7 References 6

Abstract

Within the HMM state mapping-based cross-lingual spea#taptation framework, the minimum Kullback-Leibler diver-
gence criterion has been typically employed to measureithiéasity of two average voice state distributions from two
respective languages for state mapping construction. i@ensg that this simple criterion doesn’t take any langerag
specific information into account, we propose a data-dripéionological knowledge guided approach to strengthen the
mapping construction — state distributions from the twalaages are clustered according to broad phonetic catsgorie
using decision trees and mapping rules are constructednitiiin each of the clusters. Objective evaluation of our-pro
posed approach demonstrates reduction of mel-cepsttalttii® and that mapping rules derived from a single trajnin
speaker generalize to other speakers, with subtle impremebeing detected during subjective listening tests.

Index Terms: phonological knowledge, minimum generation error, ciiosgual speaker adaptation, HMM-based TTS

1. Introduction

The language barrier is an important hurdle to overcomedero facilitate better communication between peoplessro
the globe. Real-time automated speech-to-speech trmmsigata technology that could provide means to bridge the gap
between languages, thus it is an important research topie.d@mponent technology of speech-to-speech translation i



speaker adaptation for speech synthesis, which would enabislated speech to be produced with a user’s input voice
characteristics.

HMM-based speech synthesis lends itself particularly weeBpeech-to-speech translation since it includes a range
of speaker adaptation algorithms that centre around thealed average voicgparadigm [1]. In the context of speech-
to-speech translation, we generally use the teross-lingual speaker adaptatipwhich essentially means adapting the
voice identity of average voice models to that of given adaph data in a different language to that of the averageevoic
models.

State mapping for cross-lingual speaker adaptation iopedd by taking average voice models trained in the input
(adaptation) and target (synthesis) languages and fintimglbsest matching states between the two models. Since
the HMM state mapping technique was introduced [2], the miumh Kullback-Leibler divergence (KLD) criterion has
been typically employed to establish this mapping. Thispudata-driven criterion, though working acceptably vietl
cross-lingual speaker adaptation [3, 4], may not alwaydypee meaningful state mapping rules especially when the two
languages are quite distinct in terms of phonology.

In this work we propose to introduce phonological knowleige the above-mentioned state mapping method. Our
key idea is classifying average voice state distributisomftwo languages into phonologically constrained clissgerd
then constructing mapping rules only within each of theteltss We achieve this by decision tree based clustering [5].
Sub-optimal phonological constraints (i.e. questionsrfode splitting) are discovered using a small set of bilingua
development data, on which resulting state distributiaistelrs maximally provide improvement to cross-linguakdes
adaptation in terms of mel-cepstral distortion. In thisgrape evaluate the effectiveness of our proposed methodlas we
as the generality of the optimal set of mapping rules fouméafparticular speaker.

2. Current Mapping Construction Method

We call the language a target speaker speaks in adaptatafiojaut languageli,)” and the language in which speech

is synthesized “output languagéd,)”’. The state of the art of cross-lingual speaker adaptatopresented in [3],
where each average voice state distribution from some kEgwand its closest match from another language in terms of
minimum KLD constitute a mapping rule. It was shown that trepming could be performed &mnsform mappingfrom

each state il o to a state in_j,) or data mappingfrom each state i, to a state inLq). In this paper we present state
mapping from the data mapping perspective since our pre\aoalysis [4, 6] has shown a preference for this approach,
though it may equally generalise to transform mapping a$ Weé also concentrate on adaptation of spectral features
where mel-cepstral distortion (MCD) is employed as the clbje measure.

In data mapping, adaptation data iry, is associated with average voice state distributiond&f. Then cross-
lingual speaker adaptation is carried out in the intratimgnanner. Our previous work showed the role that phonosdgi
mismatch between languages played in cross-lingual atitapfzerformance, hence it is natural to question the ogtiyna
of the minimum KLD criterion for state mapping, since it do&s$ake into account any language-specific knowledge. To
test the optimality of the minimum KLD criterion, we repedtine data mapping experiments in [6] as a preliminary
examination — adapting an English average voice model with Mlandarin adaptation utterances in speaker MMh's
voice (see Section 4 for MMh), but using mapping rules defimethek-th best match ifl oyt

k MCD(dB) | & MCD (dB)
1 767 | 10 7.76
2 764 |20 7.98
3 764 |30 816
4
5

7.64 40 8.38
7.80 50 8.48

Table 1:Results under thé-th best minimum KLD criterion for data mapping cross-liagjspeaker adaptation

We evaluated for ten values &fin turn and calculated corresponding MCD measurementsaul®es Table 1 show
that while KLD does generally increase with increasigthis is only apparent fok>5. This suggests that while
KLD is an effective measure, there may also exist addititetaht factors that may be combined with KLD to achieve
more effective mapping. In particular, the introductionaoiditional knowledge based on our understanding of the two
languages’ phonology may be used to guide the mapping.



3. Phonological Knowledge Guided State Mapping Constructin
3.1. Basicidea

The minimum KLD criterion is used to construct mapping rubetween average voice state distributions of context-
dependent phones iy, and Loy, but without taking into account our knowledge of their urtgiag phone categories. It
can be seen that this approach could potentially lead to mgpples that make little sense at the phone level (for imcta

an Li, vowel state mapped to aly, plosive state). Therefore we propose to introduce phoncdbgnowledge in order

to avoid such mappings from occurring. Specifically, we piEpto classify average voice state distributions figgrand
Loyt into phonologically constrained clusters such that magpies are constructed under the minimum KLD criterion,
but only within each of these phonologically constrainedtgdrs. Hence a state gets mapped to its phonologicalljasimi
states only.

3.2. Data-driven fashion for state classification

The challenge is to derive phonologically constrainedtelssin a data-driven manner since it has been previously ob-
served that purely knowledge-based approaches are notiedf¢7]. As a result, we employ decision tree-based state
clustering in a similar fashion to cluster well-trainedtstdistributions ofL;, and Lo, average voice models. Each leaf
node of the decision trees is a phonologically constraihester.

3.2.1. Question design

Out of hundreds of phonetic and prosodic contexts used in Hb&lge speech synthesis, the most important ones for spec-
trum are generally considered to be the triphone part — lefnpme (“L-"), central phoneme (“C-") and right phoneme
(“R-"). Consequently, we consider the triphone contextshesessential factors for clustering of average voice state
distributions ofLj, and Lo, and create seven phoneme classes based on articulatiorradmat are commonly shared
across oulLi, and Loy — silence, vowel, plosive, fricative, affricate, approgint and nasal. Thus, we have a total of 21
guestions for decision tree-based state clustering. A sliatribution is considered to be a member of a phoneme class
if any context-dependent phone to which it is tied belongthie class, consequently, a state may have membership to
multiple classes.

3.2.2. Question selection criterion for each node

Utterances from one or more speakers are selected as devibgata, which has no intersection with training data of
average voice models, adaptation data or test data. Minigemaration error (MGE) [8] is used as the question selection
criterion for each node. In order to find the best split for aled’, average voice state distributions belongingXto

are clustered according to each question and the improviem&und by: (i) recalculating mapping rules betwegp

and Lo based on each of the possible node splits; (ii) performingstingual speaker adaptation in the data mapping
fashion [4] with these newly formed mapping rules and all ékistent ones in the rest untouched leaf nodes; and (iii)
calculating the MCD change on held-out development data.dtlestion producing the best improvement is selected for
splitting nodeX eventually. The overall procedure is summarised below:

1. Form N root nodes by pooling all average voice state distributioos L, and Lo for each of theV
states, wheréV is the number of emitting states per HMM.

2. Find the next non-terminal leaf node acrossih&ees in the manner of breadth-first search.

3. Find the best split for this leaf node under the MGE criterilf either of the following conditions is true it
is considered a terminal leaf node, otherwise the nodeiisegqgording to the selected question:

(a) One or both children contain state distributions frorty@me language;
(b) The best split produces an MCD reduction less than tlotdstamcp (e amcp>0).

4. Go back to Step 2 or stop growing the decision trees wheeadlhodes are terminal leaves.

MGE is a time-consuming optimization criterion [8], nonelgss, there are merely 21 questions in all, thus, the
computational cost is still manageable. As a post-prodbssproposed method degenerates into the purely minimum



KLD criterion-based approach if it ends up with no node besplit (i.e. no phonologically constrained clusters crdate

4. Experiments and Analysis

We trained two average voice, single Gaussian-per-stataasis models on the corpora Speecon (12.3 hours in Mandari
asLip) and WSJ-SI84 (15.0 hours in English B&,), respectively, in the HTS-2007 framework [9]. The HMM tdpgy
used was five-state (i.elV=5) and left-to-right with no skip. Speech features werehd®der STRAIGHT [10] mel-
cepstra,log Fy, five-dimensional band aperiodicity, and their delta anliadeéelta coefficients, extracted from 16kHz
recordings with a window shift of 5ms. All the following cr®dingual adaptation experiments were performed on these
two average voice models, using the CSMAPLR [11] algoritbmspeaker adaptation and global variances calculated on
adaptation data for synthesis.

4.1. Speakers and speech data

Two male (MM3 and MM6) and two female (MF2 and MF7) speakersenselected from a bilingual corpus recorded
in an anechoic chamber [12]. One more male speaker, MMh, evhioise was recorded in the same chamber, was also
involved. The five speakers read exactly the same promptetim Mandarin and English. MF2 was a truly bilingual
speaker of Mandarin and English, and the remaining four wetve Mandarin speakers. MMh, MF7 and MM3 had
reasonably natural English accents but MM6’s English weengly Mandarin-accented. Therefore, only MF2, MMh,
MF7 and MM3 were considered as training speakers for ourqgeeg approach.

Adaptation data of each of the five speakers consisted of 1&@disrin utterances (files 0026125). Development
data of each of the four training speakers consisted of 1@lignutterances (files 002&125). Test data of each of the
five speakers consisted of 25 English utterances (files90025).

4.2. Cross-lingual adaptation approaches

We conducted four groups of experiments,(= Mandarin,Lq = English). Within each group, mapping rules of classified
states for mel-cepstra were derived from one of the founitngispeakers by means of our proposed method while those
for log Iy, band aperiodicity and duration were still constructedepuby the minimum KLD criterion. Then these
mapping rules were used for cross-lingual adaptation falfour kinds of parameters) of the English average voice for
each of the four remaining speakers\ycp was set to 0.0005dB. Our baseline system merely involvedningnum
KLD criterion in construction of mapping rules for all kindéfeatures.

In this study we only investigated global transform baseapgation due to present computational demands of the
MGE-based decision tree construction. In addition, ouvipres study [6] demonstrates that using regression class tr
based adaptation is detrimental to cross-lingual spealagtation. Hence, we consider this as a topic for future work

4.3. Objective evaluation

Original recordings of test data of the five speakers wereef@ligned using the English average voice models and Bpeec
samples for objective evaluation were synthesized as peeulting alignments. Results of objective evaluatiothef

four groups of cross-lingual adaptation experiments aesemted in Figure 1 and Table 2. These MCD measurements
were calculated on the entire test data set of the five speakgpectively.

It can be seen from Figure 1 that mapping rules optimized er#velopment data of a bilingual speaker consistently
provided improvement on their own test data. When applyiransnapping rules to other target speakers, it is observed
that the MCD curves of these target speakers still had ayeashotonically decreasing tendency. In other words,
speaker-dependently constructed mapping rules still taiaied a degree of speaker-independence. The exception was
MM®6, who received the least MCD reduction among all the spesKThis result may come from the fact that MM6 has
the most pronounced accent when speaking English, thuingsa clustered mapping rules that do not generalise$o hi
speech.

4.4. Impact of phonological knowledge on mapping rules

A total of 2975 mapping rules were constructed, one for edt¢hen2975 states in the Mandarin average voice model.
Figure 2 shows howk varied under the data-driven use of phonological congsain

We observe two common traits in the four sub-figures of FigurEirstly, the bars correspondingtel are signifi-
cantly taller than any others and tall bars concentratednahge oftc<20. Thus, the minimum KLD criterion continues
to play a dominant role and KLD remains a good measure of pbgital similarity of context-dependent models from
two different languages. Secondly, a significant propartinimum of 59.9%) of mapping rules changed under our pro-
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Figure 1:Plot of MCD versus leaf node count during decision tree aoiesipn (Crosses indicate minimums on the curves.
“TrnSpkr_dev” refers to the development data of respective trainipgedkers. “test” refers to test data. The six points
on the vertical axis in each sub-figure come from the basgline

posed approach. Thus, it is also evident that the minimum Itif@rion on its own may not be sufficient, as suggested
by our initial analysis. It is also interesting to note frowtt Table 2 and Figure 2 that our approach has the most impact
on the truly bilingual speaker MF2, in terms of the humberlzdrnged mapping rules, MCD improvement and providing
the best generalisation to the other speakers (except M&AGaa discussed previously).

4.5. Questions used for root node splitting

One means to analyse the generalisation of the proposedapis to consider the questions that have yielded the
greatest MCD improvement. We show in Table 3 the questiotteeimoot node of each decision tree (which also gave the
greatest MCD improvement) for each of the training speakers

It is interesting to see that most questions chosen by oyrgzed method were shared across speakers. The occur-

rence confirms that phonological constraints played a rieafidy speaker-independent role in optimizing mapping rule
construction.

4.6. Subjective evaluation

Subjective evaluation was performed in the form of AB and ABXening tests for naturalness and speaker similarity,
respectively. All of the speech samples were selected freanexperiment group corresponding to the top-left sub-€gur
in Figure 1, since MF2 seems to provide the best generalistdiother speakers. We synthesised five sentences from the



TrnSpkr| Dataset AMCD | Dataset AMCD
MF2_dev (O[S MF2_test 0.39

MF2 MMh _test 0.20| MM3_test 0.14
MF7_test 0.16| MM6 _test 0.05

MMh _dev MF2_test 0.21

MMh MMh _test 0.26 | MM3_test 0.14
MF7_test MMG6 _test 0.06

MF2_test 0.26

MMh _test . MM3 _test 0.21

MF7_test 0.13| MM6 _test 0.02

MF7_dev MF2_test 0.23

MF7 MMh _test . MM3_test 0.11
MF7_test 0.25 | MMG6 _test 0.09

Table 2: MCD reduction AMCD) in dB due to the proposed method, i.e., the differendbefeftmost and rightmost

values on each curve in Figure 1

MF2 MMh MM3 MF7
2 L-nasal L-nasal L-nasal L-nasal
3 C-nasal C-nasal C-vowel C-nasal
4 C-nasal C-nasal C-affricate  C-affricate
5 | R-fricative C-affricate C-nasal C-affricate
6 | L-silence  L-plosive L-plosive  L-silence

Table 3:Root node questions for emitting states at each of the fividgos(2~6) in an HMM

25 used in the objective evaluation for each of the five spsaksing the baseline and proposed approaches. Note that
we used unadapted duration from the English average voickeisnio The evaluation comprised a total of 50 AB/ABX
comparisons. Subjective evaluation results are shownguarEi3.

From informal listening, we noted that speaker similaritgsanot greatly impacted by the proposed approach,
but naturalness was marginally improved (speech was pesbwith less ‘muffled’ characteristics than the baseline).
Our perception is reflected in Figure 3. The lack of improvetiie speaker similarity may in part come from lim-
itations of the global transform that has been used in theperenents. A few speech samples can be found at
http://www.idiap.ch/~hliang/demos/IS2011/.

5. Conclusions

The effectiveness and generality across speakers of ptgical knowledge guided state mapping construction haga be
demonstrated in this paper. Though the consequent imprnethat has been achieved so far is subtle, this method
provides us with a promising future direction to improvessdingual speaker adaptation. We expect that optimizing
state mapping rules on speech data of multiple bilinguahlspes would result in a more robust set of mapping rules.
The question set design is also worthy of further invesiigat Lastly, we plan to investigate applying this method to
regression class based adaptation.
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