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Towards Semi-Supervised Learning of Semantic Spatial Concepts

Jesus Martinez-Gomez and Barbara Caputo

Abstract—The ability of building robust semantic space
representations of environments is crucial for the development
of truly autonomous robots. This task, inherently connected
with cognition, is traditionally achieved by training the robot
with a supervised learning phase. We argue that the design
of robust and autonomous systems would greatly benefit from
adopting a semi-supervised online learning approach. Indeed,
the support of open-ended, lifelong learning is fundamental in
order to cope with the dazzling variability of the real world, and
online learning provides precisely this kind of ability. Here we
focus on the robot place recognition problem, and we present
an online place classification algorithm that is able to detect
gap in its own knowledge based on a confidence measure. For
every incoming new image frame, the method is able to decide
if (a) it is a known room with a familiar appearance, (b) it is a
known room with a challenging appearance, or (c) it is a new,
unknown room. Experiments on a subset of the challenging
COLD database show the promise of our approach.

I. INTRODUCTION

Who wouldn’t want a robot at home to make the daily
chores? It could bring you a beer from the fridge, do the
laundry, iron the shirts, collect things from the floor before
cleaning, etc. A major requirement for having robots at
home is that their representation of space, objects, and more
generally concepts must at least partially overlap with our
own. A vast literature in cognitive psychology (see [11] and
reference therein) shows clearly that humans explain and
categorize perceived multi-sensory patterns using semantic
representations, of which language represents the synthesis.
To fix ideas, let us focus here only on the semantic represen-
tation of space. We refer to rooms, and talk about them, in
terms of their visual appearance (the corridor), the activities
we usually perform in them (the fitness room) and the objects
they contain (the bedroom). If we want to share our daily
environment with robots, we need to share with them our
own representation and understanding of it.

How do we make a robot learn the typical semantic space
representation of humans? Robots have perceptual channels
and cognitive abilities very different from our own. For in-
stance, the typical service robot will use laser range scanners
and an omnidirectional camera to collect data about an indoor
place like an office environment. If programmed to learn the
environment autonomously, i.e., in an unsupervised manner,
the robot’s interpretation of the data will result in a space
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representation very different from that of humans. Therefore,
to make a robot have our own semantic representation of
space, it is necessary to have a learning phase supervised by
the user.

But how long should this supervised learning phase be?
The current mainstream approaches (see Section II for a brief
review of the relevant literature) assume a training phase,
well separated from the actual working of the robot, where
the human labels the data. Training usually stops when it is
achieved a pre-defined threshold level of performance on a
validation set of data, or when the user decides it. From
that moment on, the robot is on its own. We argue that
this approach is doomed to fail: rooms change around us
continuously over time as furniture is added, replaced or
relocated. It is impossible to predict how a user is going
to redecorate its living room in the future, and therefore it
is impossible to train the robot beforehand on such data.

Our vision is that the supervised learning mode should al-
ways be accessible to the robot, and it should be triggered by
its ability to explain the incoming data. The transition from
fully supervised to unsupervised should be smooth, robot
driven, and competence-based. In other words, our vision
is that semi-supervised online learning should become the
mainstream approach for enabling robots to learn semantic
concepts.

To move towards this goal, here we present an algorithm
able to learn semantic spatial concepts in an open ended
fashion, i.e. continuously updating its internal model with a
bounded memory growth. The robot switches from a fully
autonomous, unsupervised learning phase to a supervised one
(where assistance by a human teacher might be required)
on the basis of its capability to interpret the data with a
high degree of confidence. The capability to detect hard-to-
explain incoming data is done at the classifier level, frame
by frame, as well as at a higher level, by exploiting the
temporal continuity of the image sequences. This permits
to distinguish between challenging instances of a known
spatial concept (a view of the known class kitchen where
it is perceived for the first time a new piece of furniture)
and a new concept (a room never seen before).

Concretely, our algorithm consists of two components:
the first is an online learning algorithm with performance
comparable to that of the batch method and a bounded
memory growth; the second is a mechanism for assigning
labels to incoming data, detecting challenging frames imag-
ing known concepts and ultimately recognizing when being
in a whole new room. We take an discriminative approach
and we build on previous work on online learning [18], [25]
and confidence-based place classification [19]. Experiments



on a subset of the challenging COLD database [20] show
promising results.

The rest of the paper is organized as follows: after a
brief review of the related literature, we describe the two
components of our approach: the online learning algorithm
IIT and the detection of confidence/ignorance IV. Section V
describes our experimental setup, while section VI reports
our experimental findings. We conclude with an overall
discussion and possible future avenues for research.

II. RELATED WORKS

The ability to learn and interpret complex sensory infor-
mation based on previous experience, inherently connected
with cognition, has been recognized as crucial and vastly
researched [23], [21], [16]. In most cases, the recognition
systems used are trained offline, i.e., they are based on
batch learning algorithms. However, in the real dynamic
world, learning cannot be a single act. It is simply not
possible to create a static model which could explain all
the variability observed over time. Continuous information
acquisition and exchange, coupled with an ongoing learning
process, is necessary to provide a cognitive system with a
valid world representation.

In the last few years, the need for solutions to such prob-
lems as the robustness to long-term dynamic variations, or
the transfer of knowledge, is more and more acknowledged.
In [21], the authors tried to deal with long-term visual
variations in indoor environments by combining informa-
tion acquired using two sensors of different characteristics.
In [26], the problem of invariance to seasonal changes in
appearance of an outdoor environment is addressed. Clearly,
adaptability is a desirable property of a recognition system.
At the same time, Thrun and Mitchell [24], [15] studied the
issue of exchanging knowledge related to different tasks in
the context of artificial neural networks and argued for the
importance of knowledge-transfer schemes for lifelong robot
learning. Several attempts to solve the problem have also
been made from the perspective of Reinforcement Learning,
including the case of transferring learned skills between
different RL agents [14], [10].

III. STEP 1: MEMORY CONTROLLED ONLINE
LEARNING AND RECOGNITION OF VISUAL
PLACES

This section describes the first component of our over-
all approach, namely an online learning algorithm with
a bounded memory growth and an accuracy comparable
to the classic, off-line method. We take a discriminative
approach, and derive an approximate version of the Online
Independent-SVM. As opposed to the original algorithm, our
approach does not require to store all incoming data but
it allows to discard most of them in a principled manner.
This leads to a bounded memory growth, where the upper
bound is set by the user and the lower bound by theoretical
constraints. In the rest of this section we first review basic
concepts on SVM (section III-A), then we summarize the

OI-SVM algorithm (section III-B). Our Memory Controlled
OI-SVM is described in section III-C.

A. SUPPORT VECTOR MACHINES

Due to space limitations, this is a very quick account of
SVMs — the interested reader is referred to [3] for a tutorial,
and to [6] for a comprehensive introduction to the subject.
Assume {x;,y;}_;, with x; € R™ and y; € {-1,1},
is a set of samples and labels drawn from an unknown
probability distribution; we want to find a function f(x) such
that sign(f(x)) best determines the category of any future
sample x. In the most general setting,

!
f(x) = ZaiyiK(X,Xi) +0 (D
i=1

where b € R and K(Xl,Xg) = (I)(Xl) : (I)(X2>, the
kernel function, evaluates inner products between images
of the samples through a non-linear mapping ®. The «;s
are Lagrangian coefficients obtained by solving (the dual
Lagrangian form of) the problem

min  5|w||* + C 3, € 2)
subject to  y;(w-x; +b) >1-¢;
§& >0

where w defines a separating hyperplane in the feature space,
i.e., the space where ® lives, whereas &; € R are slack
variables, C € R™ is an error penalty coefficient and p is
usually 1 or 2. In practice, most of the «; are found to be
zero after training; the vectors with an associated «; different
from zero are called support vectors. Notice that, from (1),
the testing time of a new point is proportional to the number
of SVs, hence reducing the number of SVs implies reducing
the testing time.

B. ONLINE INDEPENDENT SUPPORT VECTOR MA-
CHINES

Let the kernel matrix K be defined such that K;; =
K(x;,x%;), with 4,5 = 1,...,l. The possibility to obtain a
more compact representation of f(x) follows from the fact
that the solution to a SVM problem (that is, the «;s) is not
unique if K does not have full rank [3], which is equivalent
to some of the SVs being linearly dependent on some others
in the feature space [8]. Orabona et al [18] applied this idea
to the online learning framework. As it would be unfeasible
a simplification of the solution each time a new sample is
acquired, they suggested to use independent SVs only, that is
to decouple the concept of “basis” vectors, used to build the
classification function (1), from the samples used to evaluate
the &; in (2). If the selected basis vectors span the same
subspace as the whole sample set, the solution found will be
equivalent.

The OI-SVM algorithm adds incrementally a new incom-
ing samples if it is linearly independent in the feature space
from those already present in the basis itself. The solution



found is the same as in the classical SVM formulation;
therefore, no approximation whatsoever is involved.

Denoting the indexes of the vectors in the current basis,
after [ training samples, by 5, and the new sample under
judgment by x;4;, the algorithm can then be summed up as
follows:

1) check whether x;; is linearly independent from the
basis in the feature space; if it is, add it to BB; otherwise,
leave B unchanged.

2) incrementally re-train the machine.

Hence the testing time for a new point will be O(|B]), as
opposed to O(!) in the standard approach; therefore, keeping
B small will improve the testing time without losing any
precision whatsoever. A major drawback of OI-SVM is that
it requires to store in memory all the incoming training data
in order to guarantee that the online solution is the same as
in the classical SVM formulation.

C. MEMORY CONTROLLED ONLINE INDEPENDENT
SUPPORT VECTOR MACHINES

The need to store all incoming data makes in practice
unusable the OI-SVM algorithm for open-ended learning
of semantic spatial concepts, especially for a mobile robot
platform: while the dimension of the solution would remain
constant over time, the overall memory requirement would
grow linearly with the number of perceived frames, leading
quickly to a memory explosion.

To overcome this problem, we propose to apply a for-
getting strategy over the stored Training Samples (1'S's),
while preserving the stored Support Vectors in order to
approximate reasonably well the original optimal solution.
The idea of keeping under control the memory growth of
online learning algorithms is not new: several authors tried in
the past to address this problem, mainly by bounding a priori
the memory requirements. The first algorithm to overcome
the unlimited growth of the support set was proposed by
Crammer et al. [S]. The algor ithm was then refined by
Weston et al. [27]. The idea of the algorithm was to discard
a vector of the solution, once the maximum dimension has
been reached. The strategy was purely heuristic and no
mistake bounds were given. A similar strategy has been used
also in NORMA [9] and SILK [4]. The very first online
algorithm to have a fixed memory “budget” and at the same
time to have a relative mistake bound has been the F orgetron
[7]. Within the context of semantic scene recognition, Ullah
et al [25] proposed instead a random forgetting strategies,
which should be more robust to possible unbalancing into
the class-by class distribution of the T'S's.

Here we take the approach proposed in [IROS09] and
define the following random forgetting strategy:

1) we introduce a threshold value that corresponds to the
allowed maximum number of stored Training Samples
(MaxT§Ss);

2) whenever T'S > MaxT'Ss, we randomly discard T'S's
until their value is again below threshold. This con-
cretely means discarding old 7'S's, selected randomly,
for each new incoming 7'S.

3) With this strategy, the memory requirements of the
algorithm are always between the number of SV's
of the testing solution and the number of SV's plus
MaxTS's.

We will show experimentally that this approximation of
the original OI-SVM algorithm does not affect the accuracy
of the solution for a wide range of values of MazTS's.

IV. STEP 2: DETECTION OF IGNORANCE

The second, key component of our method is the capability
to autonomously assign labels to new, incoming images,
without the need for human supervision. The core issue
here is the ability to estimate the level of confidence of
each potential decision: a frame classified as corridor should
be used to update the internal representation for the class
corridor only if the confidence of the decision is high enough.
If this would not be the case, then there would be a very
strong risk of adding wrongly labelled data to the model,
with a consequent degradation of the overall performance
over time.

At the same time, one could argue that the most challeng-
ing frames, for each known class, are the most important
to be added as they are those bringing new valuable infor-
mation. An obvious way to do so would be to store the
challenging frames and then, periodically, asking for labels
to a human supervisor. Our solution here is instead to exploit
the temporal continuity between frames and the intrinsic
constraints of the problem: once a robot has traversed a
door, all frames perceived until crossing another door must
belong to the same semantic spatial concept. This same line
of reasoning gives us a useful tool to determine if the robot
has entered a new, unknown room.

Section IV-A describes how we estimate the level of
confidence of the classifier and how to exploit temporal con-
tinuity to label challenging frames. Section IV-B illustrates
how these two ingredients can be also used to identify new
semantic spatial concepts.

A. DETECTING CHALLENGING FRAMES

To use incoming data to update the internal models, the
algorithm needs to assign reliably class labels to each new
frame. This in turns means that it should be able to detect
frames that cannot be properly classified, i.e. that cannot be
classified with a high confidence level. The problem therefore
becomes that of defining effective confidence measures for
evaluating the reliability of the label assignment process. As
we use a multiclass SVM with one versus all strategy, a
natural measure of confidence is the decision margin for each
class. These margins will be positive when a frame should be
classified using one of the known classes (hard acceptance),
negatives otherwise (hard rejection). Figure 1, right, shows
an example of the margins output for the class corridor in
case of a frame correctly classified with high confidence.

On the basis of the output margins Mf”-C:l, with C=
number of classes, for each frame n, we define the two
following conditions for detecting challenging frames:
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1) Mfl < Mmawiczlz for each of the possible classes C
none obtains a hi(%h level of confidence;

2) |M} — Mi| < A,_,: there are at least two classes with
high level of confidence, but their absolute difference
is too small to allow for a confident decision.

Figure 1, centre, shows an example of a frame classified as
challenging because of a low level of confidence (condition
(1)); Figure 1, left, shows instead an example of challenging
frame where there are two high and very close levels of
confidence (condition (2)).

To improve stability, we normalize the margins by dividing
all values by the maximum positive (if the margin is positive)
or the lowest negative value (otherwise). The obtained set of
margins will be within (—1.0,+1.0). The threshold values
(Mypaz, A) are of course crucial for the success of the
method. In Section VI we show experiments exploring the
robustness of the method to these two parameters.

Once a frame has been identified as challenging, we use
the classification results obtained for the last n frames to
solve the ambiguity: if all the last n frames have been
assigned to the class C;, then we can conclude that all frames
come from the same class C;, and the label will be assigned
accordingly. This could be further integrated with a door
detection algorithm to avoid false label assignments. We do
not purse here this idea, although we plan to do it in the
future.

B. DETECTING NEW ROOMS

A special type of challenging frames are those correspond-
ing to new rooms. When robots enter into a room not seen
during training, we would expect that most of the margin
values for all known classes should be negative, or anyway
with low positive confidence. Furthermore, we would expect
that by looking at n consecutive frames one would not be
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able to detect a dominant class label. In such a case, all
incoming frames will be detected as challenging.

When such a situation (all test frames classified as chal-
lenging frames) continues for a large number of frames, we
consider that the robot has entered a new room, not seen
during training. In such a case, the robot can only ask for
labels to a human supervisor. Here the critical parameter is
of course the minimum number of challenging frames to
be detected continuously: this point has been investigated
experimentally in section VI.

V. EXPERIMENTAL SETUP

In this section we describe the experimental setup used to
validate our approach. Section V-A describes the data used,
and section V-B the feature descriptors. The description of
each experiment with the corresponding result is given in
section VI.

A. THE DATABASE

For all our experiments we used a subset of the COLD
database [20]. It contains three separate sub-datasets, ac-
quired at three different indoor labs, located in three different
European cities: the Visual Cognitive Systems Laboratory
at the University of Ljubljana, Slovenia; the Autonomous
Intelligent System Laboratory at the University of Freiburg,
Germany; and the Language Technology Laboratory at
the German Research Center for Artificial Intelligence in
Saarbriicken, Germany. For each lab, image sequences of
several rooms are provided, all acquired with the same
camera settings.

Here we used the sub-dataset acquired in the Autonomous
Intelligent System Laboratory at the University of Freiburg,
Germany (COLD-Freiburg): it consists of three sets of se-
quences, both acquired under varying illumination condi-
tions. Of these three sets, we chose the following two: In
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Examples of images from the COLD-Freiburg database.

the first set, the robot travels across five rooms: corridor,
2-person office, printer area, bathroom and stairs area. In
the second set, the robot travels across the rooms of the
first set, plus other four rooms: a 1-person office, a printer
area, a kitchen and a large office. Figure 2 shows some
exemplar views from the second set of sequences. Each of
the sequences described above were acquired under three
different illumination conditions -sunny, cloudy and night.
Three sequences were acquired, one after the other, for each
weather condition, for a total of nine data sequences for each
set.

B. THE FEATURES

As features, we chose a variety of global descriptors
representing different features of the images. We opted
for histogram-based global features, mostly in the spatial-
pyramid scheme introduced in [12]. This representation
scheme was chosen because it combines the structural and
statistical approaches: it takes into account the spatial distri-
bution of features over an image, while the local distribution
is in turn estimated by mean of histograms; moreover it has
proven to be more versatile and to achieve higher accuracies
in our experiments.

The descriptors we have opted to extract belong to five
different families: Pyramid Histogram of Orientated Gradi-
ents (PHOG) [2], Sift-based Pyramid Histogram Of visual
Words (PHOW) [1], Pyramid histogram of Local Binary Pat-
terns (PLBP) [17], Self-Similarity-based PHOW (SS-PHOW)
[22], and Compose Receptive Field Histogram (CRFH) [13].
Among all these descriptors, CRFH is the only one which
is not computed pyramidly. For the remaining families we
have extracted an image descriptor for every value of L =
{0,1,2, 3}, so that the total number of descriptors extracted
per image is equal to 25 (4 + 4 PHOG, 4 + 4 PHOW, 4
PLBP, 4 SS-PHOW, 1 CRFH). In order to select the best
visual cues to be combined together we performed a pre-

selection step, namely we run some preliminary experiments
to decide which combination of features was more effective.
This eventually made us settle on two descriptors, PHOG LO
and Oriented PHOG L2. Their exact settings are summarized
in Table I. These two features are concatenated to generate
a single feature that will be used as input for the classifier.

DESCRIPTOR SETTINGS L
PHOG 30 range= [0, 180] and K =20 {0}
PHOGs360 range= [0, 360] and K =40 {2}

TABLE I
SETTINGS OF THE IMAGE DESCRIPTORS

VI. RESULTS

This section presents an experimental evaluation of our
approach. We first test the performance of MC-OI-SVM
compared to that of the original method (section VI-A). Then
we analyze the impact of detecting challenging frames on
the overall performance, especially in terms of false positives
(section VI-B). Lastly, we investigate the capability to detect
unknown rooms (section VI-C).

For all the experiments, we used the COLD-Freiburg
database and the visual features described in the previ-
ous section. Training always consisted of three sequences,
acquired one after the other, with the same illumination
conditions. Testing consisted of one sequence, taken from
those not used for training. For the SVM, we used the 2
kernel, with C' =1, y =1 and n = 0.25.

A. Experiment 1: Memory-Controlled OISVM

To compare the performance of MC-OI-SVM with that
of OI-SVM, we used only sequences from the A set of the
COLD-Freiburg, i.e. the testing sequences did not contained
rooms not seen during training. Because of the different
illumination conditions (cloudy, sunny and night) and of
the number of acquired sequences for each lighting set-
ting, there are 9 different combinations of training and test
data. We performed experiments on all of them, select-
ing for MC-OI-SVM four different values of MaxTS's:
(500,1000,2000,3000).

In order to show how this threshold affects the memory
requirements of the system, Fig 3 shows the number of
training samples stored by the algorithm, for all different
values used for MaxT'S's.

Fig. 4 shows the obtained results, averaged over the 9 runs.
Figure 4, left, shows the error rate for the two algorithms,
for the different values of MaxzT1'Ss. We see that, for
MaxTSs > 1000, the performance of the two algorithms
is essentially the same. Figure 4, right, shows instead the
number of stored vectors for the testing solution, for all
methods. From this figure, and from Fig 3, we can make
two remarks: (1) with MC-OI-SVM it is possible to obtain
an impressive reduction on the memory requirements of the
original method with a very negligible decrease in accuracy;
(2) when the MaxTSs value is too close to the number
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of SV of the testing solution, the approximation affects the
optimality of the solution, and the error rate starts to increase.

These results confirm the effectiveness of our online
approach; in the following, we will use MC-OI-SVM only,
with MaxTSs = 2000.

B. Experiment 2: Detecting Challenging Frames

We now turn to analyze the capability of our approach to
detect challenging frames. Training and test data were chosen
as described in the previous section, but here we decided
to show results relative to only one specific run (training
on night, testing on cloudy) for the sake of clarity. Results
obtained on the other 8 runs are similar and omitted here for
space reasons.

Figure 5, left, shows the accuracy obtained for different
values of the confidence threshold, with A = 0, in terms
of true positives, false positives and frames not classified,
corresponding to the challenging frames. We see that, for
threshold values between 0.05 and 0.1, almost all the frames
detected as challenging are false positives of the original
approach. When the threshold values increases, also the
number of true positives start decreasing.

Figure 5, right, shows the effect of using the temporal
continuity ("history factor’): for a threshold value of 0.2, we
see that not only the number of true positives increases con-
siderably, but that up to 25 consecutive frames the number
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of detected challenging frames increases almost exclusively
at the expenses of the false positives.

We also tested different values of A, but we did not
observe any improvement in the performance, given that all
the experiments we run on data collected in the same indoor
environment, we believe that this result cannot be considered
conclusive for an evaluation of its usefulness.

C. Experiment 3: Detecting New Rooms

As a last, final set of experiments, we tested the capability
of our system to distinguish between challenging frames of
a known room, and a new room never seen during training.
To this end, we used as testing sequences the B sequence
of the COLD-Freiburg database, considering as new rooms
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three of the extra four images (we considered the two printer
areas as the same categorical room). Figure 6 shows the
results obtained, for two possible threshold values (0.2 and
0.4) and two different values of the history factor (5 top, 15
bottom). When using a history factor of 5 and a confidence
level of 0.1, the system recognizes only one of the three
rooms as unknown, after 20 consecutive challenging frames
(Figure 6, top left). When, one considers instead at least
40 consecutive challenging frames, the system is not able
to recognize any unknown room. A similar behaviour is
observed with a history factor of 15: when passing from
20 to 40 consecutive challenging frames, the system passes
from detecting all the unknown rooms to none (Figure 6,
bottom left). The same behavior, slightly less accentuated,
can be observed with a threshold value of 0.2 (Figure 6,
right). This makes us conclude that it is better to ask for
a smaller number of consecutive challenging frames, and a
slightly high confidence threshold.

Finally, Fig. 7 presents graphically the results obtained
using or not the upper layer —the advantage is quite evident.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented an algorithm for online learning
of semantic spatial concepts with a bounded memory growth,
able to measure its own level of confidence when classifying
incoming frames, and therefore able to decide when to ask
for human annotation and when to trust its own decisions.
Experiments on a subset of the challenging COLD database
[20] show that our approach is able to minimize the false

Using the upper layer

Fig. 7. Processed Output using the upper layer

positives when classifying known frames, and it is able to
detect new rooms, not seen during training.

Besides a more extensive experimental evaluation, this
work can be continued in many ways. With respect to the
confidence estimate, here we used the output margin of the
SVM-based classifiers, but more elegant and sophisticated
options should be explored here. We plan to integrate the
high level layer of the approach with a door detector, so
to increase the robustness of the process. Lastly, here we
applied the method to only visual features, but this frame-
work should work, and benefit from, multi-modal data such
as laser range features. Future work will proceed in these
directions.
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