IDIAP RESEARCH REPORT

%chlao

RESEARCH INSTITUTE

TRANSFER LEARNING OF VISUAL
CONCEPTS ACROSS ROBOTS: A
DISCRIMINATIVE APPROACH

Sriram Prasath Elango Tatiana Tommasi
Barbara Caputo

Idiap-RR-06-2012

JANUARY 2012

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T+41 2772177 11 F+4127 72177 12 info@idiap.ch www.idiap.ch






Transfer Learning of Visual Concepts
across Robots: a Discriminative
Approach

Sriram Prasath Elango, Tatiana Tommasi and Barbara Caputo

Abstract—While there is a general consensus that autonomous robots
should be able to learn continuously over time, the learning process
is traditionally envisioned for each specific robot situated in a given
environment. This does not consider the fact that robots performing
similar tasks in similar settings would probably learn similar concepts.
They would therefore benefit by sharing their prior experience with
each other. In this paper we present a transfer learning algorithm that
enables robots located in different places to take advantage of each other’s
experience, boosting the learning process. We specifically assume to have
robots equipped with a camera. We do not make any assumption on
the type of camera, nor on where it is positioned. We also assume that
the robots use the same feature descriptors and learning algorithms.
Under these assumptions, we show that one robot can hugely benefit
from what has been learned by peer robots performing similar tasks. The
advantage concretely means a consistent boost in performance, especially
when training data is scarce. Our algorithm is based on Least Square
Support Vector Machine, and allows to determine automatically from
where to transfer and how much to transfer: this makes it possible
to take advantage of the prior when it is useful, while minimizing the
risk of negative transfer when the priors are not informative. Thorough
experiments on four different publicly available databases show the power
of our approach.

I. INTRODUCTION

Artificial autonomous systems are meant to operate in the real
world. However, even the best system we can currently engineer is
bound to fail whenever the setting is not heavily constrained. This is
because the real world is generally too nuanced, too complicated
and too unpredictable to be summarized within a limited set of
specifications; there will be inevitably novel situations and the system
will always have gaps, conflicts or ambiguities in its own knowledge
and capabilities.

To date, research in artificial cognitive systems has approached the
problem of learning with two main strategies. The first is the develop-
mental approach, where tabula rasa robots autonomously learn how to
deal with their actuators and sensors before constructing the concepts
of state and time, the dynamics of sensorimotor coordination for
manipulation, and ultimately building and using an increasing number
of concepts [1], [2], [3], [4]. The second considers a human supervisor
as the key component in the learning process. Implementations of this
strategy range from controllers which batch-process large amounts
of human-annotated information, to interactive systems which can be
tutored online by a human [5], [6], [7]. Consider these two learning
strategies in terms of (1) the amount of knowledge available to
the system at any point in time, and (2) the cost of accessing this
knowledge. When a robot follows the developmental approach, the
amount of knowledge available is strictly limited by the environment
and the (in)ability of the robot to perceive and interact with objects
etc., while the cost of accessing the information that is available is not
particularly high. When a robot learns through human supervision,
the amount of knowledge available is greater, but the cost of accessing
it is commensurately higher. This is particularly true when learning
depends on human-robot interaction.

Both strategies envision robots learning in isolation. A third, largely
unexplored strategy is that of robots learning from each other. Indeed,
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Fig. 1.  Schematic example of the proposed transfer learning method. A
new robot learns the parameter w describing the hyperplane which separates
bathroom (BH) from bedroom (BD). The optimisation problem is regularized
asking w to be close to a linear combination of known w? associateed with
similar problems already solved by other two robots (5 = 1 prior 1,57 = 2
prior 2) in different locations. The coefficients 3; indicate how much the new
model is close to each of the old ones.

robots situated in similar settings, performing similar tasks, do learn
similar perceptual concepts. It seems therefore reasonable that a robot
engaged in learning a new task could take advantage of the prior
models learned by other robots which have already mastered that
same, or a related, task.

We focus here on the learning of visual perceptual tasks, such as
learning to recognize visually a place or an object. To enable a robot
to perform these tasks while taking advantage of what learned before
by peer robots, there is a need for common internal representations
of knoweldge. A first thorough attempt in this direction has been
the work of Zsolt [8], which builds joint intermediate representations
for visual properties like color, texture, shape and so forth (for a
comprehensive review of the relevant literature we refer the reader
to Section II). The method assumes to have two robots equipped
with different cameras, engaged in the same task. As the common
representation is built at the sensory level, a key assumption is that
both robots perceive the same object at the same time, in the same
place. This is a very strong constraint, as it de facto limits the use of
this approach to robots physically located in the same environment,
at least while learning the joint perceptual representation.

In this paper we propose instead to enable robots to learn from
their more experienced peers through joint high level representa-
tion, i.e. shared representations at the level of the class decision
functions. This preserves the freedom to have each robot possibly
equipped with a different camera, positioned at different heights. Our
working assumption is that all robots use the same kind of feature
descriptors, and the same type of classifier. Although these are non
trivial constraints, we argue that they are significantly milder than
those proposed in [8]. Furthermore, this strategy does not pose any
limitation on the number of agents from which a robot might exploit
priors when engaged in a new task, therefore increasing the potential
advantages of this learning strategy.

We cast the problem within the transfer learning framework [9],
and we take a discriminative approach. Our method is based on Least
Square Support Vector Machine (LS-SVM) [10]. A robot learning a
new task equates to learning a new class (or set of classes) through
adaptation. Knowledge from other k& robots is exploited in the form
of the classifier hyperplanes WJf, j = 1,..., k. The hyperplane w
learned by the new robot is constrained to be close to a linear
combination of those of the priors (Figure 1). Our algorithm learns
from where to transfer (i.e which prior sources to trust), and how



much to transfer (i.e. how much to trust each prior source), via
an optimization process which minimizes the Leave-One-Out (LOO)
error on the training set. Determining how much to transfer helps
avoiding negative transfer. Therefore, in case of non-informative prior
knowledge, transfer might be disregarded completely.

Our working scenario consists of platforms, equipped with the
same kind of sensors with similar characteristics, with the same
processing capabilities. These robots will be located in indoor office
or house environments. We assume that all of them are able to
locate themselves semantically in space (“I am in the kitchen”, “I
am in the corridor”). The knowledge to be shared across platforms
will be visual-based semantic place representations, whether at the
specific level (Barbara’s office, Housel kitchen), or at the categorical
level (an office, a kitchen; see Figure 2). We performed experiments
on four different public databases (the IDOL database [11], the
RobotVision@ImageCLEF2010 database [12], the VPC database [13]
and the COLD database [14]) supporting the scenarios described
above. Our results clearly indicate that our method significantly boost
learning of new perceptual concepts whenever informative priors are
available, while it does not affect negatively learning in case of non
informative priors.

A preliminary version of this work was first published in [15],
within the context of object categorization. Compared to the con-
ference version, in this paper we make the following contributions:
(1) we cast for the first time the problem of knowledge sharing
across heterogeneous robot platforms within the transfer learning
framework, significantly relaxing the requirements over the placement
of the robot systems compared to previous work [8]; (2) we extend the
algorithm from the binary to the multi-class scenario, obtaining one
of the few multi-class transfer learning methods in the literature; (3)
we perform a thorough experimental evaluation of our approach over
four different publicly available databases, analyzing the behavior of
our approach in three different scenarios.

The rest of the paper is organized as follows: section II gives
a review of transfer learning and previous work in the robotics
community. Section III casts the robot sharing within the transfer
learning framework and describes our algorithm. Section IV describes
our experimental setup, while Section V reports on our experimental
findings and discuss results. We conclude with an overall discussion
and possible future directions for research.

II. RELATED WORKS

In the following we elaborate on the state of the art on transfer
learning from the machine learning and robotics perspective.

A. Transfer Learning: the Machine Learning Perspective

The fundamental motivation for transfer learning in the field of
machine learning was first discussed in NIPS-95 workshop on Learn-
ing to Learn [16] which focuses on the need for life-long machine
learning methods that retain and reuse previous knowledge. A major
assumption in many machine learning and data mining systems is that
the data distributions between the training and test data are the same,
and that the data must be from the same feature representations.
However in many real world applications, this assumption does
not hold. For example, we sometimes have a classification task in
one domain, but we only have sufficient training data in another
domain where the data may follow a different distribution, or may
be in a different feature space. In these cases, knowledge transfer
would greatly benefit learning in our interested domain by avoiding
expensive data labelling tasks [9]. To date, there are three main open
research issues in transfer learning: what fo transfer, how to transfer,
and when to transfer.

Fig. 2. Schematic example of transfer learning across two similar robots in
different house environments (categorical task). Both the agents are asked
to solve a four class problem (bathroom, kitchen, diningroom, bedroom).
Many image samples are available for the first robot; the discriminative model
defined on this prior problem is saved and used by the second robot when
learning from few new samples.

The question ‘what to transfer?” addresses which knowledge can be
used to transfer across domains or tasks. Some knowledge is specific
for individual domains, and some knowledge may be common
between different domains such that it helps improving performance
for the target task [9]. In the literature it is possible to find three
answers to this question. One can be referred as instance-transfer
approach: although the source domain data cannot be reused directly,
there are certain parts of the data that can still be considered together
with a few labelled data in the target domain. Possible strategies
consist in re-weighting the source data or sampling them to remove
the misleading training examples [17], [18]. A second solution is
defined by transferring feature representations. It means learning
a common feature structure from different domains that can bridge
related tasks [19], [20]. A variant consists in finding suitable kernels
for the target data in SVM- based approaches [21]. The third strategy
can be described as parameter-transfer approach. It assumes that the
source task and the target tasks share some parameters or priors of
their model. Thus knowledge is formalized e.g. in Gaussian Priors
and the parameters describing source tasks are reused to learn the
novel target task [22], [23].

Addressing the question ‘how to transfer?’ corresponds to develop
algorithms to transfer knowledge, after discovering which information
can be transferred [9]. The answer to this question depends on
the application context in which the problem is posed. Inductive
Transfer Learning involves extending well known classification and
inference algorithms such as neural networks, Bayesian networks
and Markov logic networks [24]. In Unsupervised Transfer Learning
labelled data in both source and target domains are unavailable,
thus the main research issue is to develop an algorithm which
transfer knowledge for clustering, dimensionality reduction and other
unsupervised learning tasks [24]. Looking at knowledge transfer from
the point of view of learning algorithms, we can list works which
approach the problem in very different ways. Wu and Dietterich
transferred source training examples either as support vectors or as
constraints (or both) and demonstrated improved image classification
by SVMs [25]. Caruana [26] trained a neural network on several tasks
simultaneously as a way to induce efficient internal representation
for the target task. Sutton and McCallum [27] demonstrated effective



transfer by cascading a class of graphical models with the predictions
from one classifier serving as features for the next one in the cascade.
Other works involve boosting [17] and k-nearest-neighbor [28].

The issue of ‘when to transfer’ means in which situations knowl-
edge transfer should be avoided because it would likely affect
negatively learning of the new class. The ideal knowledge transfer
algorithm should be able to determine automatically if it is worth-
while transferring knowledge or not. A very important aspect of the
problem consists in understanding from where to transfer when there
exist not just one, but a set of candidate source tasks. Publication
focusing on when to transfer evaluate the limit of transfer learning
power. Rosenstain et al [29] empirically showed that if two tasks
are dissimilar, then brute force transfer hurts the performance of the
target task. In [30] an analysis is given for transfer learning using
Kolmogorov complexity, where the theoretical bound is proven. In
particular, the authors used conditional Kolmogorov complexity to
measure relatedness between tasks and transfer the right amount of
information in sequential transfer learning in a Bayesian setting. More
reacently Eaton et al [31] proposed a model to transfer relationships
between tasks to improve inductive learning.

Tommasi et al [15] is one of the first works aiming to address
these three aspects at the same time, in a principled framework. The
paper face a detection problem where the task is to recognize if a
test image belongs to a target object class or not (i.e. belongs to a
predefined background class). We proposed a discriminative method
based on Least Square Support Vector Machine (LS-SVM) [10]
(how to transfer) that learns the new class through adaptation. We
defined the prior knowledge as the hyperplanes of the classifiers w,
j=1,...,k for k classes already learned (what to transfer). Hence
knowledge transfer is equivalent to constrain the hyperplanes w of
the (k + 1)th new category to be close to those of a sub-set of the
k classes. We learned the sub-set of classes from where to transfer,
and how much to transfer from each of them, via the Leave-One-Out
(LOO) error on the training set. Determining how much to transfer
helps avoiding negative transfer. Therefore, in case of non-informative
prior knowledge, transfer might be disregarded completely (when to
transfer). The method was tested successfully in the visual category
detection domain.

B. Transfer Learning: The Robotic Perspective

The vast majority of the work on transfer learning in robotics as-
sumes relative homogeneity for the agents, focusing on the problems
of conflicting knowledge, differing knowledge levels, and adaptations
of the knowledge to the receiving agent’s capabilities. This has
been studied mostly within the framework of multi-agent systems.
Several authors focused on how to determine confidence or trust when
interacting with other agents (e.g. [32]). These approaches are based
largely on probabilistic representations of previous experience, look-
ing at how to use confidence measures when integrating contributions
from different agents.

A more direct attempt to attack the problem of transfer learning
across robot platforms was presented in [33], within the context
of incremental learning of semantic spatial concepts for mobile
platforms. It considered two robot platforms equipped with the same
camera, positioned at a different height from the floor, engaged in
the same task and with the same processing capability. The approach
consisted of a SVM-based framework for modeling concepts, and
proposed transfer in the form of stored support vectors from one
platform to the other as a way to boost learning. To minimize the
risk that transferred knowledge might affect negatively the learning
process in the long run, the authors proposed a forgetting strategy to
progressively eliminate the transferred vectors, as new data from the
actual task become available.

To our knowledge, [8] is the only work so far attempting to
study in a coherent framework how robots equipped with different
cameras can share experience in order to speed up learning. It focused
specifically on differences in sensing and perception, which can be
used both for perceptual categorization tasks as well as determining
actions based on environmental features. It proposed to abstract raw
sensory data into intermediate categories for multiple object features
(such as color, texture, shape, etc) by using Gaussian Mixture Models
representations, as a way to facilitate effective knowledge transfer.
It introduced then a framework to allow robots to build models of
their differences with respect to the intermediate representation using
joint interaction in the environment, consisting of confusion matrices
used to map property pairs between two heterogeneous robots. An
information-theoretic metric was introduced to model information
loss when going from one robot’s representation to another. After this
period of joint interaction, the learned models were used to facilitate
communication and knowledge transfer in a manner sensitive to the
robot’s differences. A crucial limitation of this work is that, in order to
create abstract internal representations, it assumes that the two robots
sharing knowledge are situated in the same place and performing
the same task, at the same time. This in practice heavily limits the
applicability of the framework.

I1I. SHARING KNOWLEDGE METHOD: TRANSFER
LEARNING ACROSS ROBOTS

Transfer learning focuses on storing knowledge gained while
solving some tasks and exploiting it when solving a new, related
task. It would be desirable for an autonomous agent, learning how to
semantically locate itself in space, to be able to exploit knowledge
acquired by an analogous system which already solved a similar
problem. Given the difference among the locations the new data will
belong to a new probability distribution, in general different from the
one previously modeled and stored. Still, as the two robots perform
analogous tasks, it is reasonable to expect that the new and the old
distributions will be close. It should be possible to use the pre-trained
model as starting point when learning on new data.

We propose a method to transfer the knowledge in distinguishing
among different locations acquired by robot A to robot B when B
starts moving in an environment similar to the one experienced by A.
We suppose that robot A is highly reliable in recognizing its position
because it worked for a long time acquiring images, classifying them
by solving a multiclass problem and storing the obtained classification
models. On the other hand, robot B has to define its own place
recognition model on the basis of very few images. Instead of starting
from scratch, robot B can build its knowledge requiring the new
classification model to be close to the one already learned by robot
A. The technique should be general enough to allow the transfer of
the N-class model of A even when the number of classes seen until
now by B is M < N . Moreover, if many A robots are available,
B should take advantage from all of them in the best possible way
according to the similarity between the visited environments.

In the following we summarize the binary transfer learning method
on which we build [15] and we present our extension to multiclass
using the one-vs-one approach.

A. Model Adaptation

Let us suppose to have k robots each of them perceiving two places
in different environments (e.g. robots moving in different hotel rooms
where it is possible to recognize two separate areas: bathroom and
bedroom). Each robot tackles the place recognition issue as a binary
problem acquiring a set of I samples {x;,y;}.—;, where x; € R? is
an input vector describing the i*" acquired image and y; € {-1,1}



is its label. Furthermore each robot learns a linear function f(x) =
w’ - ¢(x) which assigns the correct label to an unseen test sample x.
¢(x) is used to map the input samples to a high dimensional feature
space, induced by a kernel function K (x,x’) = ¢(x) - ¢(x") [34].
We call wa the parameter associated to each j = 1,..., k robot.

A new robot performing the same task in a new place (e.g. a
new hotel room) will learn the corresponding model parameter w
using Least-Square Support Vector Machine (LS-SVM) by solving
the following optimisation problem:

mlanwH + = Z

It can be shown [10] that the optimal w is expressed by w =
S, aig(x;), and @ is found solving

i —w-p(xi)]? . )

[K—l—%l}a:y, 2)
where K is the kernel matrix. Let us call G = [K + JI], thus
the optimisation problem can be solved by simply inverting G. An
advantage of the LS-SVM formulation is that it gives the possibility
to write the Leave-One-Out (LOO) error in closed form [35]. The
LOO error is an unbiased estimator of the classifier generalization
error and can be used for model selection [35].

By slightly changing the classical regularization term, it is possible
to define a learning method based on adaptation [15]. The idea is to
constrain the model learned by the new robot to be close to the set
of k pre-trained models [15] already learned by the other robots:

rnln*IIW Z@WJH +5 ZQ

where wj is the parameter describing each old model and (; is a
scaling factor necessary to control the degree to which the new model
is close to the jth old one. To increase robustness to unbalanced
distributions of the data, the least-square loss was also weighted
with the factor {; depending on the number of positive and negative
examples [15]. If we call y; the LOO prediction, the LOO error in
this modified formulation can be written as:

k ’
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where now G = [K + W] with W = diag{¢; ", ¢, ..., ¢ )
Here «; and a;(j) are respectively elements of the vectors @ =
G7'Y and o/ = G7'Y; where Y is the vector of the y;
and Y'j is the vector of the predictions of the j** known model
Yiij) = (Wi - ¢(x1)).

The best vector 8 can be found minimizing the LOO error. To
define a convex formulation, it is possible to use the following loss
function [15]:
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loss(yi, i) = ¢ max [1 — y; 7, 0]
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This is similar to the hinge loss used in SVM. It is a convex upper
bound to the LOO misclassification loss and favours solutions in
which ¢; has a value of 1, beside having the same sign of y;. Finally,
the objective function is:

J=> loss(yi, i) st [Bla<1. ©

B. One-vs-One multiclass extension

Let us assume that k robots perceive N different places (e.g.
each robot is driven in one of k distinct apartments, each with N
rooms). All the robots are equipped with a learning system based
on LS-SVM using the one-vs-one multiclass extension to solve
the N-class problem. After an initial stage of data acquisition, the
robots learn how to classify the rooms and for each agent all the
N(N — 1)/2 hyperplanes are saved: w; . with j = 1,...,k and
¢c=1,...,N(N — 1)/2. A new robot is then asked to solve a
similar /N-class task and it is allowed to use as prior knowledge the
pre-trained models of the other agents. Starting from Equation (3),
each classification problem between a pair of classes becomes:

mln*HWc Zﬁj,cm 0” +35 ZCZ

and is solved separately according to the method described in the
previous section. If the new robot can access only a subset M of the
N classes in the training phase, M (M — 1)/2 classification models
will be defined as above, While for the remaining (N — M) classes,
wc will be equal to Zj 1 Wj.c. When applied to a test point, one-
vs-one classification is performed by max-wins voting strategy. Each
classifier assign the instance to one of the two classes and the vote
for the assigned class is increased by one; finally the class with most
votes determines the instance label.

p(xi)*, ()

i_Wc'

IV. EXPERIMENTAL SETUP

In this section we describe the experimental setup used for testing
our transfer learning algorithm. Section IV-A describes the four
databases used; Section IV-B briefly reviews the feature descriptor
chosen for all experiments, and Section IV-C describes how we chose
the internal parameters of the transfer learning algorithm, as well as
the baselines against which we evaluate our results.

A. Databases

We evaluated our transfer learning approach on the semantic
place recognition problem and chose four different databases, each
representing different scenarios of increasing difficulty.

1) The IDOL 2 Database: The IDOL 2 Database [11] contains
24 image sequences acquired using a perspective camera mounted
on two mobile robot platforms (a MobileRobots PeopleBot and a
PowerBot). The acquisition was performed within an indoor environ-
ment consisting of five rooms of different functionality: One-person
Office (O0), Two-person Office (TO), CoRridor (CR), KiTchen (KT)
and Printer Area (PA). The sequences were recorded under various
weather and illumination conditions (sunny, cloudy and night) and
across a time span of six months. Both mobile robot platforms are
equipped with the pan-tilt-zoom Canon VC-C4 camera. The cameras
on the two robots are mounted at different heights. For each robot
platform and for each type of illumination conditions, there are four
sequences recorded. The first two were acquired six months before
the last two. This means that for each robot and for every illumination
condition, there are two sequences acquired under similar conditions
and two sequences acquired under very different conditions. In all the
experiments we used the sequences acquired under similar conditions,
one for training and the other for test. Figure 3 shows exemplar
images acquired by the two robot platforms, for all rooms.

2) The RobotVision@ImageCLEF 2010 Database: This database
was created for the Robot Vision Task of the ImageCLEF Challenge
2010 [12]. It has been acquired using a MobileRobots Powerbot
robot platform equipped with a stereo camera system consisting of
two Prosilica GC1380C cameras. The robot was manually driven
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Fig. 3.

through several rooms and different floors of a typical indoor office
environment under fixed illumination conditions. We considered the
robot as a monocular vision system dealing with the images acquired
by only one of the two cameras. The model built to classify six rooms
(CorRidor(CR), LargeOffice (LO), PrinterArea (PA), RecycleArea
(RA), SmallOffice (SO), BatHroom (BH), all frames extracted from
the training set of the database) on one floor defines our prior
knowledge, which is then exploited when learning the same multiclass
problem on a different floor (corresponding to frames extracted from
the validation set of the database). Figure 4 shows exemplar images
for both floors.

3) The VPC Database : The VPC database [13] consists of room
images acquired from 6 different houses using a camcorder (JVC GR-
HD1) mounted on a rolling tripod to mimic a mobile robot platform.
During the acquisitions the blinds were always closed and artificial
light used: this helped to normalize the illumination conditions across
homes and times of the day. We consider the five room categories
that exist in all homes (BeDroom (BD) , BatHroom (BH), KiTchen
(KT), Living Room (LR), and Dining Room (DR)) and we learn a
multiclass model separately for five houses. Images coming from all
the rooms of the sixth house constitute the new learning task. Figure
5 shows images for all rooms categories, for all houses.

4) The COLD Database: The COLD database [14] contains three
separate subsets acquired at different indoor laboratory environments
located in three European cities: Ljubljana, Freiburg and Saarbriichen.
The sequences in the database were recorded using three different
mobile robots (an ActivMedia PeopleBot, an ActivMedia Pioneer-3
and an iRobot ATRV-Mini), all equipped with two Videre Design
MDCS?2 digital cameras, one for perspective and one for omnidi-
rectional images. The heights of the cameras varied depending on
the robot platform. At each laboratory the image sequences were
acquired under different illumination conditions (cloudy, sunny, night)
and across several days. Special care was taken in the choice of the
rooms to acquire. Therefore, for each laboratory there exists a set
of sequences containing 5 rooms with similar functionalities that are
also contained in the other two (CorRidor (CR), Two-persons Office
(TO), Printer Area (PA), KiTchen (KT), BatHroom (BH)). In the
experiments prior knowledge corresponds to the multiclass model
learned by the robot in Freiburg using the perspective camera. Two
possible new set of data are then considered changing the location
(laboratory in Ljubljana, perspective camera) or the visual acquisition
system (laboratory in Freiburg, omnidirectional camera). Figure 6
shows sample images for all rooms, different locations and different
types of camera.

Kitchen

Corridor

Exemplar images from the IDOL database, acquired by the PeopleBot (top row) and the PowerBot (bottom row).

B. Feature Descriptor

As features, we opted for a state of the art histogram-based
global feature in the spatial-pyramid scheme introduced in [36].
This representation scheme was chosen because it combines the
structural and statistical approaches: it takes into account the spatial
distribution of features over an image, while the local distribution
is in turn estimated by mean of histograms; moreover it has proven
to be versatile and to achieve higher accuracies in our experiments.
Specifically, we used the PHOG features [37] that captures the
distribution of edge orientations within an image (computed on the
output of a Canny edge detector) and can be extracted in two different
variants:

1) with the range of orientations equal to [0, 180] (the sign of the
gradient is ignored);
2) with orientations in the range [0, 360].

The orientations range is then quantized into K bins and each edge
assigned to the corresponding binned orientation, with a weight
proportional to the value of the gradient. Here we used the following
parameters: number of pyramid levels L = 3, number of histogram
bins K = 40, angle range 0 = [0, 360]. Figure 7 shows two examples
of features computed from indoor scene images.

C. Learning Algorithms

For all experiments and all learning algorithms, we used the RBF
kernel. The hyperparameters (7 for the RBF kernel and C' for the
learning problem) were found through cross validation on the prior
knowledge.

V. EXPERIMENTAL RESULTS

We present here three set of experiments designed to study the
behaviour of our transfer learning method in various scenarios:
(1) platforms with similar characteristics solving the same specific
task; (2) platforms with the same characteristics solving the same
categorical task, and (3) platforms with similar characteristics solving
the same categorical task. Figure 8 illustrates these three settings.

We name our transfer learning method Adapt-Transfer and we
benchmark it against two baselines. No-Transfer: it corresponds to
learning from scratch just using the new data acquired by the robot.
Prior: this means to take directly the models learned by the prior
knowledge of one (or more) robot(s) and apply them on the new
learning agent without any adaptation. We also compare our approach
with the one presented in [33], that we call here SV-Transfer.
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Fig. 4. Sample images from the RobotVision@ImageCLEF 2010 database. Each row corresponds to room on a different floor.

Bedroom

i

Dining Room

Kitchen Living Room

Fig. 5. Exemplar images from the VPC database, for all six houses, one per each row.

A. Transfer learning across platforms with similar characteristics,
solving the same specific task

In these experiments we consider to transfer visual knowledge
across similar robotic platforms (the only difference is in the height
of the camera position), placed in the same environment.

We used the IDOL 2 database and we first chose the intermediate
cloudy condition. Four different experiments were run alternating the
two robots in the role of prior knowledge and new learning agent, and
considering both the sequences recorded with 6 months time distance.
The system was updated incrementally in a room by room (i.e. class
by class) scenario considering the same room order presented in [33].

As there are five classes in total, training was performed in four steps,
starting from two classes, while testing always run on a five-class set.

Fig 9 shows the experimental results obtained at each step. Adapt-
Transfer performs better with respect to the other benchmark meth-
ods. It is important to remind that Prior corresponds to using the
models learned from a sequence acquired under the same illumination
and at close time as the training one, but recorded by a similar
platform. In [33] the consistency in illumination conditions was the
requirement under which all the experiments were run. Moreover the
comparison between SV-Transfer and Prior was not shown. Here it is
evident that mixing the known Support Vectors with the new training
samples does not always guarantee an advantage respect to the direct
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use of prior knowledge. On the other hand Adapt-Transfer results are
always equal or better than Prior.

We also investigated the case where transfer is performed across
different illumination conditions. We kept the model learned by one
of the robots in the cloudy environment as prior knowledge and
we supposed that the new agent tries to exploit this information
when learning in sunny weather (Figure 10(left)) and at night (Figure
10(right)). As expected the more the illumination conditions are
similar, the higher is the advantage in learning: transferring from
cloudy to sunny results in a higher gain in performance with respect
to transferring from cloudy to night.

o s W ® W & ] A0 w0 vR Mee M0 0 3

Examples of features computed at different spatial resolutions, for two different environments.

B. Transfer learning across platforms with the same characteristics
solving the same categorical task

In this set of experiments we show that the visual knowledge
acquired by one robot can be reused when the robot itself is moved
in a different location, where it is asked to solve the same categorical
task.

We considered the RobotVision database and the problem of
learning to classify rooms on one floor when prior knowledge was
acquired on a different floor, with rooms belonging to the same
semantic categories. We suppose that on the first floor the robot
is free to observe all the rooms from many different viewpoints
and performing 360 degree turns. When moved on a different floor
the robot can either (1) acquire information from one room at the
time with the order of the rooms taken randomly or (2) have at
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the beginning a quick look to all the rooms and then it can repeat
the whole acquisition collecting more samples all over the floor in
other two rounds. Moreover, regardless of the order of the image
acquisition, the robot can never make the 360 degree turn inside the
rooms of the new floor.

Figure 11(left) reports the results obtained in the setting (1), while
Figure 11(right) shows the corresponding results for the setting (2). In
both cases Adapt-Transfer clearly outperforms Prior and No-Transfer.
We notice that in the room by room experiments, No-Transfer does
not follow the same increasing trend which was evident in the results
of the previous section. Here exactly the same robot is used both for
learning prior knowledge and in the new task, moreover there is a
minimal difference between the two floors on which the data are
acquired. This means that prior knowledge is extremely relevant for
the new learning process which is based on a much smaller number
of samples respect to that used to build the prior models (on the
other hand the number of samples for the experiments of the previous
section was approximately the same for old and new knowledge).

To generalize the described scenario we decided to run another
set of experiments on the VPC database. In this case we have five
different prior knowledges corresponding to the same robot acquiring
images of rooms in five houses. The robot is then moved in a
sixth house and required to learn the same categorical task. From
the whole dataset we picked house 2, 4 and 6, and we run three
experiments each time considering one of them as the new house

and all the remaining five as prior knowledge. We reproduced the
same setting (1) and (2) described above, the corresponding results
are reported respectively in Figure 12(left) and 12(right). The prior
knowledge results are comparable to that presented in [13] (Table IV,
CENTRIST with filtering) although here we are using a different set
of features and a discriminative classification approach without any
temporal integration on the frames. Transferring through adaptation
produces a small advantage with respect to both learning from scratch
or using directly prior knowledge in the room by room experiment.
On the other hand, there is no gain in performance in the all rooms
experiment. The proposed task is extremely difficult due to the
differences among the houses. Although Adapt-Transfer is mixing
five different knowledge sources, giving a specific weight to each
of them when learning every binary one-vs-one problem, all the
weights are small and the average recognition rate is equivalent to
No-Transfer.

C. Transfer learning across platforms with similar characteristics
solving the same categorical task

In this final set of experiments we want to analyze the case of
transferring visual knowledge across similar robot platforms solving
the same categorical task.

We used the COLD database and considered two possible cases. In
the first one we fix the visual acquisition setting supposing that two
robots record images using the same perspective camera mounted at
different height, but the acquisitions are performed in two different
locations. In the second one, the location is fixed but one of the
robot is using a perspective camera while the other an omnidirectional
camera. In both cases the illumination condition is the same for the
two robots.

Results for the room by room experiments with the order of the
rooms taken randomly, are reported respectively in Figure 13(left) and
13(right). In both cases the available prior knowledge is extremely
different from what we want to learn as new task. This is the
typical condition where applying a blind knowledge transfer can hurt
the learning performance. Here the results show that when prior-
knowledge is not reliable, Adapt-Transfer performs almost always as
learning from scratch, automatically avoiding negative transfer.

D. Discussion

All experiments, for all scenarios, indicate that our algorithm is
capable of exploiting the available priors and achieve a boost in per-
formance, whenever the priors contain information which is relevant



Same Robots, Same Categorical Task, RobotVision room by room
1 T T T T T

09

=4
&

~" =" No-Transfer
— Adapt-Transfer
Prior

Classification Rate
<
~
i

05 R S P 1

CR LO PA RA SO BH

Fig. 11.

Same Robot, Same Categorical Task, RobotVision all rooms

=4

@
T
i

~'~ ' No-Transfer

Classification Rate
<
-~
T
;

Adapt-Transfer
OB oo e —Ad |
: Prior
oS S L - |
0.4 i ; :
113 213 a5

Fraction of Random Frames

RobotVision database. Left: classification rate at each training step corresponding to images of a new room entering the system. Right: classification

rate when the new sequence is randomized and separated into three parts that progressively enter the system. Average 4 standard deviation on three different
runs obtained dividing the RobotVision validation set randomly in 75% for training and 25% for test.

Same Robots, Same Categorical Task, VPC room by room
11 T T T T T

~ '~ No-Transfer .
— Adapt-Transfer
089k Prior

Classification Rate

03

02 i i I 1 I

Fig. 12.

Same Robot, Same Categorical Task, VPC all rooms
1.1 T T T

o
o
T

o
o
T

~ '~ ' No-Transfer
17 Adapt-Transfer | "
Prior

o
~
T

Classification Rate
o
@
T

o

n
T
i

P O [ T _

03 gl

0.2 i I 1
13 213 33

Fraction of Random Frames
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obtained considering House 2,4 and 6 as the new tasks and randomly using 75% of the corresponding house image samples for training and 25% for test.

for learning the new task. With the exception of the COLD database
(which is probably the most challenging indoor place recognition
database publicly available as of today), the gain in performance is
always very pronounced at the first learning steps, when the amount
of training data is lower. This confirms the importance of transfer
learning approaches when learning from few annotated data, a highly
relevant scenario for artificial autonomous systems.

When the available priors are not very informative, the transfer
learning algorithm tends to behave like the no transfer baseline. This
behavior is particularly evident in the experiments on the VPC and
the COLD database, where the priors achieve performances around
50%. It is worth stressing that both databases have been created to
support research on the indoor place categorization problem, which
as of today is still an open research issue.

As a last point, we discuss the computational cost of using our
transfer learning algorithm as opposed to the no transfer baseline. For
each of the binary problems in the one-vs-one multiclass approach the
computational complexity of Adapt-Transfer is O(I%4-kI?) with [ the
number of training examples and k£ the number of available robots
used as prior knowledge. The first term is releated to inverting G
while the second term is the computational complexity of (4). This
is to be compared with the computational complexity of a classic
LS-SVM which is O(I%): the extra computational cost of Adapt-
Transfer is linear in the number of prior knowledge robots and for
few training samples it is negligible compared to the potential benefit
in performance.

VI. SUMMARY AND CONCLUSION

This paper presents an algorithm for transfer learning of visual
concepts across robot platforms. Our working assumption is to have
robots, possibly located in different settings, that have to solve the
same task, whether at the specific or at the categorical level. We
assume that all robots are equipped with a camera, but we do not
make any assumption on the type of camera, nor on where it is
positioned. We also assume that the robots share the same processing
capabilities. Our algorithm is based on Least Square Support Vector
Machine, and enable one robot to learn a new task by exploiting
what the other robots have already learned about that task via
adaptation. Very extensive experiments on four different publicly
available databases show the power of our approach.

This work can be extended in many ways. First, although here
we focused on visual concepts, the algorithm in its current form
can handle different types of sensors. Second, we will extend the
algorithm so to relax the assumption that all robots share the same
features and classifier. This could be achieved by casting the problem
within the Multi Kernel Learning framework. Lastly, transfer learning
for artificial cognitive systems should be seen as a component of the
life long learning strategies necessary to achieve real autonomy. The
current version of our algorithm does not allow to automatically stop
the transfer process, once the priors have been exploited and/or the
new concept has been learned. Preliminary work in this direction
shows that the internal parameters of the algorithm might provide
useful insights in that direction [38]. Future work will focus in these
directions.
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