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ABSTRACT

Speech sounds can be characterized by articulatory features. Articulatory features are typically estimated using a
set of multilayer perceptrons (MLPs), i.e., a separate MLP is trained for each articulatory feature. In this report,
we investigate multitask learning (MTL) approach for joint estimation of articulatory features with and without
phoneme classification as subtask. The effect of number of subtasks in MTL is studied by selecting two different
articulatory feature representations. Our studies show that MTL MLP can estimate articulatory features compactly
and efficiently by learning the inter-feature dependencies through a common hidden layer representation, irrespective
of number of subtasks. Furthermore, adding phoneme as subtask while estimating articulatory features improves
both articulatory feature estimation and phoneme recognition. On TIMIT phoneme recognition task, articulatory
feature posterior probabilities obtained by MTL MLP achieve a phoneme recognition accuracy of 73.8%, while the
phoneme posterior probabilities achieve an accuracy of 74.2%.

Index Terms— multitask learning, articulatory features, posterior probabilities, multilayer perceptrons

1 Introduction

In machine learning and neural networks often it is required to learn a set of multiple related tasks. If the tasks
can share what they learn, then learning them together may be better than learning them in isolation. Multitask
learning (MTL) is an approach of transfer learning where multiple tasks are learned together and what is learned for
each task can help other tasks be learned better [1]. MTL is an inductive transfer mechanism which can be used to
improve generalization accuracy, speed of learning and intelligibility of learned models. Multitask learning in neural
networks allows features learned at the hidden layer for one task to be useful for other tasks.

In the context of speech processing, MTL has been applied to improve ASR performance (a) in noise by incorpo-
rating speech enhancement and gender recognition as additional tasks [2], (b) by high level additional tasks such as
gender, broad phoneme classification, grapheme classification [3], (c) on meeting data by jointly learning phone clas-
sification and feature mapping from farfield microphone to near field microphone [4]. In addition, multitask neural
network has also been used for acoustic-articulatory inversion [5], where the mapping lacks one-to-one relationship
between articulation and acoustics.

In this report1, we investigate the use of MTL framework for joint estimation of articulatory features, such as
manner of articulation, place of articulation (Section 2). We study this approach on the TIMIT phoneme recognition
task and compare it with the traditional approach of estimating articulatory features using independent classifiers
(Section 3). As MTL allows addition of new tasks, we also investigate a framework where both articulatory features
and phonemes are learned together. Our studies show that (a) MTL not only yields similar or better system but also
a system with fewer number of parameters (about 50% less parameters than independent classifier approach), and
(b) adding phoneme classification as an additional task helps in improving both articulatory feature and phoneme
recognition (Section 6).

1Abridged version of the report is published in ICANN, 2011, pp: 299-306



2 Articulatory Feature Estimation

Phonological studies suggest that each sound unit of a language (phoneme) can be decomposed into a set of features
based on the articulators used to produce the sound. Articulatory features define the properties of speech production.
There exist different types of articulatory representations of speech, like: binary features, multi-valued features, and
government phonological features [6]. In this work, we are interested in multi-valued articulatory features.

2.1 Previous Work

Traditionally, articulatory features are estimated using a set of multilayer perceptron (MLP) classifiers [7, 6, 8],
support vector machine classifiers [9], dynamic Bayesian networks (DBNs) [10] etc. Stage: 1 of Figure 1 shows
estimation of articulatory features using a set of MLP classifiers. The number of independent MLPs depend upon
the way phoneme to articulatory feature maps are derived.
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Fig. 1. Hierarchical MLP classifiers for articulatory posterior estimation

In literature, it has been shown that the articulatory feature classification accuracies could be improved by
modeling inter-feature dependencies [10]. Along this line, in a more recent work, we showed that by modeling
the inter-feature dependencies using a hierarchy of MLP classifiers as shown in Stage: 2 of Figure 1, articulatory
feature classification accuracy can be improved, and thereby the phoneme recognition accuracy [8] . The hierarchical
approach is originally inspired from [11].

2.2 Proposed Work

In this work, we investigate the use of multitasking MLP (MTL MLP) for joint estimation of articulatory features
(as shown in Stage: 1 of Figure 2). The motivation for this is two fold. Firstly, estimating different articulatory
features from the same acoustic signal could be considered as a set of interrelated tasks [10]. Traditional, approach
of training independent MLPs does not takes it into consideration. Secondly, a system that has fewer number of
parameters can be obtained.

Similar to our previous work [8], we also consider a hierarchical approach where a second MTL MLP as shown in
Stage: 2 of Figure 2 is trained using the posterior probabilities of articulatory features estimated from Stage: 1 as
feature input.

In earlier work, it has been observed that articulatory feature probabilities (articulatory posteriors) and phoneme
probabilities (phoneme posteriors) when modeled together can yield better system [8]. Motivated from these ob-
servations, we also investigate the importance of phoneme classification as one of the tasks (depicted as dotted
line in Figure 2) and examine if MTL could exploit shared hidden layer representation to learn the complementary
information.

3 Experimental Setup

In this section we describe the database, phoneme to articulatory feature maps used in the experiments.
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Fig. 2. Hierarchical Multitask MLP classifiers for articulatory (and phoneme) posterior estimation

3.1 Database

TIMIT acoustic-phonetic corpus (excluding the SA sentences) is used in all the experiments. The partitioning of the
database as specified in the TIMIT corpus is used. The data consists of 3,000 training utterances from 375 speakers,
696 cross-validation utterances from 87 speakers. Phoneme recognition accuracies are reported on both the complete
test set and core set. Complete test set consists of 1344 test utterances from 168 speakers and core set consists of
192 utterances from 24 speakers. The 61 hand labeled phonetic symbols are mapped to set of 39 phonemes with an
additional garbage class. The experimental setup is exactly same as the one described in [11].

3.2 Phoneme to Articulatory feature maps

In literature one could find different phoneme to articulatory feature maps [6, 9, 12, 13, 14]. In the case of MTL MLP,
one of the difference it brings in is number of tasks that are learned jointly. Therefore, in this work we investigated
the phoneme to articulatory feature maps given in John Hopkin’s workshop (JHU) [14] and Hosom’s thesis [12].
Major differences between the two mappings are: Hosom map is more compact with four features and the cardinality
of each of the features is high; JHU map has more features but the cardinality of the features is low compared to
Hosom map.

The articulatory features in JHU map consist of manner, place, height, front-back, rounding, glottal state, nasality
and vowel (given in Table 2 along with their cardinality).

The articulatory features in Hosom map consist of manner, place and height. Certain changes are made to the
mapping defined in Hosom’s thesis in order to distinguish all the phoneme classes of the TIMIT. The place class is
expanded by adding features like mid-front and mid-back, and the height class by adding features like mid, mid-
low, mid-high. Also, vowel articulatory feature is added to the Hosom map (as in JHU map). Table 1 gives the
specification of the articulatory features and Table 7 gives the articulatory feature values after the above mentioned
modifications on the Hosom’s mapping. Glottal state and nasality from JHU are within manner of Hosom map, and
frontedness and rounding are within place.

Feature Cardinality Feature values

manner 9
approximant, aspirated, flap, fricative, nasal,
plosive, voiced fricative, voiced plosive, vowel

place 12
alveolar, dental, dorsal, labial, lateral, retroflex,
back, mid-back, mid, front, mid-front, unknown

height 7 low, mid-low, mid, mid-high, high, very-high, max

vowel 20
ae, ah, ao, aw1, aw2, ay1, ay2, eh, er, ey1,

ey2, ih, iy, ow1, ow2, oy1, oy2, uh, uw, consonant

Table 1. Values of the articulatory features in Hosom’s phoneme to articulatory feature mapping along with their
cardinality



4 MLP

The different types of MLP classifiers used in this work are:

1. MTL MLP with articulatory features as tasks (MTL MLP-af ).

2. MTL MLP with articulatory features and phoneme classification as tasks (MTL MLP-af+ph).

3. MLP with one articulatory feature as task, i.e. training a separate classifier for each articulatory feature
(MLP-af ).

4. MLP with phoneme classification as task (MLP-ph).

These MLPs can be in the first stage or second stage of hierarchical MLP classifiers as shown earlier in Figures
2 and 1. To compare similar systems, phoneme posteriors are also estimated using a hierarchical MLP classifier
described in [11], also shown in Figure 3. All the first stage MLPs use PLP cepstral coefficients with a context
window of 9 frames as input and the second stage MLPs use posteriors estimated in the first stage with a temporal
context of 17 frames as input.
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Fig. 3. Hierarchical MLP classifier for phoneme posterior estimation

The hidden layer size of MTL MLP-af was optimized on the cross-validation dataset. The same hidden layer
size was used for the MTL MLP-af+ph and MLP-ph. This was done to ascertain the benefit of training jointly both
articulatory features and phonemes. As it could be noted that after completion of training MTL MLP-af+ph can be
split into two MLPs which are of the same size of MTL MLP-af and MLP-ph (as shown in Figure 4).

In the case of training individual classifiers for each articulatory feature, i.e., MLP-af, the size of the hidden
layer were determined by fixing the total number of parameters to 35% of the training data following the previous
work [8]. The total number of parameters in this system was more than two times of the number of parameters in
MTL MLP-af.
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and MLP-ph

The stopping criterion of the MLPs during training is the cross-validation frame accuracy. All the tasks in the
MTL MLP (including the case where phoneme classification is a subtask) are learned with equal learning rate and



equal error weight. It is also observed that the optimal cross-validation performance is obtained for all the articulatory
features at the last training epoch.

All the MLPs used in this work are trained using a modified version of ICSI Quicknet software2 with minimum
cross entropy error criterion.

The phoneme recognition experiments were carried out using Kullback-Leibler divergence based hidden Markov
model (KL-HMM) system [15]. A brief description about the integration of articulatory feature into KL-HMM system
is given in the next section.

5 Integration of AF using KL-HMM acoustic modeling

In KL-HMM acoustic modelling [16], posterior probabilities of sub-word units are directly used as features and
the state distribution is parameterized by a reference multinomial distribution (as shown in Figure 5). In [16], the
posterior probabilities of phonemes (phoneme posteriors) and in [8], the posterior probabilities of articulatory features
(articulatory features) were used as observation features.

In the case of phoneme posteriors the posterior observation feature at time t, zt estimated using MLP is given by,

zt = [z1t , · · · , z
D
t ]T = [P (/aa/|xt), · · · , P (/zh/|xt)]

T (1)

where, D is the number of phoneme classes and xt is input feature given to the MLP. The KL divergence between
the multinomial state distribution yi and posterior probability feature zt is defined as the local matching score for
each state, given by,

KL(yi, zt) =

D
∑

d=1

ydi log(
ydi
zdt

) (2)
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In the case of articulatory posteriors, the observation feature vector at time t is formed by concatenating the
posterior estimates of different articulatory features to a single feature observation vector zt as shown below,

zt = [zDm

t,m , . . . , zDh

t,h ]
T , where, (3)

zDm

t,m = [P (fric|xt), . . . , P (vowel|xt)]
T

zDh

t,h = [P (low|xt), . . . , P (high|xt)]
T

2http://www.icsi.berkeley.edu/Speech/qn.html



In this case, the reference multinomial state distribution yi is also a stack of multinomial distributions ie,

yi = [yDm

i,m , . . . ,yDh

i,h ]
T , where, (4)

yDm

i,m = [y1i,m, . . . , yDm

i,m ]T

yDh

i,h = [y1i,h, . . . , y
Dh

i,h ]
T

where, Dm is the cardinality of the manner class and Dh is the cardinality of the height class. The multinomial state
distributions are estimated by optimizing an objective function based on the KL divergence over training dataset
[16], given as,

KL(yi, zt) =

Dm
∑

d=1

ydi,m log
(ydi,m
zdt,m

)

+ · · ·+

Dh
∑

d=1

ydi,h log
(ydi,h
zdt,h

)

(5)

6 Results

In this section, we first present the results of articulation feature classification studies and then phoneme recognition
studies.

6.1 Articulatory feature classification using MTL MLP

Table 2 compares the frame level articulatory feature and phoneme classification accuracies, when estimated using
a set of MLPs and MTL MLPs, with JHU phoneme to articulary feature map. The performance of the articulatory
features is slightly better when estimated from MTL MLP compared to a set of MLPs. The results also show that
along with the articulatory feature classification accuracy, frame level phoneme classification accuracy can also be
improved by having phoneme as a subtask in MTL MLP. Similar trends in classification accuracies are observed with
Hosom phoneme to articulatory feature map as shown in Table 3.

MLP-af /MLP-ph MTL MLP-af MTL MLP-af+ph

Task
Cardi- Chance First Second First Second First Second
nality rates stage stage stage stage stage stage

Manner 8 34.1 86.0 88.1 86.9 88.4 86.9 88.8
Glottal state 5 61.6 92.9 94.5 93.4 94.5 93.4 94.7
Nasality 4 77.9 96.0 96.8 96.4 96.9 96.4 97.0
Place 11 34.1 86.3 88.5 87.0 88.7 87.2 89.3
Height 9 47.7 82.5 85.1 83.8 86.0 83.8 86.5

Frontedness 8 47.7 84.2 86.6 85.3 87.1 85.3 87.6
Rounding 4 67.8 89.9 91.9 91.2 92.9 91.3 93.1
Vowel 22 47.7 81.3 84.5 82.5 84.8 82.7 85.4

Phoneme 40 – 75.1 78.4 – – 75.6 79.4

Table 2. Frame level articulatory feature and phoneme classification accuracies of individual and MTL MLPs
expressed in percentage on the TIMIT cross-validation set with JHU phoneme to articulatory feature map

6.2 Phoneme recognition accuracy

In this section we compare phoneme recognition accuracies of the KL-HMM systems obtained by using phoneme
posteriors and articulatory posteriors estimated from MLPs described in Section 4 as feature observations.

6.2.1 First stage results:

Phoneme recognition studies were performed using the posteriors obtained by different first stage of MLPs:

1. MLP-ph-1 : MLP estimating phoneme posteriors (Stage: 1 in Figure 3).



MLP-af /MLP-ph MTL MLP-af MTL MLP-af+ph

Task
Cardi- Chance First Second First Second First Second
nality rates stage stage stage stage stage stage

Manner 11 36.8 86.1 88.1 86.7 88.7 86.8 88.9
Place 14 20.0 79.6 82.5 80.1 83.0 80.2 83.4
Height 9 40.1 82.4 85.1 83.7 86.1 83.6 86.3
Vowel 22 47.7 81.3 83.5 82.3 84.9 82.6 85.3

Phoneme 40 – 75.1 78.6 – – 75.5 79.4

Table 3. Frame level articulatory feature classification accuracies of individual and Multitask MLPs expressed in
percentage on the TIMIT cross-validation set with Hosom phoneme to articulatory feature map

2. MLP-af-1 : a set of MLPs estimating articulatory posteriors (Stage: 1 in Figure 1).

3. MTL MLP-af-1 : MTL MLP estimating articulatory posteriors without phoneme subtask (Stage: 1 in Figure
2).

4. MTL MLP-af+ph-1 : MTL MLP estimating articulatory posteriors and phoneme posteriors i.e., MTL MLP
with phoneme as one of the subtask (Stage: 1 in Figure 2).

Table 4 presents the phoneme recognition accuracies of the above systems on the test set of TIMIT database with
two phoneme to articulatory feature maps, JHU and Hosom. Results show that the phoneme recognition accuracy
obtained using articulatory posteriors estimated from MTL MLP is significantly better than the system using pos-
teriors from independent MLPs in case of JHU map, and slightly better in case of Hosom map. The addition of
phoneme subtask to the MTL MLP further improves the accuracy of the system using articulatory posteriors as well
as the system using phoneme posteriors (especially with JHU map).

MLP
MLP hidden MLP o/p units

Posteriors used
Accuracy

units JHU Hosom JHU Hosom

MLP-ph-1 3500 40 phoneme 70.2 (69.2)
MLP-af-1 Not applicable 71 56 articulatory 67.4 (66.4) 68.4 (67.5)

MTL MLP-af-1 3500 71 56 articulatory 68.9 (67.8) 68.7 (67.8)

MTL MLP-af+ph-1 3500 111 96
articulatory 69.2 (68.5) 69.5 (68.6)
phoneme 70.4 (69.3) 70.0 (69.0)

Table 4. Phoneme recognition accuracy expressed in percentage on the TIMIT test set (core set), using phoneme
posteriors and articulatory posteriors as features in KL-HMM

6.2.2 Second stage results:

In this section we present the phoneme recognition accuracies of different systems obtained by using the posteriors
from different second stage of MLPs whose input is the output of the first stage of MLPs. The baseline second stage
of MLPs used for comparison are:

1. MLP-af-2 : a set of hierarchical MLPs estimating articulatory posteriors (Stage: 2 in Figure 1).

2. MLP-ph-2 : hierarchical MLP estimating phoneme posteriors (Stage: 2 in Figure 3).

Two different posteriors can be obtained from hierarchical MTL MLP systems based on the presence or absence of
phoneme subtask:

1. MTL MLP-af-2 : hierarchical MTL MLP estimating articulatory posteriors i.e., MTL MLP without phoneme
subtask.

2. MTL MLP-af+ph-2 : hierarchical MTL MLP estimating articulatory posteriors and phoneme posteriors i.e.,
MTL MLP with phoneme as one of the subtask.
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However, the input to the above MTL MLPs can be the articulatory posteriors obtained from two first stage MLPs
MTL MLP-af-1 or MTL MLP-af+ph-1 (shown as inputs (A) and (B) in Figure 6 respectively). Also, a hierarchical
MTLMLP system was built where the input of the second MTLMLP consisted of phoneme posteriors and articulatory
posteriors (shown as input (C) in Figure 6).

Table 5 presents the phoneme recognition accuracies obtained by using baseline MLP and MTL MLP posteriors
as features in KL-HMM system. The results show that performance of the system using articulatory posteriors from
MTL MLP without phoneme task is comparable to the system using articulatory posteriors from a set of MLPs. The
second stage MTL MLP with input as articulatory posteriors from MTL MLP-af+ph (discarding phoneme posteriors)
further improves the performance slightly. Thus, indicating that articulatory features could be learned better when
phoneme classification is also a subtask. Overall, in all the cases MTL MLP with phoneme as subtask improves the
phoneme recognition performance of system that uses articulatory posteriors as well as system that uses phoneme
posteriors.

Hierarchical MLP MLP i/p MLP o/p Posteriors Phoneme
First stage Second stage units units used accuracy

MLP-ph-1 MLP-ph-2 680 40 phoneme 73.0 (72.1)
MLP-af-1 MLP-af-2 1207 71 articulatory 72.0 (71.2)

MTL MLP-af-1 MTL MLP-af-2

1207
71 articulatory 72.2 (71.3)

(Input (A)
MTL MLP-af+ph-2 111

articulatory 72.3 (71.5)
in Fig 6) phoneme 72.7 (72.2)

articulatory posteriors MTL MLP-af-2

1207
71 articulatory 72.4 (71.9)

of MTL MLP-af+ph-1
MTL MLP-af+ph-2 111

articulatory 72.5 (71.7)
(Input (B) in Fig 6) phoneme 73.3 (72.8)

MTL MLP-af+ph-1 MTL MLP-af-2

1887
71 articulatory 72.7 (72.3)

(Input (C)
MTL MLP-af+ph-2 111

articulatory 73.2 (72.6)
in Fig 6) phoneme 74.0 (73.4)

Table 5. Phoneme recognition accuracy expressed in percentage on the TIMIT test set (core set), using phoneme
posteriors and articulatory posteriors as features in KL-HMM. Articulatory features are obtained using JHU map.
Also given in the table number of input and output units of MLPs

The MTL MLP with phoneme as subtask at both the stages gave the best performance of 73.2% for articulatory
posteriors and 74.0% for phoneme posteriors. It is important to note that the system benefited from both phoneme
input and MTL of articulatory and phoneme tasks.

Furthermore, to examine if articulatory features are indeed contributing for the improvement obtained using
phoneme posteriors, the phoneme posteriors from first stage MTL MLP (MTL MLP-af+ph) are used as input to a
second stage phoneme MLP (MTL MLP-ph). The accuracy of the system using these phoneme posteriors is 72.6%



(compared to 74.0% using phoneme posteriors from MTL MLP-af+ph).

Table 6 presents similar results for Hosom map. The results show that irrespective of number of sub-tasks MTL
MLP improves over a set of MLPs. However, Hosom map performs slightly better than JHU map. This may be
due to (a) compactness of articulatory features or (b) local score calculation as Hosom map results in sum of fewer
KL-divergences in Equation 5.

Hierarchical MLP MLP i/p MLP o/p Posteriors Phoneme
First stage Second stage units units used accuracy

MLP-ph-1 MLP-ph-2 680 40 phoneme 73.0 (72.1)
MLP-af-1 MLP-af-2 952 56 articulatory 72.1 (71.6)

MTL MLP-af-1 MTL MLP-af-2

952
56 articulatory 72.6 (71.9)

(Input (A)
MTL MLP-af+ph-2 96

articulatory 72.9 (72.4)
in Fig 6) phoneme 73.5 (72.6)

articulatory posteriors MTL MLP-af-2

952
56 articulatory 72.8 (72.4)

of MTL MLP-af+ph-1
MTL MLP-af+ph-2 96

articulatory 73.1 (72.7)
(Input (B) in Fig 6) phoneme 73.6 (72.9)

MTL MLP-af+ph-1 MTL MLP-af-2

1887
56 articulatory 73.6 (73.0)

(Input (C)
MTL MLP-af+ph-2 96

articulatory 73.8 (73.3)
in Fig 6) phoneme 74.2 (73.7)

Table 6. Phoneme recognition accuracy expressed in percentage on the TIMIT test set (core set), using phoneme
posteriors and articulatory posteriors as features in KL-HMM. Articulatory features are obtained using Hosom map.
Also given in the table number of input and output units of MLPs

7 Discussion and Conclusions

Our studies show that MTL provides a framework for efficient and compact estimation of articulatory posteriors
compared to a set of MLPs. Furthermore, jointly training articulatory features and phoneme improves both artic-
ulatory feature classification and phoneme recognition. We hypothesize that MTL MLP-af+ph through a shared
hidden layer learns to exploit the complementary information present in phoneme and articulatory tasks. This is
partly supported by the fact that we do not achieve significant improvement in phoneme recognition accuracy (74.1%
compared to 74.0% with phoneme posteriors alone) when concatenating phoneme posteriors and articulatory feature
posteriors (as done in our previous work [8]).

The results comparing the two phoneme to articulatory feature maps (JHU and Hosom) showed that irrespective of
number of sub-tasks, similar trends in terms of articulatory feature classification and phoneme recognition accuracy
are observed. Furthermore, in preliminary (ongoing) ASR studies we have observed trends similar to phoneme
recognition at word recognition level.

In this work, during the training of MTL MLPs all the tasks were given equal importance. It may be interesting
to study the effect of giving one or a few tasks more importance than others. Our future work will also focus on
addition of more subtasks, such as gender, rate-of-speech estimation, and performing full-fledged ASR studies.
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Timit phoneme Manner Place Height Vowel

sil silence silence silence silence
ae vowel mid-front low ae
ah vowel mid mid ah
ao vowel back mid-low ao
aw1 vowel mid-front low aw1
aw2 vowel mid-back high aw2
ay1 vowel back low ay1
ay2 vowel mid-front high ay2
b voiced stop labial max consonant
ch stop front max consonant
dh voiced fricative dental max consonant
d voiced stop alveolar max consonant
dx flap alveolar max consonant
eh vowel mid-front mid eh
er vowel mid mid er
ey1 vowel front mid-high ey1
ey2 vowel mid-front high ey2
f fricative labial max consonant
g voiced stop dorsal max consonant
hh aspirated unknown max consonant
ih vowel mid-front high ih
iy vowel front very-high iy
jh voiced stop front max consonant
k stop dorsal max consonant
l approximant lateral very-high consonant
m nasal labial max consonant
ng nasal dorsal max consonant
n nasal alveolar max consonant

ow1 vowel back mid ow1
ow2 vowel mid-back high ow2
oy1 vowel back mid-low oy1
oy2 vowel mid-front high oy2
p stop labial max consonant
r approximant retroflex mid-low consonant
s fricative alveolar max consonant
sh fricative front max consonant
th fricative dental max consonant
t stop alveolar max consonant
uh vowel mid-back high uh
uw vowel back very-high uw
v voiced fricative labial max consonant
w approximant back very-high consonant
y approximant front very-high consonant
z voiced fricative alveolar max consonant
oth reject reject reject reject

Table 7. Values for each of articulatory features in Hosom’s phoneme to articulatory feature mapping along with
their cardinality


