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Continuous Speech Recognition using
Boosted Binary Features

Anindya Roy*, Sudent Member, IEEE, Mathew Magimai.-DossMember, |EEE,
and Sébastien Marcellember, |IEEE

Abstract—A novel parts-based binary-valued feature termed small number of features which best discriminate a pasicul
Boosted Binary Feature (BBF) was recently proposed for ASR. phoneme against all others. These selected features,desne
Such features look at specific pairs of time-frequency binsni the BoostedBinary Features BBF), are modelled by multilayer

spectro-temporal plane. The most discriminative of thesedatures .
are selected by boosting and integrated into a standard HMM- Perceptron (MLP) or single layer perceptron (SLP)[4]. The

based system using multilayer perceptron (MLP) and single phoneme pOSterior prObab”itieS estimated by MLP or SLP are
layer perceptron (SLP). Previous studies on TIMIT phoneme then used as feature observation for Kullback Leibler diver

recognition task showed that BBF yields similar or better gence based Hidden Markov Model (KL-HMM) system [9].
performance compared to cepstral features. In this work, tlis Previous studies on TIMIT phoneme recognition task

study is extended to continuous speech recognition task orne . -
DARPA Resource Management database. Results show that pprShowed thatBBF yields performance similar or better than

achieves comparable word error rate (5.5%) on this task with Standard cepstral features [4]. This paper investigajethea
respect to standard cepstral features (5.1%) using MLP. Usig scalability of these features to continuous speech retiogni

gléf/ ﬂ:g t‘;rff()r/lr)at:ofr%r g?ez SQ)OV(\:/Z ";:Jrgfr lfzvgteurrgsg(rf?gﬂi%n 1((f)/fm:0 task, and b) use of auxiliary data to select the features. On
1;1.7(‘)%)). In.ad((;ition, itpis found thaFt) BBF features can be s'ele?ed DARPA R?Source Manag_ement (RM) database, our studies
well using auxiliary data. show that: a)BBF can yield performance co_mparable to
standard cepstral features using MLP, b) using SBBF
Index Terms—EDICS: SPE-RECO, SAS-MALN, SAS-STAT o rtormance degrades significantiss compared to cepstral
features, supporting the observation made in previous- stud
|. INTRODUCTION ies [4], and c)BBF features selected using an auxiliary corpus

TANDARD automatic speech recognition (ASR) systemSan yi_eld same performance as those selected using the task
use different types of features such as cepstral featufRgCific data. _ _

and their approximate temporal derivatives, TRAPS/HATS [1  The rest of the paper is organized as follows. In Sec.Il,
multiresolution RASTA features [2] and 2D-DCT localized¥® describe theBBF based framework. We describe the
features [3]. These features capture in various ways phenerfxPerimental setup in Sec.lll. The results from our speech
specific information embedded across time and frequency. 'ecognition studies are detailed in Sec.IV. Finally, wecdss

In this context, a set of parts-based bindtyl) features and outline the main conclusions of the work in Sec.V.
was recently proposed for ASR [4] which present a general
framework to capture phoneme-specific information embédde Il. BRIEF THEORY
1) across frequency, 2) across time, and 3) across both tim&he theory of boosted binary features for speech recognitio
and frequency. These features are related to but distiont frwas proposed in a previous work [4]. Since it is relativelyne
local features used for isolated digit recognition in [SHare it is described again for convenience.
inspired by similar binary features which have been suecess _.
fully applied for face and object detection in the computdp Binary Features
vision domain [6][7]. In the first step, the input speech waveform is blocked into

These parts-based features are extracted by computing flanes and processed via a bank of 24 Mel filters to yield
difference in magnitude at two time-frequency bins (i.ee tha sequence ofog spectral vectors of dimensioNy = 24.
parts) in a spectro-temporal matrix formed by stackikgy Sets of Ny = 17 consecutive such vectors are stacked to
mel filter bank energies over a temporal context of 170ms, afafm spectro-temporal matrices of siZér x Np.! Let X
comparing this difference with a threshold. The binétyl) be such a spectro-temporal matrix. Tlik,¢)-th element,
result of this comparison is taken as the feature. ConsideriX (k,t) of X denotes thelog magnitude of thek-th Mel
all possible pairs of time-frequency bins amdl possible filter output at¢-th time frame. Consecutive spectro-temporal
thresholds, a very large set of binary features is created. @natrices are formed using shifts of one time frame, implying
of this set, the Adaboost algorithm [8] is used to select @ne spectro-temporal matrix per frame. The binary features

) are extracted from the matriX as follows. A binary feature

A. Roy is with theEcole Polytechnique Fédérale de Lausanne, Lauganr]ﬁi « RNFXNT {—1,1} is defined by 5 parameters: two
Switzerland, and Idiap Research Institute, Martigny, Seviand. E-mail: frequency indicesk; 1, kis € {1,--- , Ny}, two time indices
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Fig. 1. Each binary feature; is associated with a pair of time-frequency -
bins in the spectro-temporal matrix, defined by the paramméig 1,¢; 1) and After the selection process, the features selected for all

(kiy2,t5,2)- T_he difference of théog ma_gnit_ude ve}lues at these two bins is honemes are aggregated and termedBassted Binary

compared with a threshold; and the sign is retained. An example featur&{; ; .

¢, is shown in the figure. eatures BBF). This forms a vector of binary values of
dimensionD = N; x Nq where Nq is the number of
phonemes considered. The reader may refer to [4] for an

ti1, tia € {1,---, Ny} and one threshold parametéy, The analysis of the features selected by Adaboost for different

pairs of indices(k;1,t;1) and (ki ,t;2) define two time- phonemes.

frequency bins in the spectro-temporal matrix. To ensui@ tw

separate bins, both frequency and time indices should not be Il EXPERIMENTAL SETUP

equal. The feature; is defined as, In this section, we describe the setup for our continuous
speech recognition experiments usiBBF and cepstral fea-
1 if X(ki,tin) — X(kio,ti2) > 65, tures.
4i(X) = {—1 if XEk- t; ;—XEk- t; ;<9- @)
1,15 44,1 1,25 V1,2 (R A. Database

In Fig. 1, we illustrate this process for an examplex 17 The DARPA Resource Management (RM) corpus [11] is
spectro-temporal matrix. Given the ranges iof;, k;» and used for the experiments. The RM corpus consists of read

ti1,ti2, the total number of such binary featuresNg = queries on the status of naval resources. The database is

NrNp(NpNp —1) =17-24-(17-24 — 1) ~ 1.7 x 10°. Let  partitioned into training set (2,880 utterances), develept set

P = {¢i}§\§’1 denote the complete set of such features. (1,110 utterances) and evaluation set (1,200 utteran&@}) [
Training and development utterances are spoken by 109 speak

B. Binary Feature Selection ers and correspond to approximately 3.8 hours of speech

data. Evaluation set amounts to 1.1 hours of speech data

tain number of featuresV, (~ 40) are selectedor each and is covered by a word pair grammar included in the task
phoneme according to their discriminative ability with respectSPecification. RM corpus has 991 words. The phoneme-based
to that phoneme, using Discrete Adaboost algorithm  [8] witffXicon was obtained from the UNISYN dictionary. There are
weighted resampling, which is widely used for such featere s*° context-independent phonemes including silence.

lection tasks [10] and is known for its robust performande [85. Features

The process is data-driven and requires training #afae e used a frame size of 25 ms and a frame shift of 10 ms
boosting algorithm, which is to be run once for each phonemg, extract features. The features that are used in this sty

is described next 1) MF-PLP: 39 dimensional feature vector consisting of
Feature selection algorithm by Discrete Adaboost for a 13 static Mel Frequency PLP Cepstral Coefficients
phonemew (MF-PLP) with cepstral mean substraction and their
approximate first and second order derivatives (i.e.,
Inputs: Ny, training samples, i.e. spectro-temporal matrices  ¢; — ¢;5 + A + AA), extracted using HTK.

{X;}1 extracted from the training data; their corresponding 2) BBF: Boosted Binary Features are extracted from
class labelsy; € {-1,1}, (-1: X; ¢ w, 1: X; € w); spectro-temporal matrices of si2e x 17 (ref. Sec. II).
Ny, the number of features to be selectéd;., the number Two sets ofBBF are considered:

of training samples to be randomly sampled at each iteration a) BBF-TIMIT The first 80,000 samples (spectro-

* 3
(N <_ ]_Vt_r)- _ temporal matrices) extracted from training parti-
« Initialize the sample weight§w, ;} + 5. tion of TIMIT database [13] is used as training
data to select the features (ref. Sec.l¥BYhe

Out of the complete set of binary featurds a cer-

2In Sec. IV, it is shown that the choice of training data is moportant
and the selected features can generalize well to unseen data 4Using a subset rather thaf samples4 1.4 x 10°) led to faster boosting
3Values of N}, ~ 5% of Ny, works sufficiently well. It was not tuned.  with no loss in performance.
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purpose is to evaluate the generalization capabilithie 1600 or 1800-dimension&8BF vector was provided at
of these features boosted using TIMIT [4] to ahe input of both SLP and MLP. The number of hidden units
speech recognition task using a different databader MLP was determined by cross-validation based on frame-
RM. The TIMIT data is labeled usingiq, = 40 level phoneme accuracy obtained on RM development set. The
phoneme classesV; = 40 binary features are SLPs and MLPs were trained using quicknet soft®afiéne
selected for each phoneme [4], leading to a featuhF-PLP features were normalized in the usual manner by
vector of dimensionD = Ny x No = 40 x 40 = global mean and standard deviation estimated on the tgainin
1600 per frame. data. In the case of binary features, no normalization isedon
b) BBF-RM In a similar way, the first 80,000 samplesThe stopping criterion for training of SLP and MLP was
extracted from the training partition of the RMframe-level phoneme accuracy on the development set. Table
database is used to select these features. In telsows the frame-level phoneme accuracy obtained for difter
case, the feature selection and speech recognitii@atures on the development set.
studies use thesame database. The RM data is

labeled usingVg = 45 UNISYN phoneme classes, "\:A‘T:a%’[i “7";'; ;'1-'2
leading to a feature vector of dimensidn = BEBETIVIT T 731 1 656
40 x 45 = 1800 per frame. BBE-RM 728 | 65.0
3) Rand: To ascertain the utility of the feature selection Rand-TIMIT | 70.9 | 59.3
. : Rand-RM 71.0 | 603
algorithm, we also used features that involvaddomly
TABLE |

selected time-frequency bin pairs from the spectro-
temporal plane. This was done in the following manner
[4]: a) Create the complete sdi of binary features D. KL-HMM System
considering all possible combinations of time-frequency
pairs (ki 1,t;1) and (k; 2,t; 2) (ref. Sec.ll-A). b) Uni-

FRAME-LEVEL PHONEME ACCURACY (%) ON RM DEVELOPMENT SET

The posterior features estimated by MLP or SLP are used as

forml doml lect ed ber of feat lfgature observations in the framework of KL-HMM system [9].
ormly randomly select required number of Teatures o riefly, in KL-HMM each statei is modeled by a multinomial

of the set®. c) For each of these features, com.pL_Jte th(ﬁstributiony- — [y, ,y™*|T, where N, is the number
differencesX (ki 1, ti,1) — X (ki ti2) over all training o yponemec (in this case 45). Given a phoneme posterior

samples i.e. the same 80,000 samples used for selec : -y .
of BBF feature. Simply set the median of these differzlg ture observa}\tzlfn (e.g., probabilities estimated by MLP

ences as the threshofid for the feature zZy = _[ztl, sz T at time t,_ the local score for _staté
As for BBE. two cases are considered'mnd TIMIT is estimated as the symmetric Kullback-Leibler divergence
oo ' A etweeny; andz,, i.e.,
The training samples were extracted from the TIMI‘FJ i “t
database. bRand-RM The training samples were ex- Ne d d
y z
tracted from the RM database. KL(yi ze) = >y log(Zg) + 2 10g(y—td)
_ t )
We compare these features by first training a phoneme class =t . o Z. )
conditional probability estimator using these featurempat, The parameters of KL-HMM (multinomial distributions) are
and using the estimates of phoneme a posteriori probelsilititra'”ed using Viterbi expectation maximization algoritkith

referred to agposterior features, as feature observations for& Cost function based on KL-divergence. In our studies, the
KL-HMM system. KL-HMM is trained using the 2,880 training utterances of

the RM database. The decoding is performed using standard
Viterbi decoder. The reader may refer to [9] for more details
o ] ) ] on KL-HMM.

Similar to our previous work [4], we studied two different \ye compare the different features on both context-
posterior feature estimators for each acoustic featurei 1)independent subword unit based system and word internal
single layer perceptron (SLP) classifier with softmax fiowt ¢qntext-dependent subword unit based system. Each unit is
for output units was trained to classify phonemes. 2) fodeled by a three state left-to-right HMM. The tuning
multilayer perceptron (MLP) classifier was trained to dligss parameters such as insertion penalty and language scaling

C. Posterior Feature Estimation

phonemes in the conventional way. factor were optimized on the development set.
In the case oMF-PLP feature, a 9 frame temporal context
(4 frames of preceding and following context), i.e. a3® IV. SPEECHRECOGNITION STUDIES

= 351-dimensional feature vector was provided at the inputthe performance obtained for different features in terms of
of SLP and MLP. This explains the choice of 17 frames fQfs g error rate (WER) on the evaluation set of the RM corpus
BBF. It is to ensure a fair comparision, based on the totQl renorted in Table I, for context-independent and comtex
number of frames needed to estimate 9 frames of cepsi@hendent systems. In general, context-dependent systems
features with their first order and second order derivative§,ow a reduction in WER over context-independent systems.
where the derivative is estimated using 2 preceding and 2t MLP, BBF and MF-PLP perform comparably well,

following frames. _ with WERs ranging from 5.1 to 5.6% for context-dependent,
In the case ofMF-PLP, an off-the-shelf MLP trained on

exactly the same setup was used [12]. BBF and Rand, Shttp:/ww.icsi.berkeley.edu/Speech/gn.html



Context Context

independent dependent
Feature MLP [ SLP || MLP | SLP
MF-PLP 7.1 28.3 5.1 14.7
BBF-TIMIT 7.6 11.1 55 7.1
BBF-RM 7.8 10.9 5.6 7.2
Rand-TIMIT 9.2 17.5 6.8 10.3
Rand-RM 9.2 | 16.8 6.4 | 10.8

TABLE 1l

WORD ERRORRATE (%) ON EVALUATION SET OF RM DATABASE USING

CONTEXT-INDEPENDENT AND CONTEXFDEPENDENT SUBWORD UNIT
BASED SYSTEMS

IDIAP RESEARCH REPORT

coupled with suitable time-frequency masking frame-
works (e.g. [16]) for noise removal or signal separation.

3) BBF are discrete-valued and has performed well with
SLP. This indicates that they may be suitably incorpo-
rated into simpler modeling frameworks like Conditional
Random Fields [17] with binary feature functions, in-
stead of MLP followed by KL-HMM as in this work.

4) Since the extraction process of the parts-based binary
features is distinct from standard cepstral features,
they might have potential to capture complementary
phoneme-specific information. Hence, fusion of these
two features could improve performance.

and 7.1 to 7.8% for context-independent. As reported in,[12]
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