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Improving Control of Dexterous Hand Prostheses
Using Adaptive Learning

Tatiana Tommasi, Francesco Orabona, Claudio Castellini and Barbara Caputo

Abstract—At the time of writing, highly dexterous hand pros-
theses are being manufactured and, to some extent, marketed.
This means wearable, implantable mechanical hands with many
independently controllable degrees of freedom, e.g. finger flexion
and thumb rotation. Still, control by the patient is an open issue,
and the most promising way ahead is probably machine learning
applied to surface electromyography (SEMG). Researchers have
mainly concentrated so far on improving the accuracy of sSEMG
classification and/or regression; but in general, a finer control
implies longer and harder training times. A more natural form
of control might shorten the time a patient requires to learn
how to use the prosthesis, but the machine training time will
inevitably be longer.

In this work we propose a general method to re-use past
experience, in the form of models synthesised from previous users,
to boost the adaptivity of the prosthesis and dramatically shorten
the training time. Extensive tests on a database recorded from
10 healthy subjects in controlled and non-controlled conditions
reveal that the method is highly effective.

Index Terms—learning and adaptive systems, prosthetics, elec-
tromyography, brain-computer interfaces

I. INTRODUCTION

N the prosthetics / rehabilitation robotics community it

is generally understood nowadays (see, e.g., [1], [2], [3])
that advanced hand prostheses need adequate control schema,
where by “adequate” one means accurate, reliable and easy
to use from the point of view of the subject who is wearing
them. In particular, polyarticulate, force-controlled hand pros-
theses are currently appearing in the clinical setting; e.g., the
BeBionic hand by RSL Steeper (www.bebionic.com), Vincent
Systems’ Vincent hand (www.handprothese.de) and the i-
LIMB by Touch Bionics (www.touchbionics.com, see Figure
1). These hands enjoy a much higher dexterity than before
(although not yet comparable with non-prosthetic mechanical
hands), but still, control by the patient is poor. In particular,
hand / finger postures are achieved via complex sequences
of muscle contraction impulses that one must get acquainted
with and remember. Together with excessive weight and low
reliability, lack of control is deemed to be one of the main
reasons why 30% to 50% of upper-limb amputees do not use
their prosthesis regularly [4].

To overcome at least one aspect of this rejection, a more
natural form of control has been individuated and studied since

T. Tommasi and B. Caputo are with the Idiap Research Institute, Martigny,
Switzerland, and the Ecole Polytechnique Fédérale de Lausanne, Switzerland.
Email: tatiana.tommasi@idiap.ch, barbara.caputo@idiap.ch

Francesco Orabona, Toyota Technological Institute at Chicago, Illinois,
USA. Email: francesco@orabona.com

Claudio Castellini is with the Institute of Robotics and Mechatronics,

German Aerospace Research Center, Oberpfaffenhofen, Germany. Email:
claudio.castellini @dlr.de

Fig. 1.
BeBionic (reproduced from www.bebionic.com), Vincent Systems’ Vin-
cent hand (www.handprothese.de) and Touch Bionics’s i-LIMB Ultra
(www.touchbionics.com).

Dexterous hand prostheses: (left to right) RSL Steeper’s

two decades; namely, an old method, surface electromyogra-
phy (SEMG), revamped by the application of machine learning
techniques to its signal. Actually, sSEMG is in the clinical
usage since the 60s, typically employing two electrodes and
a threshold detector [5], [6], [7]. On the other hand, thanks
to adequate arrays of electrodes and statistical classification
and / or regression techniques (e.g., support vector machines,
linear discriminants, neural networks) we are now able, at
least in principle, to detect what the patient wants to do
and to enforce it. This is the meaning of “natural control”.
Machine learning is highly adaptive, eliminating the need for
the stump analysis phase and allowing natural feed-forward
control. Recent results on amputees indicate that even long-
term patients can generate precise residual activity, actually
as precise as that generated by intact subjects (e.g. [8]). The
potentiality of controlling a dexterous hand prosthesis to a
degree of finesse unknown so far is therefore at hand. The use
of supervised learning ensures that a well trained prosthesis
will act, in principle, as the patient’s will dictates.

In this paper we concentrate upon a slightly different
aspect of machine learning applied to hand prostheses control,
namely, we try to reduce the training time, i.e. the time
required to perform the adaptation of the prosthesis itself to the
patient. The use of supervised machine learning implies that a
(usually large) set of labeled samples must be acquired from
each patient anew, in order to train the system; this process
is usually long and not guaranteed to necessarily produce a
good sEMG-to-hand-configuration model. Anatomical simi-
larity among humans intuitively suggests that good statistical
models built in the past might be proficiently reused when
training a prosthesis for a new patient; but this idea cannot
be naively enforced, as shown at least in [9], where cross-
subject analysis (i.e., using a model trained on a subject to do
prediction on a new subject) is performed with poor results.
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To enforce a more refined approach to the idea, we present
hereby the results of extensive experiments in which adaptive
learning has been applied to the problem in order to boost
the training phase of a hand prosthesis by reusing previous
experience. We build on our own previous work [10] which
proposed a principled method to choose the pre-trained models
for adaptation, and the degree of closeness between each of
them and the new target task. This approach was based on an
estimate of the model generalization ability through the leave-
one-out error. Here we improve the original method into two
key aspects: (1) we constrain the new model, learned online
by the patient, to be close to a subset of pre-trained models,
as opposed to a single one as in [10], stored in the memory of
the prosthesis; (2) the learning process to define from whom
and how much to adapt is now defined through a convex
optimization problem while in [10] this goal was achieved
solving a non-convex optimization task prone to local minima
issues. This translates into a consistent bootstrapping of the
control abilities of the subject, which can therefore acquire
control of the device within a time range of at least one order
of magnitude lower than what would be achieved by using the
data of the patient only.

We test our method on the database already described in [9],
[10], consisting of SEMG, posture and force signals gathered
from 10 intact subjects in various (controlled, non-controlled)
laboratory situations. The benefits are apparent: when models
bootstrapped in such a way are tested on subjects so far
unseen, and in non-controlled conditions, the error rates are
significantly lower than in the non-bootstrapped case, since
the beginning and along the whole process. The perspective
is that of shipping a pre-trained prosthesis which would very
quickly adapt to the patient, with the effect of enabling him /
her to a higher comfort and aid during daily-life activities.

The paper is organised as follows: after reviewing related
work, in Sections II and IIT we present the method. Section
IV describes the database used, while Section V shows and
discusses the results. Lastly, Section VI contains conclusions
and ideas for the future work.

A. Related work

1) Using sEMG for hand prostheses: Research in the field
of machine learning applied to sEMG is, to date, deep and
quite mature, at least as far as classification of hand postures
and prediction of required force is concerned. Surface EMG
detects muscle unit activation potentials, in the typical case
quasi-linearly related to the force exerted by the muscle
to which it is applied. In the more specific case of hand
prostheses, several electrodes are applied to the forearm (or
stump) while the subject reaches specific hand configurations
(postures) and/or grabs a force sensor. The raw SEMG signal
is then preprocessed (filtered, rectified, subsampled) and fed,
together with force values and labels denoting the postures,
to a supervised machine learning method. Hand postures are
classified accordingly, and the force applied is predicted using
a regression scheme. The two things can happen simultane-
ously [11]. Up to 12 hand postures [12] have been classified
with acceptable accuracy, and there are strong hints [8], [13],

[12], [14] that most trans-radial amputees may achieve similar
performance. Almost comprehensive surveys can be found in
[2], [3] and the most recent results at the time of writing are
probably those exposed in [15], [16], [17] and [18]. It seems
then, that any general-purpose method to speed up the training
time / aid the collection of training data is highly desirable. To
the best of our knowledge, [10] and [19] presented the only
two attempts of using model adaptation to boost learning on
SEMG data of different subjects. In [10] previously trained
models are exploited as starting point when learning on a
new subject. In [19] reweighted samples from multiple source
subjects are combined to the target subject samples.

2) Adaptive learning: In the last years, different machine
learning techniques for domain adaptation [20] have gathered
attention in natural language processing [21], [22], computer
vision [23] and sentiment classification [24]. The goal of
domain adaptation is to overcome the systematic bias that
occur between different sets for the same learning task.
More precisely, if we call (X,Y) and (X,Y) the data and
corresponding labels coming from a source and a target set,
domain adaptation addresses the case where the conditional
distribution of labels are similar P(Y|X) ~ P(Y|Y) but the
corresponding marginal distributions P(X) and P(X ) differ.
By applying domain adaptation, data collected in different
domains can be used together (source + target) or it is possible
to leverage on pre-trained models built on rich training sets
(source) when facing the same problem in a new domain with
few available samples (target).

Many adaptive methods have been compared and bench-
marked in [22], however most of them are computationally
inefficient because it is necessary to retrain each time over
old and new data. A domain adaptation method that follows
this line has been presented in [19]. The source samples
are reweighted on the basis of both the marginal and the
conditional probability differences between each source and
the target task. When learning the final classifier on the whole
set of samples an additional weighting factor is added to
evaluate the real relevance of each source with respect to the
target task. The sensibility of the method to this parameter is
evaluated empirically, but how to choose it is left as an open
problem.

An approach that does not use re-training, based on SVM
has been proposed in [25]. However this technique does not
take properly into account the possibility that the known model
can be too different with respect to the new one due to high
variability among the domains. In [10] we built on [25] and
overcame the described drawback introducing a principled
method which choose the best prior knowledge to use and how
much to rely on it. We propose here to enlarge this approach
and make it able to combine multiple prior knowledge models
at the same time with the aim to exploit at the best all the
available information.

II. DEFINING THE ADAPTIVE MODEL

In this section we describe the mathematical framework at
the basis of our adaptive learning method. We first introduce
the basic notation (Section II-A), then we present our algo-
rithm for online model adaptation from the best known subject
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(Section II-B) and how to enlarge it to exploit multiple known
subjects (Sections II-C).

A. Background

Assume x; € R™ is an input vector and y; € R is its associ-
ated output. Given a set {x;,y;}'_, of samples drawn from an
unknown probability distribution, we want to find a function
f(x) such that it determines the best corresponding y for any
future sample x. This is a general framework that includes
both regression and classification. The problem can be solved
in various ways. Here we will use kernel methods and in
particular Least-Squares Support Vector Machines (LS-SVM,
[26]). In LS-SVM the function f(x) is built as a linear model
w-¢(x)—+b, where ¢(-) is a non-linear function mapping input
samples to a high-dimensional (possibly infinite-dimensional)
Hilbert space called feature space. Rather than being directly
specified, the feature space is usually induced by a kernel
function K (x,x’) which evaluates the inner product of two
samples in the feature space itself, i.e. K (x,x’) = ¢(x)-o(x').
A common kernel function is the Gaussian kernel:

K(x,x') = exp(—y|lz — 2/||?) (1)

that will be used in all our experiments.

The parameters of the linear model, w and b, are found
by minimizing a regularized least-squares loss function [26].
This approach is similar to the well-known formulation of
Support Vector Machines (SVMs), the difference being that
the loss function is the square loss. While this does not induce
a sparse solution, it makes it possible to write the leave-
one-out error in closed form and with a negligible additional
computational cost [27]. This is known to be approximately an
unbiased estimator of the classifier generalization error [28].
This property is useful to find the best parameters for learning
(e.g. v in (1)) and it will be used in our adaptation method.
Note that we use the same general formulation to solve both
regression and classification problems.

B. Model Adaptation from the Best Subject

Let us assume we have N pre-trained models stored in
memory, trained off-line on data acquired on N different
subjects. When the prosthetic hand starts to be used by subject
N + 1, the system begins to acquire new data. Given the
differences among the subjects’ arms and as well in the
placement of the electrodes, these new data will belong to
a new probability distribution, in general different from the N
previously modeled and stored. Still, as all subjects perform
the same grasp types, it is reasonable to expect that the new
distribution will be close to at least one of those already
modeled; then, it should be possible to use one of the pre-
trained model as a starting point for training using the new
data. We expect that, by doing so, learning should be faster
than using the new data alone. To solve this problem we
generalize the framework for adaptation proposed in [25] for
SVMs: the basic idea is to slightly change the regularization
term of the SVM cost functional, so that the solution will be

close to the pre-trained one. The optimization problem is [25]:

1
: 1 7112
min S{|w — w’| +C;&
subject to & >0, y;(w-o(x;) +b) >1-¢; 2

where w' is a pre-trained model. In order to tune the closeness
of w to w/, we introduce a scaling factor 3 weighing the
pre-trained model; also, we use the square loss and therefore
resort to the LS-SVM formulation. In this way the leave-one-
out error can be evaluated in closed form, enabling automatic
tuning of 5. The optimization problem reads now like this
[10]:

1 C «
N 112 2
min 5w — 6w’ +5;£i

subject to y; = w-d(x;) + b+ & 3)

and the corresponding primal Lagrangian gives the following
unconstrained minimization problem:

O < !
L— %||w—5w/”z+5 S 203 an{weplx) b3}

i=1 i=1
“)
where o = (a1, aq,...,07) € Rl is the vector of Lagrange
multipliers. The optimality conditions can be expressed as:

oL !

T 0 = w=/pw +;ai¢(xi)7 )
oL !

5 =0 = ;aho, (6)
oL

9% 0 = o;=0C¢, (7
oL

Yo 0 = w-o(x)+b+&—y=0. (8)

From (5) it is clear that the adapted model is given by the
sum of the pre-trained model w’ (weighted by ) and a new
model w obtained from the new samples. Note that when 3
is 0 we recover the original LS-SVM formulation without any
adaptation to previous data. Using (5) and (7) to eliminate w
and & = (£1,&,...,&) from (8) we find that:

l
>y 60x;) - 6(x) + b+ H =i — Bw - o(x) . (9)
j=1

Denoting with K the kernel matrix, ie. Kj; = K(x;,%;) =
®(x;) - ¢(x;), the obtained system of linear equations can be
written more concisely in matrix form as:

Kt+zl 1][a]_[y—pBw- ¢(x)

Gy |l il w

Thus the model parameters can be calculated with:
{‘Z}MI(YW) (11)

where Y is the vector [y1, ..., y;,0]7, Y is the vector contain-
/

ing the predictions of the previous model [w'- ¢(x1),..., w’-
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#(x;),0]7, and M is the first matrix on the left in (10).
Let [/, 0]T = MY and [@”,0"]T = MY, from the
equation above and using the same steps in [27] (see the
Appendix), we have the following

Proposition 1. The prediction on sample i, when removed
from the training set, is [10]:

1
Q;

M

(%3 (23

_ a;

12)

From (12) the leave-one-out-error is easily evaluated, accord-
ing to the required measure of accuracy for the problem at
hand.

Notice that, in the above formula, 3 is the only parameter,
hence, it is possible to set it optimally in order to minimize
the leave-one-out error, while at the same time choosing the
best pre-trained model for adaptation. Moreover, ¢ depends
linearly on 3, thus it is easy to define the learning model which
is fixed once S has been chosen.

The complexity of the algorithm is dominated by the
evaluation of the matrix M, which must anyway occur while
training; thus, the computational complexity of evaluating the
leave-one-out error is negligible, if compared to the complexity
of training. As a last remark, we underline that the pre-trained
model w’ can be obtained by any training algorithm, as far
as it can be expressed as a weighted sum of kernel functions.
The framework is therefore very general.

C. Model Adaptation from Multiple Subjects

The approach described in the previous Section has a
main drawback: although many prior knowledge models are
available, it uses only one of them, selected as the most useful
in term of minimal leave-one-out error. Even if the pre-trained
models are not equally informative, relying on more than one
of them may be beneficial. To this goal it is possible to define a
new learning problem which considers the linear combination
of all the known models [29]:

N 2 C, l
w=D Biwill +5 > &
j=1 i=1

subject to  y; = w - d(x;) +b+ & .

N —

min
w,b
(13)

The original single coefficient 5 has been substituted with a
vector 3 containing as many elements as the number of prior
models, N. For this formulation the optimal solution is:

N 1
w = Z’BjWJ{ + Z a;d(x;) -
j=1 i=1

Here w is expressed as a weighted sum of the pre-trained
models scaled by the parameters (3;, plus the new model
built on the incoming training data [29]. The leave-one-out
prediction of each sample ¢ can again be written in closed
form as:

(14)

1
i)
-

M;;

1
M 15)

?

o N
Ui =Yi — — + Zﬁj
2 o

Now [a;’(j),bg-’]T = M 'Y; and Y; is the vector which
contains the predictions of the ;" previous model [w; .
P(x1), ..., W) - ¢(x1),0]. As before, the leave-one-out error

can be calculated and minimized to evaluate the best weights

B;-

III. LEARNING HOW MUCH TO ADAPT

The adaptive learning methods described above look for
the model parameters (w,b) once the value of the weight 3,
or the corresponding vector 3, has been chosen. This choice
actually defines another learning problem that gives as output
an indication of how much each of the pre-trained models are
reliable for adaptation. In the following we define how to face
this issue in the classification and regression cases, a general
scheme of the proposed solutions is in Figure 2.

A. Classification

For a binary classification problem, and in case of a single
pre-trained model, we can follow the approach proposed in
[27] and find S by minimizing the continuous and derivable
logistic function :

! 1

mﬁm; 1+ exp(—10¢;) ’ (16)
based on the leave-one-out error e; = ¥; — y;. However in our
application we have multiple pre-trained models and multiple
classes y; € {1,...,G} where G is the number of analyzed
grasp types. We can directly extend the methods presented in
the previous Section using the one-vs-all approach. In this way
we obtain G different leave-one-out predictions g;(, for each
sample ¢. It is necessary to compose all these values to define
a single multiclass estimate of the leave-one-out error.

1) Best Prior Model: A first solution could be to consider:

ei = max | iy — iy | an

Y#Yi
and to evaluate (16) for each of the j € {1,...,N} pre-
trained models, varying 5 with small steps in [0,1] (this is
the approach used in [10]). The minimal result identifies both
the best known subject for adaptation and, at the same time,
the corresponding 3 weight. Still, this approach is non-convex
thus the existence of a global optimum is not guaranteed.

2) Multiple Prior Models: When moving to the choice
of multiple weights for all the pre-trained models we can
also overcome the non-convexity issue described above, by
minimizing the loss function proposed in [29]:

L(yi, ;) = max [ 1—y;7i, 0], (18)
this is a convex upper-bound to the leave-one-out misclassifi-
cation loss and has a smoothing effect, similar to the logistic
function in (16). However this choice is again suitable only for
binary problems. Here we propose to use the convex multiclass
loss [30]:

y#£Yi
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Best Prior Model

Multiple Prior Models

— Different Weights for Different Classes

Subject 1 Subject 1 Subject 2 Subject 1 Subject 2
SN /)/X;\l\/) Z‘x’/ ﬂ/\ 7] | %\ | % >
(=) ]—\i- (=) ﬂ: N ;Zud}[ m
UL 2 M L 1) ‘iw/ zj‘z‘ﬂl/ I s
— o - .
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New Subject
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J/

/
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Fig. 2. This figure shows the three methods adopted to leverage information from multiple known subjects when learning on a new one. For all the known
subjects many sEMG signal samples are available, while few SEMG signals are recorded from the new subject. Left: choose only the best known subject
and use its reweighted model as a starting point for learning. Center: consider a linear combination of the known subjects with equal weight for all the grasp
models of each subject. Right: consider again a linear combination of all the known models but assign a different weight to each grasp model for each subject.

with the final objective function:

!
mﬁinZL(yia?]i)
i=1

The condition of having 3 in the unitary ball is similar to
the regularization term used in LS-SVM and it is a natural
generalization of the original constraint 8 € [0, 1]. This term
is necessary to avoid overfitting problems which can happen
when the number of known models is large compared to the
number of training samples [29].

We implemented the optimization process using a simple
projected sub-gradient descendent algorithm, where at each
iteration 3 is projected onto the ls-sphere, ||3]2 < 1 . The
pseudo-code is in Algorithm 1.

3) Different Weights for Different Classes: Till now we
considered techniques which assign a unique weight to each
known subject. This means that, the whole set of one-vs-
all pre-trained models for a subject are equally weighted.
However, when learning the model for class y = 1, it may be
useful to give more weight in adaptation to subject j = 1 than
7 = 2, while it could be the opposite when learning the model
for class y = 2. To have one more degree of freedom and
decide the adaptation specifically for each class, we enlarge the
set of weight parameters introducing the matrix B € RV*¢
where each row j € {1,..., N} contains the vector BJT with
G elements, one for each class.

The optimization problem is analogous to the one described
in (20), with a changing in the constraints. Each class problem
is now considered separately, so we have G conditions, each
for one of the columns of the B matrix: naming B, , =
[B1,y, Bay,...Bny|T for a fixed y € {1,...,G}, a single
constraint is ||B, ,[2 < 1.

subject to (20)

1Bl2<1.

B. Regression

Our goal in using regression is the prediction of the force
applied by one subject in grasping, independently to the

Algorithm 1 Projected Sub-gradient Descent Algorithm
Notice that at line 7, we slightly abuse the max notation, meaning that each
element of the 3% vector is changed to zero if negative.

Input: L(8) = [L(y1,51), L(y2, G2), - - -, L(yr, 51)]"
. B=0eRVN
22 k=1
3: repeat

4 (B =D eRrN
l
S: de RN, dj = Zi:l Dji
6 pBr=pF1-— rd
7: B* = max[g*, 0]
g if |8"||2 > 1 then

9: 8" ="/18".
10: end if
11: k=k+1

12: until convergence

QOutput: 3

specific kind of grasp performed. Thus now the output y; for
each corresponding input x; is a continuous real value, rather
a discrete one as in classification.

Similarly to what seen before, it is possible to learn the
regression model relying on information from the closest
known subject, or on the combination of multiple pre-trained
models.



IEEE TRANSACTIONS OF ROBOTICS, VOL. X, NO. Y, DATE

1) Best Prior Model: We can use the leave-one-out predic-
tion in (12) to evaluate the Mean Square Error (MSE):

I
1 N2
MSE = - Z(yi —¥i)

2y

This is a quadratic function in £ and the minimum is obtained
using:

’ 1"

[Zl a; a; :|
— =T =1
=1 M~ M

=i ()]

We use the constraint 5 > 0, just imposing 3 = 0 every time it
results negative. Once calculated the minimum MSE value for
each j € {1,2,... N}, comparing all of them, we can identify
the best known subject to use for adaptation when learning the
regression model on a new subject.

p= (22)

2) Multiple Prior Models: To take advantage from all the
available pre-trained models we can combine them linearly
and search for a vector of weights as in classification. In this
way we obtain:

2
/

I~ (_of N~ p %)
MSE = - Lo —
ZZ M ZﬂM

Adding also the condition ||B]|2 < 1, we can find the best
B vector which minimizes the MSE with a Quadratically
Constrained Quadratic Program (QCQP) solver. We used CVX
[31] in our experiments.

(23)

IV. EXPERIMENTAL DATA

To test the effectiveness of our model adaptation techniques
we use the database of SEMG / hand posture / force signals
already presented and described in [9] and already used in
[9], [10]. (The following description of the database is very
concise; the interested reader should refer to the above cited
paper(s) for more details.) Data is collected from 10 intact
subjects (2 women, 8 men) using 7 sSEMG electrodes (Aurion
ZeroWire wireless) placed on the dominant forearm according
to the medical literature [32]. A FUTEK LMDS500 force sensor
[33] is used to measure the force applied by the subject’s hand
during the recording. Data is originally sampled at 2kHz. Each
subject starts from a rest condition (SEMG baseline activity)
then repeatedly grasps the force sensor using, in turn, three
different grips, visible in Figure 3. The subject either remains
seated and relaxed while performing the grasps, or is free to
move (walk around, sit down stand up, etc.). These phases are
referred to as Still-Arm (SA) and Free-Arm (FA) respectively.
Each grasping action is repeated along 100 seconds of activity.
The whole procedure is repeated twice. The root mean square
of the signals along 1s (for classification) and 0.2s (for regres-
sion) is evaluated; subsampling at 25Hz follows. Samples for
which the applied force is lower than 20% of the mean force
value obtained for each subject are labeled as “rest” class.
After this pre-processing we got around 15000 samples per

subject, each sample consists of a 7 elements SEMG signal
vector and one force value.

V. EXPERIMENTAL RESULTS

As already mentioned in Section II-B, our working assump-
tion is to have N pre-trained models stored in memory; new
data comes from subject NV + 1 and the system starts training,
to build the N +41’th model. The performance is then evaluated
using unseen data from subject N +1. To simulate this scenario
and to have a reliable estimation of the performance, we use
a leave-one-out approach: out of the 10 subjects for which
we have data recordings, we train 9 models off-line. These
correspond to the N stored models in memory, while data
from the remaining subject are used for the adaptive learning
of the N + 1’th model. This procedure is repeated 10 times,
using in turn all the recorded subjects for the adaptive learning
of the model.

The training sequences are random subsets from the entire
dataset of the new subject, i.e. they are taken without consid-
ering the order in which they were acquired. We considered
12 successive learning steps, for each of them the number of
available training samples increases by 30 elements reaching a
maximum of 360 samples. The test runs over all the remaining
samples.

We conducted two sets of experiments to analyze the be-
havior of the proposed adaptive learning methods in different
conditions: we used pre-trained models evaluated on SA data,
while for each new subject we considered (1) data recorded in
SA condition and (2) data recorded in FA condition. We both
classify the grasp type and predict the force measured by the
force sensor.

We name the proposed adaptation models respectively:

e Best-Adapt: adaptive learning starting from the best prior
knowledge model [10];

e Multi-Adapt: adaptive learning starting from a linear com-
bination of the known models;

o Multi-perclass-Adapt: adaptive learning (for classification)
starting from a linear combination of the known models
with a different weight for each class.

To assess the performance of all these methods we compare
them to two baseline approaches:

o Prior: consists in using only the pre-trained models without
updating them with the new training data. We consider their
average performance.

o No-Adapt: is plain LS-SVM using only the new data for
training, as it would be in the standard scenario without
adaption.

As a measure of performance, for classification we use the
standard classification rate; for regression, the performance
index is the correlation coefficient evaluated between the pre-
dicted force signal and the real one. Although we minimized
the Mean Square Error in the regression learning process,
the choice of the correlation coefficient is suggested by a
practical consideration: when driving a prosthesis, or even a
non-prosthetic mechanical hand, we are not interested in the
absolute force values desired by the user / subject: mechanical
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if the data used are registered in Still-Arm (SA) or Free-Arm (FA) setting.

hands usually cannot apply as much force as human hands do,
for obvious safety reasons, or e.g., in teleoperation scenarios,
they could be able to apply much more force than a human
hand can. As already done, e.g. in [11], [13], [9], we are
rather concerned with getting a signal which is strongly
correlated with the user / subject’s will. The significance of
the comparisons between the methods is evaluated through the
sign test [34].

To build the pre-trained models we used the standard SVM
algorithm. All the parameters to be set during training (C' and
v of the Gaussian kernel) were chosen by cross-validation.

Figure 4(left) reports the obtained classification rate at each
step when using SA data. The plot shows that Multi-perclass-
Adapt outperforms both the baselines No-Adapt, Prior, and
all the other adaptive learning methods. The gain obtained by
Multi-perclass-Adapt with respect to No-Adapt (p < 0.003)
stabilizes around 10% for 300-360 training samples. The dif-
ference between Multi-perclass-Adapt and Best-Adapt shows
an average advantage in recognition rate of around 2.5% (p <
0.03). Analogous results are obtained when considering FA
data for the new subject. In this case we are trying to reproduce
a more realistic scenario where the prior knowledge is built on
data recorded on 9 subjects in laboratory controlled conditions
(Still-Arm) while the new subject moves freely. Figure 4(right)

reports the classification rate results in this setting. Multi-
perclass-Adapt shows again the best performance, with around
2% recognition gain with respect to Best-Adapt (p < 0.03). A
significant difference it is also evident between Multi-perclass-
Adapt and No-Adapt (p < 0.03) and reaches 8% in recognition
rate for 360 samples.

Analyzing Figure 4 as a whole, we can state that all the
proposed adaptive methods outperform learning from scratch
with the best results obtained when exploiting a linear com-
bination of pre-trained models with a different weight for
each known subject and each class (Multi-perclass-Adapt).
Moreover, we notice that learning with adaptation with 30
training samples performs almost as No-Adapt with around
300 samples. Considering the acquisition time, this means that
the adaptive methods are almost ten time faster than learning
from scratch. Using the prior knowledge by itself appears as
a good choice if only very few training samples are available
but looses its advantage when the dimension of the training
set increases. Passing from SA to FA data we can also notice
that the results for Prior show a small drop (from 46.7% to
44.3%) related to the change in domain between the data used
for pre-trained model and the one used for the new subject.

The corresponding regression results are reported in Figure
5. From the plot on the left we can notice that both the adap-
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tive learning methods highly outperform No-Adapt and Prior
(p < 0.003). However in this case Multi-Adapt and Best-Adapt
performs almost equally (no statistical significant difference).
Figure 5(right) shows that Best-Adapt has a less robust and
less smooth performance with respect to Multi-Adapt when
passing to the setting based on FA data in training. Still the two
methods are statistically equivalent and they show a significant
gain with respect to No-Adapt only for more than 250 training
samples (p < 0.03). The higher difficulty in the FA task with
respect to the SA is demonstrated, as for classification, by the
drop in Prior performance (from 0.849 to 0.811). Although
we decided to show the correlation coefficient results, the
corresponding Mean Square Error would lead to the same
conclusions.

Discussion

As a general remark we can state that the three pro-
posed adaptive methods (Multi-perclass-adapt, Multi-Adapt
and Best-Adapt), improve the learning performance to differ-
ent extents if prior-knowledge contains useful information for
the new task, and never harm if any good match between
the data of the new subject and the old source subjects
is found. To further demonstrate this statement, Figure 6
shows the classification and regression results on SA data
respectively for the subject that have the maximum (best)
and the minimum (worst) difference in recognition and re-
gression performance with adaptation compared to No-Adapt.

The worse-case subject represents the paradigmatic case of
no previous models matching the current distribution; as a
consequence the parameter S5 () is set automatically to a
small value (to a vector of small norm). In this case there
is essentially no transfer of prior knowledge. However it is
reasonable to claim that the overall performance of the method
would increase along with the number of stored models, since
this would mean a larger probability of finding matching pre-
trained models. In the long run, a large database of sEMG
signals and force measure, with subjects possibly categorized
(per age, sex, body characteristics, etc.) in order to avoid too
hard a computational burden, would definitively help getting
uniformly better performance.

Regarding the use of prior knowledge on a new problem,
we point out here that, without an appropriate way to choose
how to weight and combine it with the new information, it
is only partially useful. In fact, the Prior line in all the plots
for our results corresponds to an attempt to use directly a flat
combination of all the pre-trained models on a new subject:
the obtained performance show that this is not a good solution.

Finally we briefly discuss the choice of the learning pa-
rameter C. Here we followed the standard approach in the
community, and kept the the parameter C' fixed using the best
value obtained from cross validation on the known subjects.
Still, one might argue that the best way to define it is to
optimize it by using the available training samples of the
target subject, separately for each learning approach. For the
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proposed adaptive methods, this would imply to define C
together with (3, leading to a non-convex problem with also a
great increase in computational complexity.

VI. CONCLUSION

The results presented in this paper clearly show that
machine-learning-based classification and regression applied
to surface EMG can be improved by means of re-using
previous knowledge. In particular, we have used optimal SVM
models previously built by training on a pool of human
subjects to boost the training time and adaptation of a LS-
SVM to new subjects. All the proposed adaptive methods,
when the learning is performed on 300 training samples show
a gain of around 8-10% in recognition rate for grasp type
classification and 0.014 in correlation coefficient for regression
when predicting the applied force, with respect to learning
from scratch on the new subject. These results have been
obtained on a database of sSEMG / hand posture / force data
already used in [9], [10], consisting of data collected from
10 intact subjects in controlled and non-controlled conditions.
In particular, in the non-controlled condition the subjects were
walking, sitting and standing and moving the arms freely while
recording.

The overall idea is that a prosthesis could be embedded with
this additional, pre-existing knowledge before being shipped
out to the generic patient. This needs to be done once and for
all and, most likely, for a large pool of healthy subjects and/or
amputees of diverse condition, age and type of operation,
and degree of muscle remnant fitness. The fact that the free-
arm condition consistently benefits as well from the proposed
technique — essentially to the same extent as the controlled
one — is a very promising hint, meaning that one could
potentially pre-train a prosthesis in a laboratory and then ship
it outside, and still give a significant benefit of the patient with
respect to the learning-from-scratch case.

The database we used consists of intact subjects only, but
it is believed that trans-radial amputees can generate similarly
accurate signals ([14] is the most recent result on this topic),
so this seems no disruptive objection to the applicability of
the method. The project NinaPro (http://www.idiap.ch/project/
ninapro/) is currently concerned with collecting such a large
database of mixed subjects. If confirmed in the large scale,
the current result could pave the way to a significantly higher
acceptance of myoprostheses in the clinical setting.
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APPENDIX
CLOSED FORMULA FOR THE LEAVE-ONE-OUT PREDICTION

We show here that, following the same steps presented in
[27], it is possible to demonstrate the Proposition 1 obtaining
the closed formula for the leave-one-out prediction in (12).
We start from

— / .
M{a}:[y Bw ¢>(X)}. 24)
b 0
and we decompose M into block representation isolating the
first row and column as follows:
m7 }

K+ &I 1}_[
= M,

10
Let [a(=9, b(=)]7 represent the parameter of LS-SVM during
the i'" iteration of the leave-one-out cross validation proce-
dure. In the first iteration, where the first training sample is
excluded we have
a1
{ p(=1)

mi1

m; (25)

|

] =M (Y1 - 5Yy) (26)
where Y1 = [y2,...,%,0]7 and Y; = [w' - ¢(x2),..., W -
#(x;),0]T . The leave-one-out prediction for the first training
sample is then given by

(=1)
g1 = mj [ (g(—l) } + Bw’ - ¢(x1) (27)
= m] M (Y1 - BY1) + 8w - p(x1) . (28)

Considering the last [ equations in the system in (24), it is

clear that [m; Mi][ay,...,aq;,b]T = (Y1 —B8Y1) , and so

g1 = mi My [mMi]le, b7 + Bw - é(x1)

Lo b+ W plx)
(29)

Noting from the first equation in the system in (24) that y; —
Bw' - ¢(x1) = myrar + mi[ag, ..., a;,b]T, we have

Taf—1 T
= m; M ‘mjo; + mj [ag,..

o1 =y —a1(my; —m] My 'my) . (30)

Finally, via the block matrix inversion lemma,

-1

M= 1 L 1
M7+ M 'mTmy My

where © = mqy; — meflml and noting that the system

of linear equations (24) is insensitive to permutations of the

ordering of the equations and of the unknowns, we have
Q5

M

(X3

(3D

Let [/, V)T = MY and [@”,b"]T = M ™'Y, where now

Y =[y,....,y,0/T and Y = [W'-¢(x1),...,w - p(x;),0]T,
from the equation above we get :

. o ol

Yi = Yi — Mi_il +BM7;1 . (32)
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