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1 Introduction

The following are a set of working notes on how to derive and implement probabilistic linear
discriminant analysis (PLDA) using Gaussian priors as proposed in [4]. This includes:

� how to derive the update formulae using maximum likelihood (ML),

� how to derive the formulae for estimating the latent variables,

� how to derive the formulae to perform scoring, and

� �nally simpli�cations for memory and computation time.

We start by introducing the PLDA model. Then we go on to describe how it can be derived so that
we can train the parameters. After this we deal with how to derive an e�cient way to implement
the model to perform training and to compute the likelihood of some input samples given this
model. For clarity we have provided a set of Appendices which contains several useful de�nitions
and derivations used in the text.

1.1 Acknowledgments

We want to thank many people who helped us in writing down these derivations. First and foremost
we would like to thank Sébastien Marcel who gave us the freedom to examine this model in more
detail. Other people that we would like to thank are Carl Sche�er and the rest of the people at
the Biometrics Group of the Idiap Research Institute.

2 The PLDA Model

The PLDA model of Prince and Elder [4] consists of a mean o�set µ, a subspace describing the
main directions of identity variation F, a subspace describing the main directions of condition, or
session variation, G and a noise term εij , where i is the i

th identity and j is their jth observation.
We can then describe PLDA as the process to represent the Dx dimensional feature vector xij such
that

xij = µ+ Fhi + Gwij + εij , (1)

where hi is the latent variable representing identity variation (the weight of the directions for
identity variation) and wij is the latent variable representing condition or session variation (the
weight of the directions for identity variation).

2.1 Setting up the Basics

To solve this set of equations we place certain restrictions upon it. First, we assume that p (hi)
is a zero mean unit standard deviation multivariate Gaussian (Nh [0, I]), that p (wij) is a zero
mean unit standard deviation multivariate Gaussian (Nw [0, I]) and that εij is assumed to be
Gaussian with a diagonal covariance Σ. We can then write Equation 1 as a conditional probability
Pr(xij |hi,wij ,Θ) where the parameters for our PLDA model are de�ned as Θ = [µ,F,G,Σ]. We
can now write the following,

p (hi) = Nh [0, I] , (2)

p (wij) = Nw [0, I] , (3)

p (xij |hi,wij ,Θ) = Nx [µ+ Fhi + Gwij ,Σ] . (4)
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2.2 Extending the notation for Multiple Samples of the Same Identity

The notation from the previous section can be extended to include the case of multiple ob-
servations for a single identity i. In this case x̃i = [xT

i1,x
T
i2, ...,x

T
iJi

]T , µ̃ = [µT ,µT , ...,µT ]T ,

ỹi = [hT
i ,w

T
i1,w

T
i2, ...,w

T
iJi

]T and ε̃i = [εTi1, ε
T
i2, ..., ε

T
iJi

] where Ji is the number of observations for
identity i; these are vectors of size (JiDx, 1), (JiDx, 1), (DF + JiDG, 1) and (JiDx,1) respectively.
Using this we can write Equation 1 as,

x̃i = µ̃+ Ãỹi + ε̃i. (5)

This is the same as Equation 11 in [4]. We take the example of Ji = 3 (we will keep the same value
of Ji for the rest of the examples in these notes) and demonstrate the structure of the variables we
have introduced.

Ã =

 F G 0 0
F 0 G 0
F 0 0 G

 , (6)

Σ̃ =

 Σ 0 0
0 Σ 0
0 0 Σ

 . (7)

We can then write the probabilities as,

p (x̃i|ỹi,Θ) = Nx̃i

[
µ̃+ Ãỹi, Σ̃

]
, (8)

p (ỹi) = Nỹi
[0, I] . (9)

It can be seen that in this more compact formulation the matrix Ã consists of the matrices F and
G which are repeated Ji times and the matrix Σ̃ consists of the matrix Σ also repeated Ji times.
For later use, we now de�ne another latent variable yij = [hT

i ,w
T
ij ]

T which is the latent variable

for the jth observation of identity i.

2.3 Completing the Formulation

With the above equations we can now write down p (x̃i) and p (ỹi|x̃i,Θ) by using the identities
B42-B45 (from page 689) of [1]. We have rewritten these identities below.

p (yB) = NyB

[
µyB

,ΣB

]
, (10)

p (xB |yB) = NxB

[
AByB + bB ,L

−1
B

]
, (11)

ΛB = Σ−1
B . (12)

With these we can de�ne the following:

p (xB) = NxB

[
ABµyB

+ bB ,L
−1
B +ABΣBA

T
B

]
, (13)

p (yB |xB) = NyB

[
Σ∗
(
AT

BLB(xB − bB) + Σ−1
B µyB

)
,Σ∗

]
, (14)

Σ∗ =
(
Σ−1

B +AT
BLBAB

)−1

. (15)

Where we have used the subscript B to clearly indicate that these are the formulae from B42-B45
but with x and y reversed (which has no e�ect); we do this because it makes it easier to see the
relationship for our problem.
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2.3.1 Deriving p (ỹi|x̃i,Θ) and p (x̃i)

To derive the equations for p (ỹi|x̃i,Θ) and p (x̃i) we use the above identities and make the following
substitutions.

µyB
= 0, (16)

ΣB = I, (17)

yB = ỹi, (18)

xB = x̃i, (19)

AB = Ã, (20)

bB = µ̃, (21)

Σ∗ =
(
I−1 + ÃT Σ̃

−1
Ã
)

−1 =
(
I + ÃT Σ̃

−1
Ã
)

−1, (22)

L−1
B = Σ̃. (23)

Therefore, we get the following for p (x̃i):

p (x̃i) = Nx̃i

[
Ã0 + µ̃, Σ̃ + ÃIÃT

]
= Nx̃i

[
µ̃, Σ̃ + ÃÃT

]
. (24)

And we get the following for p (ỹi|x̃i,Θ):

p (ỹi|x̃i,Θ) = Nỹi

[
Σ∗
(
ÃT Σ̃

−1
(x̃i − µ̃) + I−10

)
,Σ∗

]
= Nỹi

[
Σ∗ÃT Σ̃

−1
(x̃i − µ̃) ,Σ∗

]
, (25)

p (ỹi|x̃i,Θ) = Nỹi

[(
I + ÃT Σ̃

−1
Ã
)−1

ÃT Σ̃
−1

(x̃i − µ̃) ,
(
I + ÃT Σ̃

−1
Ã
)−1

]
. (26)

2.3.2 Some Sanity Checks on Array and Matrix Sizes

We will make some statements so that if you go through these formulae things will hopefully make
a bit more sense to you.

� DG is associated with the subspace G (condition or session subspace) which is of size (Dx, DG)

� DF is associated with the subspace F (identity subspace) which is of size (Dx, DF )

� ỹi is the latent variables for the Ji observations of identity i and is a vector of size (DF + JiDG, 1)

� Ã is a matrix of size (JiDx, DF + JiDG) and its transpose ÃT is a matrix of size (DF + JiDG, JiDx)

� Σ̃ is a matrix of size (JiDx, JiDx)

� µ̃ is a vector of size (JiDx, 1)

� x̃i is a vector of size (JiDx, 1)
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2.4 Su�cient Statistics

In this section we describe how to estimate the su�cient statistics to train the model. These
statistics are the �rst order moment and second order moment of the latent variables. We �nd
these quantities by making use of Equation 26. It will be shown that in both cases they depend

upon the quantity
(
I + ÃT Σ̃

−1
Ã
)−1

.

First order moment of ỹi From Equation 26 the expected value of ỹi is given by,

E [ỹi|x̃i,Θ] =
(
I + ÃT Σ̃

−1
Ã
)−1

ÃT Σ̃
−1

(x̃i − µ̃) . (27)

This is the same solution as provided in Appendix 1, Equation 22 of [4].

Second order moment of ỹi From Equation 26 we know Var [ỹi|x̃i,Θ] and so we have the
following,

E
[
ỹiỹ

T
i |x̃i,Θ

]
= Var [ỹi|x̃i,Θ] + E [ỹi|x̃i,Θ]E [ỹi|x̃i,Θ]

T
. (28)

This comes from the fact that Var [y] = E
[
y2
]
− E [y]

2
, which is the previous equation but re-

formed in terms of E
[
y2
]
. Continuing the derivation, we take E [ỹi|x̃i,Θ] from Equation 27 and

Var [ỹi|x̃i,Θ] is taken directly from Equation 26. This gives us,

E
[
ỹiỹ

T
i |x̃i,Θ

]
=
(
I + ÃT Σ̃

−1
Ã
)−1

+ E [ỹi|x̃i,Θ]E [ỹi|x̃i,Θ]
T
. (29)

This is the same equation as provided in Appendix 1, Equation 23 of [4].

2.4.1 Complexity of the Problem

Given the above formulae, the next question is how to go about actually implementing this.

1. Calculating the �rst order moment, E [ỹi|x̃i,Θ] =
(
I + ÃT Σ̃

−1
Ã
)−1

ÃT Σ̃
−1

(x̃i − µ̃), im-

plies the calculation of the large matrix
(
I + ÃT Σ̃

−1
Ã
)−1

.

2. Calculating the second order moment,

E
[
ỹiỹ

T
i |x̃i,Θ

]
=
(
I + ÃT Σ̃

−1
Ã
)−1

+E [ỹi|x̃i,Θ]E [ỹi|x̃i,Θ]
T
, also implies the calculation

of the same matrix.

So the main stumbling block is being able to calculate
(
I + ÃT Σ̃

−1
Ã
)−1

. This matrix depends

on the number of samples, Ji, for a particular client i. We will describe the derivation later, but
below we provide the scalable and exact equations for this problem.

2.4.2 Calculating E [ỹi|x̃i,Θ]

To calculate E [ỹi|x̃i,Θ] the �nal scalable solution becomes, for Ji = 3,

E [ỹi|x̃i,Θ] =
(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij

−
(
I + GTΣ−1G

)−1
GTΣ−1F

(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij +
(
I + GTΣ−1G

)−1
GTΣ−1x̄i1

−
(
I + GTΣ−1G

)−1
GTΣ−1F

(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij +
(
I + GTΣ−1G

)−1
GTΣ−1x̄i2

−
(
I + GTΣ−1G

)−1
GTΣ−1F

(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij +
(
I + GTΣ−1G

)−1
GTΣ−1x̄i3

 .
(30)
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This gives us that,

E [hi|x̃i,Θ] =
(
I + JiF

TQF
)−1

Ji∑
j=1

FTQx̄ij , (31)

and

E [wij |hi,xij ,Θ] =
(
I + GTΣ−1G

)−1
GTΣ−1 (x̄ij − FE [hi|x̃i,Θ]) . (32)

Where Q = Σ−1 − Σ−1G
(
I + GTΣ−1G

)−1
GTΣ−1 =

(
Σ + GGT

)−1
and x̄ij = xij − µ. This

solution will be discussed later in Section 4. Note that we have included hi on the right hand side
of E [wij |hi,xij ,Θ] as it is assumed to have been pre-calculated, but this is not strictly necessary;
this can be calculated each time but in this case we would write E [wij |x̃i,Θ] and imply a greater
overhead.

2.4.3 Calculating E
[
ỹiỹ

T
i |x̃i,Θ

]
To calculate E

[
ỹiỹ

T
i |x̃i,Θ

]
we need to calculate,

E
[
ỹiỹ

T
i |x̃i,Θ

]
=
(
I + ÃT Σ̃

−1
Ã
)−1

+ E [ỹi|x̃i,Θ]E [ỹi|x̃i,Θ]
T
. (33)

However, in practice we do not actually want to do this jointly for all of the Ji observations. We
do need to have E [ỹi|x̃i,Θ] estimated jointly but we then consider it one sample at a time and so
we go to the notation E [yij |x̃i,Θ]; we use the notation with yij to be explicit. We also need an

appropriate expression for
(
I + ÃT Σ̃

−1
Ã
)−1

. This leads to the following scalable solution,

E
[
yijy

T
ij |x̃i,Θ

]
=

[
Tul Tur

Tll Tlr

]
+ E [yij |x̃i,Θ]E [yij |x̃i,Θ]

T
, (34)

where,

Tul =
(
I + JiF

TQF
)−1

, (35)

Tll = TT
ur = −

(
I + GTΣ−1G

)−1
GTΣ−1F

(
I + JiF

TQF
)−1

, (36)

Tlr =
(
I−TllF

TΣ−1G
) (

I + GTΣ−1G
)−1

. (37)

This solution will be described in more detail in Section 4.

2.5 Authentication Scores for PLDA

A veri�cation score for PLDA can be derived by examining Figure 2B in [4]. In this �gure there are
two modelsM0 andM1. ForM0 the latent identity variables are considered to be independent while
for M1 the latent identity variables is shared by all of the observations. Given two observations
one for enrolment xi of client i and another for testing xt of an unknown client t, this can then be
expressed as follows.

For M0 each of the observations, xi and xt, are considered to have independent latent identity
variables hi and hp. They are marginalised independently as follows,

p (xi,xp|M0) =

ˆ ˆ
p (xi,hi,wi1) p (xt,hp,wp1) dhidwi1dhpdwp1, (38)

=

ˆ ˆ
p (xi,hi,wi1) dhidwi1

ˆ ˆ
p (xt,hp,wp1) dhpdwp1. (39)

For M1 the two observations are considered to have the same latent identity variable hi and so are
jointly marginalised. However, the session variables are still considered independently,
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p (xi,xp|M1) =

ˆ ˆ
p (xi,xp,hi,wi1,wit) dhidwi1dwit, (40)

=

ˆ [ˆ
p (xi,hi,wi1) dwi1

ˆ
p (xp,hi,wip) dwit

]
dhi. (41)

We can then use these two models to form a discriminant function using the likelihood ratio (LR),

LR =
p (xi,xp|M1)

p (xi,xp|M0)
. (42)

The logarithm of this can also be taken to get the log-likelihood ratio (LLR),

LLR = ln [p (xi,xp|M1)]− ln [p (xi,xp|M0)] . (43)

3 Learning the Parameters

We now come to the problem of how to learn our parameters Θ = [µ,F,G,Σ]. For this purpose,
an expectation-maximisation (EM) algorithm can be used and such an approach was described in
[4] as indicated by Equation 26 in Appendix 1 of their work. We rewrite this equation below,

Q (Θt,Θt−1) =

I∑
i=1

Ji∑
j=1

ˆ
p (yij |xi1, ...,xiJi

,Θt−1) ln [p (xij |yij ,Θt) p (yij)] dyij . (44)

The �rst term is obtained when performing the expectation part (E-step) by keeping the parameters
�xed at t−1 (Θt−1), this is solved by calculating the su�cient statistics as described in Section 2.4.
The second term, ln [p (xij |yij ,Θ) p (yij)], is the maximisation part (M-step) of the EM derivation.
We rewrite this equation below,

ln [p (xij |yij ,Θ) p (yij)] = ln [p (xij |yij ,Θ)] + ln [p (yij)] . (45)

To maximise Equation 45 we di�erentiate with respect to Θ and set the left hand side to 0.
So let us write it fully to understand what we will get for the di�erent parts of Θ that we need to
maximise,

ln [p (xij |yij ,Θ) p (yij)] = ln [p (xij |yij ,Θ)] + ln [p (yij)] . (46)

For the �rst term we have,

ln [p (xij |yij ,Θ)] = −Dx

2
ln (2π)− 1

2
ln (det (Σ))− 1

2
(xij − µ−Ayij)

TΣ−1 (xij − µ−Ayij) ,

(47)

A =
[

F G
]
, (48)

yij =
[

hT
i , wT

ij

]T
. (49)

For the second term we have,

ln [p (yij)] = ln [Ny [0|I]] , (50)

= ln

[
(2π)−

DF +DG
2 det(I)−

1
2 exp

(
−1

2
yT
ijIyij

)]
, (51)
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= −DF +DG

2
ln (2π)− 1

2
ln (det (I))− 1

2
yT
ijyij . (52)

From the above equations we can see that ln [p (yij)] does not depend on the parameters Θ, and
so we can ignore this part in the derivation. Therefore, we concentrate on di�erentiating Equation
47 with respect to the parameters µ, Σ and A (which includes F and G). Using the de�nitions
from Appendix A we go onto to di�erentiate Equation 47. We take up the derivations for each
parameter below.

3.1 Di�erentiating with Respect to µ

We need to di�erentiate Equation 47 with respect to µ. We begin this di�erentiation below:

∂

∂µ
ln [p (xij |yij ,Θ))] =

∂

∂µ

(
−Dx

2
ln (2π)− 1

2
ln (det (Σ))− 1

2
(xij − µ−Ayij)

TΣ−1 (xij − µ−Ayij)

)
, (53)

= −0− 0− ∂

∂µ

[
1

2
(xij − µ−Ayij)

TΣ−1 (xij − µ−Ayij)

]
. (54)

We make the substitution aij = (xij − µ−Ayij) and
∂aij

∂µ = −1 so that we can rewrite the
equation above as,

=
∂

∂aij

∂aij

∂µ

(
−1

2
aT
ijΣ

−1aij

)
=

∂

∂aij
(−1)

(
−1

2
aT
ijΣ

−1aij

)
. (55)

We then apply the identity in Equation 193 to get,

∂

∂µ
ln [p(xij |yij ,Θ)] = (−1)

(
−1

2

)(
Σ−1 +

(
Σ−1

)T)
aij , (56)

=

(
1

2

)(
2Σ−1

)
(xij − µ−Ayij) , (57)

= Σ−1 (xij − µ−Ayij) . (58)

Above we have used the fact that Σ−1 =
(
Σ−1

)T
. We can now maximise this by setting the left

hand side (LHS) to zero and reintroducing the sums to get the following,

0 =

I∑
i=1

Ji∑
j=1

Σ−1 (xij − µ−Ayij) , (59)

0 =

I∑
i=1

Ji∑
j=1

xij −
I∑

i=1

Ji∑
j=1

µ−
I∑

i=1

Ji∑
j=1

Ayij , (60)

I∑
i=1

Ji∑
j=1

µ =

I∑
i=1

Ji∑
j=1

(xij −Ayij) , (61)

µ =
1

IJi

I∑
i=1

Ji∑
j=1

(xij −Ayij) . (62)

The result for µ, Equation 62, does not match the one presented in [4] as they use a sim-
pli�cation that µ is the mean of the data itself; as such it is not actually updated. The most
likely explanation for this, which was never given, is that because the latent variables should be

9



zero mean then
∑I

i=1

∑Ji

j=1 Ayij should be 0. If we make this assumption then we get the same
equation which is,

µ =
1

IJi

I∑
i=1

Ji∑
j=1

xij . (63)

3.2 Di�erentiating with Respect to A

We need to di�erentiate Equation 47 with respect to A. We begin this di�erentiation below:

∂

∂A
ln [p (xij |yij ,Θ))] =

∂

∂A

(
−Dx

2
ln (2π)− 1

2
ln (det (Σ))− 1

2
(xij − µ−Ayij)

TΣ−1 (xij − µ−Ayij)

)
, (64)

= −0− 0− ∂

∂A

[
1

2
(xij − µ−Ayij)

TΣ−1 (xij − µ−Ayij)

]
. (65)

We now substitute αij = (xij − µ) into the above equation so that we can rewrite it as,

= − ∂

∂A

[
1

2
(αij −Ayij)

TΣ−1 (αij −Ayij)

]
. (66)

This takes a form similar to that of the identity of Equation 198 and so we use this identity to get
the following:

∂

∂A
ln [p (xij |yij ,Θ))] = (−2)

(
−1

2

)
Σ−1 (αij −Ayij) yT

ij . (67)

To maximise with respect to A, we set the LHS of this equation to zero and reintroduce the sums.
This gives us the following result,

0 =

I∑
i=1

Ji∑
j=1

Σ−1 (αij −Ayij) yT
ij , (68)

0 = Σ−1

 I∑
i=1

Ji∑
j=1

(xij − µ) yT
ij −

I∑
i=1

Ji∑
j=1

Ayijy
T
ij

 , (69)

A

I∑
i=1

Ji∑
j=1

yijy
T
ij =

I∑
i=1

Ji∑
j=1

(xij − µ) yT
ij , (70)

A =

I∑
i=1

Ji∑
j=1

(xij − µ)E [yij ]
T

 I∑
i=1

Ji∑
j=1

E
[
yijy

T
ij

]−1

. (71)

This is the same as the update rule provided in [4].

3.3 Di�erentiating with Respect to Σ

We need to di�erentiate Equation 47 with respect to Σ. We begin this di�erentiation below:

∂

∂Σ
ln [p (xij |yij ,Θ))] =

∂

∂Σ

[
−Dx

2
ln (2π)− 1

2
ln (det (Σ))− 1

2
(xij − µ−Ayij)

TΣ−1 (xij − µ−Ayij)

]
, (72)
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We substitute aij = (xij − µ−Ayij) so that we can rewrite the equation above as,

∂

∂Σ
ln [p (xij |yij ,Θ))] =

∂

∂Σ

[
−Dx

2
ln (2π)− 1

2
ln (det (Σ))− 1

2
aT
ijΣ

−1aij

]
. (73)

We can then use the identities in Equations 194 and 195. Using these identities we get the following:

∂

∂Σ
ln [p (xij |yij ,Θ))] =

(
−0− 1

2
Σ−T +

1

2
Σ−Taija

T
ijΣ

−1

)
, (74)

= −1

2
Σ−T +

1

2
Σ−T (xij − µ−Ayij) (xij − µ−Ayij)

T
Σ−1. (75)

We need to take the above result, set the LHS to zero and reintroduce the sum. This gives us
the following result (remembering that we want to �nd an expression for Σ).

0 = −1

2

I∑
i=1

Ji∑
j=1

Σ−T +
1

2

I∑
i=1

Ji∑
j=1

Σ−T (xij − µ−Ayij) (xij − µ−Ayij)
T

Σ−1, (76)

Σ−1
I∑

i=1

Ji∑
j=1

1 = Σ−1
I∑

i=1

Ji∑
j=1

(xij − µ−Ayij) (xij − µ−Ayij)
T

Σ−1, (77)

ΣΣ−1
I∑

i=1

Ji∑
j=1

1 = ΣΣ−1
I∑

i=1

Ji∑
j=1

(xij − µ−Ayij) (xij − µ−Ayij)
T

Σ−1, (78)

IJi =

I∑
i=1

Ji∑
j=1

(xij − µ−Ayij) (xij − µ−Ayij)
T

Σ−1, (79)

IJiΣ =

I∑
i=1

Ji∑
j=1

(xij − µ−Ayij) (xij − µ−Ayij)
T

Σ−1Σ, (80)

As we want Σ to be diagonal, we �nally get

Σ =
1

IJi

I∑
i=1

Ji∑
j=1

diag
[
(xij − µ−Ayij) (xij − µ−Ayij)

T
]
. (81)

Everything else that follows is trying to get this expression to match up with what is presented in
[4]. It should also provide a more stable estimate of Σ.

Let's substitute bij = xij − µ,

Σ =
1

IJi

I∑
i=1

Ji∑
j=1

diag
[
(bij −Ayij) (bij −Ayij)

T
]
, (82)

Σ =
1

IJi

I∑
i=1

Ji∑
j=1

diag
[
bijb

T
ij − bijy

T
ijA

T −Ayijb
T
ij + Ayijy

T
ijA

T
]
, (83)

Σ =
1

IJi

I∑
i=1

Ji∑
j=1

diag
[
bijb

T
ij − 2Ayijb

T
ij + Ayijy

T
ijA

T
]
. (84)

We now make use of our previous de�nition of A,

A =

I∑
i=1

Ji∑
j=1

(xij − µ)E [yij ]
T

 I∑
i=1

Ji∑
j=1

E
[
yijy

T
ij

]−1

. (85)

Taking this and substituting in,
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Σ =
1

IJi

I∑
i=1

Ji∑
j=1

diag
[
bijb

T
ij − 2Ayijb

T
ij + Ayijy

T
ijA

T
]
. (86)

=
1

IJi
diag

 I∑
i=1

Ji∑
j=1

bijb
T
ij −

I∑
i=1

Ji∑
j=1

2Ayijb
T
ij +

I∑
i=1

Ji∑
j=1

Ayijy
T
ijA

T

 , (87)

As we will be taking the diagonal of Σ, this can be further written as,

=
1

IJi
diag

 I∑
i=1

Ji∑
j=1

bijb
T
ij − 2A

I∑
i=1

Ji∑
j=1

yijb
T
ij + A

I∑
i=1

Ji∑
j=1

yijy
T
ijA

T

 . (88)

This is the point at which we put in our de�nition for A, for the last term only,

Σ =
1

IJi
diag

...+
 I∑

i=1

Ji∑
j=1

yijb
T
ij

 I∑
i=1

Ji∑
j=1

yijy
T
ij

−1
I∑

i=1

Ji∑
j=1

yijy
T
ijA

T

 , (89)

=
1

IJi
diag

...+
 I∑

i=1

Ji∑
j=1

yijb
T
ij

 I∑
i=1

Ji∑
j=1

yijy
T
ij

−1 I∑
i=1

Ji∑
j=1

yijy
T
ij

AT

 , (90)

=
1

IJi
diag

...+
 I∑

i=1

Ji∑
j=1

yijb
T
ij

 IAT

 , (91)

=
1

IJi
diag

 I∑
i=1

Ji∑
j=1

bijb
T
ij − 2A

I∑
i=1

Ji∑
j=1

yijb
T
ij +

 I∑
i=1

Ji∑
j=1

yijb
T
ij

 IAT

 , (92)

=
1

IJi
diag

 I∑
i=1

Ji∑
j=1

bijb
T
ij − 2A

I∑
i=1

Ji∑
j=1

yijb
T
ij + A

I∑
i=1

Ji∑
j=1

yijb
T
ij

 , (93)

=
1

IJi
diag

 I∑
i=1

Ji∑
j=1

(xij − µ) (xij − µ)
T −A

I∑
i=1

Ji∑
j=1

yij (xij − µ)
T

 . (94)

This provides us with the same solution as Prince and Elder. We can now write,

Σ =
1

IJi

I∑
i=1

Ji∑
j=1

diag
[
(xij − µ) (xij − µ)

T −Ayij (xij − µ)
T
]
. (95)

4 Implementation Details

The following is a quick summary of some of the implementation details for PLDA. This is not a
guide on how to implement PLDA, although it could help considerably.

The �rst point to note is that there are values that we will use throughout that are probably
worth storing somewhere. A non-exhaustive list is:

� ln(2π)

� −Dx

2 ln(2π)

� ln [det (Σ)]
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� Σ−1 because we assume this to be diagonal this is actually a vector inversion.

� Q = Σ−1 − Σ−1G
(
I + GTΣ−1G

)−1
GTΣ−1 because it is used for estimating the latent

variables and scoring.

� FTΣ−1G and FTQ

�

(
I + JiF

TQF
)−1

because this is used for estimating the latent variables and for scoring.

We now take up scalable and exact solutions for the problems of evaluating the likelihood and
estimating the su�cient statistics.

4.1 Log-likelihood of x̃

This involves calculating the likelihood of the following,

p (x̃i) = Nx̃

[
µ̃, Σ̃ + ÃÃT

]
. (96)

We can simplify this by calculating the log-likelihood which gives us,

ln [p (x̃i)] = −JiDx

2
ln (2π)− 1

2
ln
[
det
(
Σ̃ + ÃÃT

)]
− 1

2
(x̃i − µ̃)

T
(
Σ̃ + ÃÃT

)−1

(x̃i − µ̃) .

For each of the three parts of this calculation we note the following:

1. −JiDx

2 ln (2π) is trivial to calculate as it depends only on the dimensionality of the feature
space (Dx) and the number of samples (Ji),

2. − 1
2 ln

[
det
(
Σ̃ + ÃÃT

)]
will be di�cult to calculate as it involves calculating the determinant

of potentially very large matrices, therefore, simpli�cations need to be used, and

3. − 1
2 (x̃i − µ̃)

T
(
Σ̃ + ÃÃT

)−1

(x̃i − µ̃) will be di�cult to calculate as it involves multiplying

a very large matrix, therefore, simpli�cations need to be used.

Because Point 1 can be relatively easily dealt with we only address Points 2 and 3 in the following
sections.

4.1.1 Calculating − 1
2 (x̃i − µ̃)

T
(
Σ̃ + ÃÃT

)−1

(x̃i − µ̃) E�ciently: Method 1

We will examine what the matrix
(
Σ̃ + ÃÃT

)−1

is. First we derive fully what
(
Σ̃ + ÃÃT

)
is,

Ã =

 F G 0 0
F 0 G 0
F 0 0 G

 , (97)

ÃÃT =

 F G 0 0
F 0 G 0
F 0 0 G




FT FT FT

GT 0 0
0 GT 0
0 0 GT

 , (98)

ÃÃT =

 FFT + GGT , FFT , FFT

FFT , FFT + GGT , FFT

FFT , FFT , FFT + GGT

 , (99)

Σ̃ + ÃÃT =

 Σ̃ + FFT + GGT , FFT , FFT

FFT , Σ̃ + FFT + GGT , FFT

FFT , FFT , Σ̃ + FFT + GGT

 . (100)
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This matrix is actually very big (JiDx, JiDx) and it would need to be inverted so calculating
this e�ciently is necessary if we want to implement scoring this way. If we take the Woodbury
matrix identity,

(A+ UCV )
−1

= A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1, (101)

and apply it in a similar way to [2] page 15 (Section 3.2.3) we would get the following,

Λ =
(
Σ̃ + ÃÃT

)−1

= Σ̃
−1 − Σ̃

−1
Ã
(
I + ÃT Σ̃

−1
Ã
)−1

ÃT Σ̃
−1
, (102)

Λ = Σ̃
−1 − ΓΓT . (103)

Where, Γ = Σ̃
−1

Ã
(
I + ÃT Σ̃

−1
Ã
)

− 1
2 .

Using the above we can now rewrite the quadratic term in the Gaussian that we need to evaluate
as being,

(x̃i − µ̃)
T

Σ̃
−1

(x̃i − µ̃)− (x̃i − µ̃)
T

ΓΓT (x̃i − µ̃) . (104)

The �rst part, (x̃i − µ̃)
T

Σ̃
−1

(x̃i − µ̃), is e�cient to compute as Σ̃
−1

is diagonal. The sec-

ond part, (x̃i − µ̃)
T

ΓΓT (x̃i − µ̃), is more complicated. But we can note that (x̃i − µ̃)
T

Γ =(
ΓT (x̃i − µ̃)

)T
and so we only ever need to evaluate one half of the equation. And that in the

end ΓT (x̃i − µ̃) is a vector of dimensions (DF + JiDG, 1). Therefore, the �nal result of the second
part is just the magnitude of this vector. This comes from [2].

The above solution is still problematic. This is because Σ̃
−1

Ã is a matrix of size (JiDx, DF + JiDG)
and is quadratic with the number of samples Ji. So let us expand this out and see if we can reduce
the load on the memory somehow. We want to calculate ΓT (x̃i − µ̃) which is given by,

ΓT (x̃i − µ̃) =
[
Σ̃

−1
Ã
(
I + ÃT Σ̃

−1
Ã
)

− 1
2

]T  x̄i1

x̄i2

x̄i3

 , (105)

=
[(

I + ÃT Σ̃
−1

Ã
)

− 1
2

]T
ÃT Σ̃

−1

 x̄i1

x̄i2

x̄i3

 , (106)

= Z̃ÃT Σ̃
−1

 x̄i1

x̄i2

x̄i3

 , (107)

= Z̃


FTΣ−1, FTΣ−1, FTΣ−1

GTΣ−1 0 0

0 GTΣ−1 0

0 0 GTΣ−1


 x̄i1

x̄i2

x̄i3

 , (108)

= Z̃


∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

GTΣ−1x̄i2

GTΣ−1x̄i3

 . (109)

Where Z̃ =
[(

I + ÃT Σ̃
−1

Ã
)

− 1
2

]T
and x̄i1 = xi1 − µ.

Obviously the above way of writing it is much more e�cient in terms of memory as Z̃ is a matrix
of size (DF + JiDG, DF + JiDG) and the second vector is of size (DF + JiDG, 1). The
calculation of the matrix Z̃ will be a limiting factor in any application as it involves calculating
the inverse and a square root. However, this only has to be derived once for a given number of
observations Ji. Still, this is not the best way to solve this problem. We describe a better, more
e�cient way of doing this below.
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4.1.2 Calculating − 1
2 (x̃i − µ̃)

T
(
Σ̃ + ÃÃT

)−1

(x̃i − µ̃) E�ciently: Method 2

Starting from where we left o� before what we actually want to calculate is,
∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

GTΣ−1x̄i2

GTΣ−1x̄i3


T

Z̃T Z̃


∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

GTΣ−1x̄i2

GTΣ−1x̄i3

 , (110)

=
[ ∑Ji

j=1 x̄T
ijΣ

−1F, x̄T
i1Σ

−1G, . . . , x̄T
i3Σ

−1G
] (

I + ÃT Σ̃
−1

Ã
)−1


∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

GTΣ−1x̄i2

GTΣ−1x̄i3

 .
(111)

This comes from the de�nition of Z̃. Now we can use the matrix inversion lemma, using an
intermediate form of the Woodbury identity (coming from an LDU decomposition) again to simplify

the inversion of
(
I + ÃT Σ̃

−1
Ã
)
. This leads to the above equation becoming,

= a

[
IDF

0
−D−1C, IJiDG

] [ (
A−BD−1C

)−1
0

0 D−1

] [
IDF

−BD−1

0 IJiDF

]
b. (112)

Where,

a =
[ ∑Ji

j=1 x̄T
ijΣ

−1F, x̄T
i1Σ

−1G, . . . , x̄T
i3Σ

−1G
]
, (113)

and

b =


∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

GTΣ−1x̄i2

GTΣ−1x̄i3

 . (114)

We will now proceed to decompose this set of matrix multiplications to derive a more e�cient
solution. But �rst we de�ne the elements that we will use below.

A =
[
I + JiF

TΣ−1F
]
, (115)

B =
[

FTΣ−1G, FTΣ−1G, FTΣ−1G
]
, (116)

C =

 GTΣ−1F

GTΣ−1F

GTΣ−1F

 = BT , (117)

D =

 I + GTΣ−1G 0 0

0 I + GTΣ−1G 0

0 0 I + GTΣ−1G

 . (118)

First we note that,

a

[
IDF

, 0
−D−1C, IJiDG

]
=

([
IDF

, −BD−1

0, IJiDG

]
b

)T

. (119)

This means that solving one provides us with the solution for the other, provided we take the
transpose. For convenience we choose to solve the second one. We note that,

−BD−1 = −
[

FTΣ−1G, . . . , FTΣ−1G
] 

(
I + GTΣ−1G

)−1
0 0

0
. . . 0

0 0
(
I + GTΣ−1G

)−1

 ,
(120)
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−BD−1 = −
[

FTΣ−1G
(
I + GTΣ−1G

)−1
, . . . , FTΣ−1G

(
I + GTΣ−1G

)−1
]
. (121)

The matrix −BD−1 is of size (DF , JiDG) and b is of size (DF + JiDG, JiDx). Thus, the multi-
plication of these two terms is given by,

[
I −BD−1

0 I

]
b =

[
IDF

, −BD−1

0, IJiDG

]
∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

...

GTΣ−1x̄i3

 , (122)

=


−BD−1

 GTΣ−1x̄i1

...

GTΣ−1x̄i3

+
∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

...

GTΣ−1x̄i3


, (123)

=


(∑Ji

j=1 FTΣ−1x̄ij −
∑Ji

j=1 FTΣ−1G
(
I + GTΣ−1G

)−1
GTΣ−1x̄ij

)
GTΣ−1x̄i1

...

GTΣ−1x̄i3

 , (124)

=


FT
(∑Ji

j=1 Σ−1x̄ij −
∑Ji

j=1 Σ−1G
(
I + GTΣ−1G

)−1
GTΣ−1x̄ij

)
GTΣ−1x̄i1

...

GTΣ−1x̄i3

 , (125)

=


FT
(∑Ji

j=1

(
Σ−1 −Σ−1G

(
I + GTΣ−1G

)−1
GTΣ−1

)
x̄ij

)
GTΣ−1x̄i1

...

GTΣ−1x̄i3

 , (126)

=


∑Ji

j=1 FTQx̄ij

GTΣ−1x̄i1

...

GTΣ−1x̄i3

 . (127)

Where Q = Σ−1 − Σ−1G
(
I + GTΣ−1G

)−1
GTΣ−1 =

(
Σ + GGT

)−1
. We also denote another

term for use later, L = Σ−1G
(
I + GTΣ−1G

)−1
GTΣ−1. Therefore,

a

[
IDF

0
−D−1C IJiDG

]
=


∑Ji

j=1 FTQx̄ij

GTΣ−1x̄i1

...

GTΣ−1x̄i3


T

, (128)

=
[ ∑Ji

j=1 x̄T
ijQ

TF, x̄T
i1Σ

−1G, . . . , x̄T
i3Σ

−1G
]
. (129)

Now let us work on the central term,
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[ (
A−BD−1C

)−1
0

0 D−1

]
. (130)

First we note that we need to solve BD−1C = BD−1BT . We �rst use the de�nition of BD−1 from
before.

BD−1 =
[

FTΣ−1G
(
I + GTΣ−1G

)−1
, . . . , FTΣ−1G

(
I + GTΣ−1G

)−1
]
. (131)

Then to �nd BD−1BT we get that,

BD−1BT = BD−1

 GTΣ−1F

GTΣ−1F

GTΣ−1F

 , (132)

=
[
Ji

(
FTΣ−1G

(
I + GTΣ−1G

)−1
GTΣ−1F

)]
= BD−1C. (133)

We use this to continue to solve for A−BD−1C,

A−BD−1C = I + JiF
TΣ−1F− Ji

(
FTΣ−1G

(
I + GTΣ−1G

)−1
GTΣ−1F

)
, (134)

A−BD−1C = I + JiF
TΣ−1F− Ji

(
FTLF

)
, (135)

A−BD−1C = I + JiF
T
(
Σ−1F− LF

)
, (136)

A−BD−1C = I + JiF
T
(
Σ−1 − L

)
F, (137)

A−BD−1C = I + JiF
TQF. (138)

Therefore, [ (
A−BD−1C

)−1
0

0 D−1

]
=

[ (
I + JiF

TQF
)−1

0

0 D−1

]
. (139)

Now, let us keep going with this. Work out the right hand side which is,

[ (
A−BD−1C

)−1
0

0 D−1

] [
IDF

−BD−1

0 IJiDF

]
b =

[ (
I + JiF

TQF
)−1

0

0 D−1

]
∑Ji

j=1 FTQx̄ij

GTΣ−1x̄i1

...

GTΣ−1x̄i3

 ,
(140)

=



(
I + JiF

TQF
)−1

0

0


(
I + GTΣ−1G

)−1
0 0

0
. . . 0

0 0
(
I + GTΣ−1G

)−1





∑Ji

j=1 FTQx̄ij

GTΣ−1x̄i1

...

GTΣ−1x̄i3

 ,
(141)

=



(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij(
I + GTΣ−1G

)−1
GTΣ−1x̄i1

...(
I + GTΣ−1G

)−1
GTΣ−1x̄i3

 . (142)

Then we incorporate the left hand side and we get,
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[ ∑Ji

j=1 x̄T
ijQ

TF, x̄T
i1Σ

−1G, . . . , x̄T
i3Σ

−1G
]


(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij(
I + GTΣ−1G

)−1
GTΣ−1x̄i1

...(
I + GTΣ−1G

)−1
GTΣ−1x̄i3

 (143)

=

 Ji∑
j=1

x̄T
ijQ

TF
(
I + JiF

TQF
)−1

Ji∑
j=1

FTQx̄ij +

Ji∑
j=1

x̄T
ijΣ

−1G
(
I + GTΣ−1G

)−1
GTΣ−1x̄ij

 .
(144)

This is the e�cient formula to do full integration log-likelihood scoring for PLDA. It is e�cient for
the following reasons.

1. Computing
(
I + GTΣ−1G

)−1
will be e�cient because it is a matrix of size (DG, DG). In

fact it can be pre-computed and does not depend at all upon the number of samples Ji.

2. Q = Σ−1−Σ−1G
(
I + GTΣ−1G

)−1
GTΣ−1 is e�cient to compute because

(
I + GTΣ−1G

)−1

is e�cient to compute as is GTΣ−1 and Σ−1G because Σ−1 is diagonal. In fact it can be
pre-computed and does not depend at all upon the number of samples Ji.

3. Computing
(
I + JiF

TQF
)−1

is e�cient because it is a matrix of size (DF , DF ) and Q is

e�cient to compute (and can even be pre-computed). Also, the matrix does not increase in
size depending upon the number of samples Ji. However, it does depend upon the number
of samples.

4. FTQx̄ij is e�cient to compute and is only of size (DF , 1), also GTΣ−1x̄ij is e�cient to
compute and is only of size (DG, 1). This also indicates that enrolment should consist of
obtaining these quantities and not on keeping the full feature vector.

4.1.3 Determinant of
(
Σ̃ + ÃÃT

)
How do we easily �nd the determinant of this quite large matrix? First we note that,

det
(
Σ̃ + ÃÃT

)
= det

(
Σ̃
)

det
(
I + ÃT Σ̃

−1
Ã
)
. (145)

This particular trick can be found in wikipedia (http://en.wikipedia.org/wiki/Determinant, Sylvester's

determinant theorem). This works well because Σ̃ is diagonal and so det
(
Σ̃
)
is trivial to compute,

det
(
Σ̃
)

= det (Σ)
Ji

Taking up the second term, we note that ÃT Σ̃
−1

Ã is of size [(DF + JiDG) , (DF + JiDG)]. How-

ever, there should be a structure to ÃT Σ̃
−1

Ã, so let us try to further simplify this,

ÃT Σ̃
−1

Ã =


FT FT FT

GT 0 0
0 GT 0
0 0 GT


 Σ−1 0 0

0 Σ−1 0

0 0 Σ−1

 F G 0 0
F 0 G 0
F 0 0 G

 , (146)

=


FTΣ−1, · · · , FTΣ−1

GTΣ−1 0 0

0
. . . 0

0 0 GTΣ−1


 F G 0 0

F 0 G 0
F 0 0 G

 , (147)
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=


JiF

TΣ−1F, FTΣ−1G, · · · ,FTΣ−1G

GTΣ−1F GTΣ−1G 0 0
... 0

. . . 0

GTΣ−1F 0 0 GTΣ−1G

 , (148)

I + ÃT Σ̃
−1

Ã =


I + JiF

TΣ−1F, FTΣ−1G, · · · , FTΣ−1G

GTΣ−1F I + GTΣ−1G 0 0
... 0

. . . 0

GTΣ−1F 0 0 I + GTΣ−1G

 . (149)

If need be we could further subdivide the problem. By decomposing the determinant of I +

ÃT Σ̃
−1

Ã into a block matrix we can use the identity,

det

(
A B
C D

)
= det (A) det

(
D − CA−1B

)
= det (D) det

(
A−BD−1C

)
. (150)

The terms A, B, C and D are the same as before. So an e�cient way to compute this is to note
that,

det (D) =

 I + GTΣ−1G 0 0

0
. . . 0

0 0 I + GTΣ−1G

 , (151)

= det
(
I + GTΣ−1G

)Ji
. (152)

This is an (DG, DG) matrix whose determinant would be e�cient to compute. Next, we already
have an e�cient expression for the second term and that is,

A−BD−1C = I + JiF
TQF. (153)

Consequently we need to determine,

det
(
I + JiF

TQF
)
. (154)

This is an (DF , DF ) matrix and could be computed e�ciently.
Finally this gives us the following solution.

det
(
Σ̃ + ÃÃT

)
= det

(
Σ̃
)

det
(
I + ÃT Σ̃

−1
Ã
)
, (155)

= [det (Σ)]
Ji
[
det
(
I + GTΣ−1G

)]Ji
[
det
(
I + JiF

TQF
)]
. (156)

Taking the logarithm we would get,

ln
(

det
(
Σ̃ + ÃÃT

))
= ln

(
[det (Σ)]

Ji
[
det
(
I + GTΣ−1G

)]Ji
[
det
(
I + JiF

TQF
)])

, (157)

= ln
(

[det (Σ)]
Ji

)
+ ln

([
det
(
I + GTΣ−1G

)]Ji
)

+ ln
([

det
(
I + JiF

TQF
)])

, (158)

= Ji ln (det (Σ)) + Ji ln
(
det
(
I + GT−1G

))
+ ln

(
det
(
I + JiF

TQF
))

. (159)

Providing a more useful �nal solution this gives us that,
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−1

2
ln
[
det
(
Σ̃ + ÃÃT

)]
= −1

2
ln
(

[det (Σ)]
Ji
[
det
(
I + GTΣ−1G

)]Ji
det
(
I + JiF

TQF
))

,

(160)

= −1

2

[
Ji ln (det (Σ)) + Ji ln

(
det
(
I + GTΣ−1G

))
+ ln

(
det
(
I + JiF

TQF
))]

, (161)

= −Ji
2

ln (det (Σ))− Ji
2

ln
(
det
(
I + GTΣ−1G

))
− 1

2
ln
(

det
(
I + JiF

TQF
))

. (162)

4.1.4 Final Solution

Now using the above solution we can extend it and �nd an e�cient way to calculate the su�cient
statistics. We take this up below. But before we do that, what is the �nal equation to calculate
the log-likelihood?

ln [p (x̃i)] = −JiDx

2
ln (2π)− 1

2
ln
[
det
(
Σ̃ + ÃÃT

)]
− 1

2
(x̃i − µ̃)

T
(
Σ̃ + ÃÃT

)−1

(x̃i − µ̃) ,

(163)

ln [p (x̃i)] = −JiDx

2
ln (2π)− 1

2
ln
[
det
(
Σ̃ + ÃÃT

)]
− 1

2
(x̃i − µ̃)

T
Σ̃

−1
(x̃i − µ̃) +

1

2
(x̃i − µ̃)

T
ΓΓT (x̃i − µ̃) , (164)

ln [p (x̃i)] = −JiDx

2
ln (2π)− 1

2
ln
[
det
(
Σ̃ + ÃÃT

)]
− 1

2
(x̃i − µ̃)

T
Σ̃

−1
(x̃i − µ̃)

+
1

2

Ji∑
j=1

x̄T
ijQ

TF
(
I + JiF

TQF
)−1

Ji∑
j=1

FTQx̄ij +
1

2

Ji∑
j=1

x̄T
ijΣ

−1G
(
I + GTΣ−1G

)−1
GTΣ−1x̄ij .

(165)

We further note the following,

−1

2
ln
[
det
(
Σ̃ + ÃÃT

)]
= −Ji

2
ln (det (Σ))−Ji

2
ln
(
det
(
I + GTΣ−1G

))
−1

2
ln
(

det
(
I + JiF

TQF
))

,

(166)
and

−1

2
(x̃i − µ̃)

T
Σ̃

−1
(x̃i − µ̃) = −1

2

[
x̄T
i1, · · · , x̄T

i3

]  Σ−1 0 0

0
. . . 0

0 0 Σ−1


 x̄i1

...
x̄i3

 , (167)

= −1

2

[
x̄T
i1Σ

−1, · · · , x̄T
i3Σ

−1
]  x̄i1

...
x̄i3

 , (168)

= −1

2

Ji∑
j=1

x̄T
ijΣ

−1x̄ij . (169)
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Thus, this can all be e�ciently computed and even pre-computed for a model. The very �nal
formulation that we have is,

ln [p (x̃i)] = −JiDx

2
ln (2π)− Ji

2
ln (det (Σ))− Ji

2
ln
(
det
(
I + GTΣ−1G

))
− 1

2
ln
(

det
(
I + JiF

TQF
))

+
1

2

Ji∑
j=1

x̄T
ijQ

TF
(
I + JiF

TQF
)−1

Ji∑
j=1

FTQx̄ij

+
1

2

Ji∑
j=1

x̄T
ijΣ

−1G
(
I + GTΣ−1G

)−1
GTΣ−1x̄ij −

1

2

Ji∑
j=1

x̄T
ijΣ

−1x̄ij . (170)

4.2 Su�cient Statistics

The su�cient statistics for the PLDA model are E [ỹi|x̃i,Θ] and E
[
ỹiỹ

T
i |x̃i,Θ

]
. These both in-

volve calculations with the matrix
(
I + ÃT Σ̃

−1
Ã
)−1

. Above, we showed that for the log-likelihood

we can exploit the structure of this matrix to �nd a scalable and exact solution. We will now show
how to do the same thing for the su�cient statistics.

4.2.1 Solving for E [ỹi|x̃i,Θ]

First, we reuse the matrix −BD−1,

−BD−1 = −
[

FTΣ−1G
(
I + GTΣ−1G

)−1
, . . . , FTΣ−1G

(
I + GTΣ−1G

)−1
]
, (171)

and its transpose,

−D−1C = −


(
I + GTΣ−1G

)−1
GTΣ−1F

...(
I + GTΣ−1G

)−1
GTΣ−1F

 . (172)

We then note that,

(
I + ÃT Σ̃

−1
Ã
)−1

ÃT Σ̃
−1

(x̃i − µ̃) =
(
I + ÃT Σ̃

−1
Ã
)−1


∑Ji

j=1 FTΣ−1x̄ij

GTΣ−1x̄i1

GTΣ−1x̄i2

GTΣ−1x̄i3

 , (173)

=

[
IDF

0
−D−1C, IJiDG

] [ (
A−BD−1C

)−1
0

0 D−1

] [
IDF

−BD−1

0 IJiDF

]
b. (174)

We have already solved most of this so we take up the solution halfway through by noting that we
need to �nd,

=

[
IDF

0
−D−1C, IJiDG

]


(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij(
I + GTΣ−1G

)−1
GTΣ−1x̄i1

...(
I + GTΣ−1G

)−1
GTΣ−1x̄i3

 , (175)
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=


IDF

0

−


(
I + GTΣ−1G

)−1
GTΣ−1F

...(
I + GTΣ−1G

)−1
GTΣ−1F

 ,
 IDG

0 0
0 IDG

0
0 0 IDG





(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij(
I + GTΣ−1G

)−1
GTΣ−1x̄i1

...(
I + GTΣ−1G

)−1
GTΣ−1x̄i3

 ,
(176)

=



(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij

−
(
I + GTΣ−1G

)−1
GTΣ−1F

(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij +
(
I + GTΣ−1G

)−1
GTΣ−1x̄i1

...

−
(
I + GTΣ−1G

)−1
GTΣ−1F

(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij +
(
I + GTΣ−1G

)−1
GTΣ−1x̄i3


.

(177)
This provides us with a very interesting solution because we have now separated the factors and
all the matrices we have to invert are small. The �nal solution is obviously,

E [ỹi|x̃i,Θ] =



(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij(
I + GTΣ−1G

)−1
GTΣ−1

[
x̄i1 − F

(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij

]
...(

I + GTΣ−1G
)−1

GTΣ−1

[
x̄i3 − F

(
I + JiF

TQF
)−1∑Ji

j=1 FTQx̄ij

]


.

(178)
This leads to,

E [hi|x̃i,Θ] =
(
I + JiF

TQF
)−1

Ji∑
j=1

FTQx̄ij , (179)

E [wij |x̃i,Θ] =
(
I + GTΣ−1G

)−1
GTΣ−1

x̄ij − F
(
I + JiF

TQF
)−1

Ji∑
j=1

FTQx̄ij

 , (180)

=
(
I + GTΣ−1G

)−1
GTΣ−1 [x̄ij − FE [hi|x̃i,Θ]] . (181)

4.2.2 Solving for E
[
ỹiỹ

T
i |x̃i,Θ

]
To solve this we use the equation,

E
[
ỹiỹ

T
i |x̃i,Θ

]
=
(
I + ÃT Σ̃

−1
Ã
)−1

+ E [ỹi|x̃i,Θ]E [ỹi|x̃i,Θ]
T
. (182)

This implies that we have to store the full matrix
(
I + ÃT Σ̃

−1
Ã
)−1

whose size depends on the

number of samples, however, in fact we use this on a per latent variable basis. That is, we �nd
yij = [hi,wij ] for each j = [1, 2, ..., Ji] and they are treated separately. This is because it is only
used in Equation 71. This suggests that it might be possible to do this e�ciently if we can �nd an

expression for
(
I + ÃT Σ̃

−1
Ã
)−1

. We take this problem up below.

The matrix
(
I + ÃT Σ̃

−1
Ã
)−1

can be de�ned, and calculated e�ciently, by using the matrix

inversion lemma. That is,
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(
A B
C D

)−1

=

( (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
, D−1 +D−1C

(
A−BD−1C

)−1
BD−1

)
,

(183)
and

(
I + ÃT Σ̃

−1
Ã
)

=


I + JiF

TΣ−1F, FTΣ−1G, · · · , FTΣ−1G

GTΣ−1F I + GTΣ−1G 0 0
... 0

. . . 0

GTΣ−1F 0 0 I + GTΣ−1G

 . (184)

We take some de�nitions from the appendix and reproduce them here.(
A−BD−1C

)−1
=
(
IDF

+ JiF
TQF

)−1
, (185)

−D−1C
(
A−BD−1C

)−1
= −


(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1

 , (186)

−
(
A−BD−1C

)−1
BD−1 = −

[
D−1C

(
A−BD−1C

)−1
]T
, (187)

and

D−1 +D−1C
(
A−BD−1C

)−1
BD−1

=


(
IDG

+ GTΣ−1G
)−1

+ RP, RP RP

RP
. . . RP

RP RP
(
IDG

+ GTΣ−1G
)−1

+ RP

 , (188)

where

P = FTΣ−1G
(
IDG

+ GTΣ−1G
)−1

, (189)

and

R =
(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1
. (190)

From the above de�nitions we can now de�ne our matrix
(
I + ÃT Σ̃

−1
Ã
)−1

as being,


(
IDF

+ JiF
TQF

)−1 −
[

RT RT RT
]

−

 R
R
R



(
IDG

+ GTΣ−1G
)−1

+ RP, RP RP

RP
. . . RP

RP RP
(
IDG

+ GTΣ−1G
)−1

+ RP


 .

(191)
Using the above de�nition it is easy to note that if we want to work out E

[
yijy

T
ij |x̃i,Θ

]
we

would use the following subrepresentation of
(
I + ÃT Σ̃

−1
Ã
)−1

,[
Tul Tur

Tll Tlr

]
=

[ (
IDF

+ JiF
TQF

)−1 −RT

−R
(
IDG

+ GTΣ−1G
)−1

+ RP

]
. (192)
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A Rules and Identities for Di�erentiation

In this section we provide some of the useful identities for di�erentiation.

∂xTBx

∂x
= (B + BT )x, (193)

∂aTX−1b

∂X
= −X−TabTX−T , (194)

∂
(
det(Xk)

)
∂X

= k det(Xk)X−T , (195)

∂ ln |det(X)|
∂X

= (X−1)T = (XT )−1, (196)

∂(x−As)TW(x−As)

∂s
= −2ATW(x−As), (197)

∂(x−As)TW(x−As)

∂A
= −2W(x−As)sT , (198)

∂(x=s)TW(x=s)

∂s
= −2W(x=s). (199)

Equations 197 and 198 are valid if the matrix W is symmetric. These identities come from the
matrix cookbook [3].

B Matrix Identities

B.1 Inverse of a Product of Matrices

(AB)
−1

= B−1A−1, (200)

B.2 Block Matrix Inversion

The matrix inversion lemma which is an instance of using the Schur complement can be derived
in several ways. First we present the solution that we are interested in below,

[
A B
C D

]−1

=

[ (
A−BD−1C

)−1 −
(
A−BD−1C

)−1
BD−1

−D−1C
(
A−BD−1C

)−1
, D−1 +D−1C

(
A−BD−1C

)−1
BD−1

]
. (201)

This identity consists of several parts which occur frequently. These parts are,(
A−BD−1C

)−1
, (202)

(
A−BD−1C

)−1
BD−1. (203)

In addition to the above identity there is another useful intermediate form of this inversion
identity. This intermediate form is obtained by using the LDU decomposition (B.4) and taking
the inverse. We then use the identity given in Equation 200 to get,[

A B
C D

]−1

=

([
I, BD−1

0, I

] [
A−BD−1C, 0

0, D

] [
I, 0

D−1C, I

])−1

, (204)

=

[
I, 0

D−1C, I

]−1 [
A−BD−1C, 0

0, D

]−1 [
I, BD−1

0, I

]−1

. (205)
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Tackling each term separately we derive their inverse by solving the equation AA−1 = I, where
A−1 is the unknown. Using this we get the following,[

I, BD−1

0, I

]−1

=

[
I, −BD−1

0, I

]
, (206)

[
A−BD−1C, 0

0, D

]−1

=

[ (
A−BD−1C

)−1
, 0

0, D−1

]
, (207)

and [
I 0

D−1C, I

]−1

=

[
I 0

−D−1C, I

]
. (208)

Finally this yields the intermediate form of,

[
A B
C D

]−1

=

[
I 0

−D−1C, I

] [ (
A−BD−1C

)−1
, 0

0, D−1

] [
I, −BD−1

0, I

]
. (209)

B.3 Block LU Decomposition

For the LU decomposition we begin as follows. For the L part we want,[
A B
C D

] [
I 0
x1 x2

]
=

[
A+Bx1 Bx2
C +Dx1 Dx2

]
, (210)

with C +Dx1 = 0 and Dx2 = I. To achieve this,

Dx1 = −C, (211)

x1 = −D−1C, (212)

and

Dx2 = I, (213)

x2 = D−1. (214)

First, we substitute for x1, this would give us,

[
A B
C D

] [
I, 0

−D−1C, x2

]
=

[
A−BD−1C, Bx2
C −DD−1C, Dx2

]
=

[
A−BD−1C, Bx2

0, Dx2

]
, (215)

Second, we substitute for x2, this would give us,

[
A B
C D

] [
I, 0

−D−1C, D−1

]
=

[
A−BD−1C, BD−1

0, DD−1

]
=

[
A−BD−1C, BD−1

0, I

]
.

(216)
This would �nally give us the LU decomposition.
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B.4 Block LDU Decomposition

For the LDU decomposition, the following identity holds,[
A B
C D

]
=

[
I, BD−1

0, I

] [
A−BD−1C, 0

0, D

] [
I, 0

D−1C, I

]
. (217)

This can be proven by direct computation, noting that,

[
I, BD−1

0, I

] [
A−BD−1C, 0

0, D

] [
I, 0

D−1C, I

]
=

[
I, BD−1

0, I

] [
A−BD−1C, 0

C, D

]
,

(218)

[
I, BD−1

0, I

] [
A−BD−1C, 0

C, D

]
=

[
A−BD−1C +BD−1C, B

C, D

]
=

[
A, B
C, D

]
. (219)

B.5 Square Root of a Matrix

In general, a matrix can have several square root. However, a positive-de�nite matrix has precisely
one positive-de�nite square root. The square root of a matrix can be found by �rst diagonalising it
(when this is possible). The process is described below, but can also be found in more detail here
[http://en.wikipedia.org/wiki/Square_root_of_a_matrix (By diagonalization)]. If we consider a
matrix M that has the following decomposition, D being diagonal,

M = ZDZ−1, (220)

and if we �nd the square root D
1
2 of the diagonal matrix D, which means thatD = D

1
2D

1
2 , then

we can compute a square root M
1
2 of M as follows,

M
1
2 = ZD

1
2Z−1. (221)

B.6 Log Determinant of a Diagonal Matrix

The log determinant of a diagonal matrix is easy to compute. Assuming a diagonal matrix Σ, we
have,

ln |det (Σ) | = ln |
I∏

i=1

σii|. (222)

We can change this product around to be the sum of a log. This gives us,

ln |det (Σ) | =
I∑

i=1

ln |σii|. (223)

B.7 Log Determinant of a Symmetric Real Matrix

A symmetric real matrix is diagonalisable by orthognal matrix, i.e., given a real symmetric matrix
A, QTAQ is diagonal for some orthogonal matrix Q. Furthermore, the log determinant of a
symmetric real matrix can be found using its eigenvalue decomposition. Assuming such a symmetric
real matrix A, its eigenvalue decomposition is given by,

A = QΛQT , (224)

where Λ is the diagonal matrix containing the eigenvalue of A, and Q is orthogonal, which means
that QQT = I. Futhermore,

ln |det(A)| = ln |det(QΛQT )| = ln |det(Λ) det(QQT )| = ln |det(Λ) det(I)| = ln |det(Λ)| (225)

There is a built-in function called slogdet(), shipped with recent versions of SciPy/NumPy, which
performs such a computation.

26



B.8 Inverse of a Block Diagonal Matrix

The inverse of a block diagonal matrix is a block diagonal matrix of the inverse blocks. That does
not make a lot of sense so let us write it down,

A1 0 0 0 0
0 A2 0 0 0
0 0 A3 0 0
...

. . .
. . .

. . .
...

0 0 0 0 An


−1

=


A−1

1 0 0 0 0
0 A−1

2 0 0 0
0 0 A−1

3 0 0
...

. . .
. . .

. . .
...

0 0 0 0 A−1
n

 , (226)

where [A1, A2, A3, . . . , An] are a set of block matrices.

C Intermediate Solutions for PLDA: Gaussian Priors

In this appendix we provide several intermediate solutions and representations that we use for
PLDA when we have Gaussian priors.

C.1 Matrix Inversion:
(
I + ÃT Σ̃

−1
Ã
)−1

The matrix
(
I + ÃT Σ̃

−1
Ã
)−1

is central to many calculations for PLDA with a Gaussian prior.

We provide a series of simpli�cations that can be used. We will tackle all of these in blocks or
parts. To derive simpli�cations using this matrix we use its explicit form given by the block matrix
inversion identity which we covered in the previous section.

For PLDA with a Gaussian prior the block matrix to invert is de�ned by the following,
A =

[
IDF

+ JiF
TΣ−1F

]
, (227)

B =
[

FTΣ−1G, FTΣ−1G, FTΣ−1G
]
, (228)

C =

 GTΣ−1F

GTΣ−1F

GTΣ−1F

 = BT , (229)

D =

 (IDG
+ GTΣ−1G

)
0 0

0
(
IDG

+ GTΣ−1G
)

0

0 0
(
IDG

+ GTΣ−1G
)
 , (230)

D−1 =


(
IDG

+ GTΣ−1G
)−1

0 0

0
(
IDG

+ GTΣ−1G
)−1

0

0 0
(
IDG

+ GTΣ−1G
)−1

 . (231)

BD−1 =
[

FTΣ−1G
(
IDG

+ GTΣ−1G
)−1

, . . . , FTΣ−1G
(
IDG

+ GTΣ−1G
)−1

]
. (232)

BD−1BT = BD−1

 GTΣ−1F

GTΣ−1F

GTΣ−1F

 , (233)

=
[
Ji

(
FTΣ−1G

(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
)]

= BD−1C. (234)
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C.1.1 Finding
(
A−BD−1C

)−1

We now de�ne the inverted matrix
(
A−BD−1C

)−1
as this is used in several places.

(
A−BD−1C

)−1
=
[
IDF

+ JiF
TΣ−1F− Ji

(
FTΣ−1G

(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
)]−1

,

(235)

=
[
IDF

+ Ji

(
FTΣ−1F− FTΣ−1G

(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
)]−1

, (236)

=
[
IDF

+ JiF
T
(
Σ−1 −Σ−1G

(
IDG

+ GTΣ−1G
)−1

GTΣ−1
)

F
]−1

, (237)

=
(
IDF

+ JiF
TQF

)−1
. (238)

Where,

Q = Σ−1 −Σ−1G
(
IDG

+ GTΣ−1G
)−1

GTΣ−1. (239)

C.1.2 Finding −D−1C
(
A−BD−1C

)−1

We now need to �nd the �nal form for the matrix −D−1C
(
A−BD−1C

)−1
. This is given by,

−D−1C
(
A−BD−1C

)−1
= −D−1C

(
IDF

+ JiF
TQF

)−1
, (240)

= −D−1

 GTΣ−1F

GTΣ−1F

GTΣ−1F

(IDF
+ JiF

TQF
)−1

, (241)

= −D−1

 GTΣ−1F
(
IDF

+ JiF
TQF

)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1

 , (242)

= −


(
IDG

+ GTΣ−1G
)−1

. . . 0
...

. . .
...

0 . . .
(
IDG

+ GTΣ−1G
)−1




GTΣ−1F
(
IDF

+ JiF
TQF

)−1

...

GTΣ−1F
(
IDF

+ JiF
TQF

)−1

 ,
(243)

= −


(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1

 . (244)

C.1.3 Finding D−1 +D−1C
(
A−BD−1C

)−1
BD−1

The last term that we are interested in is in the bottom right hand corner which is given by

D−1 +D−1C
(
A−BD−1C

)−1
BD−1. We have the following expression for this matrix,

D−1 +D−1C
(
A−BD−1C

)−1
BD−1 = D−1 −D−1C

(
A−BD−1C

)−1 (−BD−1
)
, (245)

= D−1 +D−1C
(
A−BD−1C

)−1
BD−1, (246)
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= D−1 +


(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1

BD−1, (247)

= D−1 +


(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1


[

FTΣ−1G
(
IDG

+ GTΣ−1G
)−1

, . . . , FTΣ−1G
(
IDG

+ GTΣ−1G
)−1

]
, (248)

We now need to make some substitutions. Let,

P = FTΣ−1G
(
IDG

+ GTΣ−1G
)−1

, (249)

R =
(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1
, (250)

Substituting these back in gives us,

D−1 +D−1C
(
A−BD−1C

)−1
BD−1 = D−1 +

 R
R
R

 [ P P P
]
, (251)

= D−1 +

 RP, RP, RP
RP, RP, RP
RP, RP, RP

 , (252)

=


(
IDG

+ GTΣ−1G
)−1

0 0

0
(
IDG

+ GTΣ−1G
)−1

0

0 0
(
IDG

+ GTΣ−1G
)−1

+

 RP, RP, RP
RP, RP, RP
RP, RP, RP

 ,
(253)

=


(
IDG

+ GTΣ−1G
)−1

+ RP RP RP

RP
(
IDG

+ GTΣ−1G
)−1

+ RP RP

RP RP
(
IDG

+ GTΣ−1G
)−1

+ RP

 .
(254)

We now de�ne each entry by noting that,

RP =
(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1
FTΣ−1G

(
IDG

+ GTΣ−1G
)−1

,
(255)

and

(
IDG

+ GTΣ−1G
)−1

+ RP =(
IDG

+ GTΣ−1G
)−1

+
(
IDG

+ GTΣ−1G
)−1

GTΣ−1F
(
IDF

+ JiF
TQF

)−1
FTΣ−1G

(
IDG

+ GTΣ−1G
)−1

,
(256)

=
(
IDG

+ GTΣ−1G
)−1

[
IDF

+ GTΣ−1F
(
IDF

+ JiF
TQF

)−1
FTΣ−1G

(
IDG

+ GTΣ−1G
)−1
]
.

(257)
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C.2 LDU Decomposition for
(
I + ÃT Σ̃

−1
Ã
)−1

If we consider the LDU decomposition for the matrix inversion we need to de�ne the subparts for
three block matrices. These matrices are given in Equation 209,

[
A B
C D

]−1

=

[
I 0

−D−1C, I

] [ (
A−BD−1C

)−1
, 0

0, D−1

] [
I, −BD−1

0, I

]
. (258)

We now de�ne each of three matrices below,

[
I 0

−D−1C, I

]
=


IDF

, 0(DF ,JiDG)

−


(
IDG

+ GTΣ−1G
)−1

GTΣ−1F(
IDG

+ GTΣ−1G
)−1

GTΣ−1F(
IDG

+ GTΣ−1G
)−1

GTΣ−1F

 IJiDG

 , (259)

[ (
A−BD−1C

)−1
, 0

0, D−1

]
=

(
IDF

+ JiF
TQF

)−1
0(DF ,JiDG)

0(JiDG,DF ),


(
IDG

+ GTΣ−1G
)−1

. . . 0
...

. . .
...

0 . . .
(
IDG

+ GTΣ−1G
)−1


 , 1 (260)

and

[
I, −BD−1

0, I

]
=[

IDF
, −

[
FTΣ−1G

(
IDG

+ GTΣ−1G
)−1

, . . . , FTΣ−1G
(
IDG

+ GTΣ−1G
)−1

]
0(JiDG,DF ), IJiDG

]
.

(261)
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