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ABSTRACT

In this work, we address the problem of tracking an acoustic source based on measured time differences of arrival
(TDOAs). The classical solution to this problem consists in using a detector, which estimates the TDOA for each
microphone pair, and then applying a tracking algorithm, which integrates the “measured” TDOAs in time. Such a
two-stage approach presumes (1) that TDOAs can be estimated reliably; and (2) that the errors in detection behave in
a well-defined fashion. The presence of noise and reverberation, however, causes larger errors in the TDOA estimates
and, thereby, ultimately lowers the tracking performance. We propose to counteract this effect by propagating the
detection uncertainty. That is achieved by sampling from the GCCs and then integrating the resulting TDOAs in
the framework of a Gaussian mixture filter. Experimental results show that the proposed filter has a significantly
lower angular error than a multiple hypothesis particle filter.

Index Terms— Direction of arrival estimation, Microphone Arrays, Monte Carlo methods, Kalman filters

1 Introduction

The problem of time difference of arrival (TDOA) based source localization can be formulated as a two-stage
approach, which consists in first estimating the TDOA that has been introduced at each sensor pair; and then
triangulating the source position by integrating the estimated TDOAs in a consistent fashion. While the former is
typically performed with the generalized cross correlation (GCC) [1], the latter can elegantly be achieved with a
Kalman filter (KF) [2, 3]. Unfortunately, the performance of this approach degrades in the presence of noise and
multi-path effects, especially under room acoustical conditions where early reflections and reverberation corrupt the
GCCs through smearing as well as through the introduction of secondary peaks [4, 5]. This in turn affects the
Kalman filter which assumes the error to be a stationary Gaussian process whereas the TDOA error in a multi-path
environment is rather time-varying and multimodal. In an attempt to mitigate this problem, Vermaak [5] and Gehrig
[6] proposed the use of a multiple hypothesis particle filter and a probabilistic data association filter, respectively.

In this work, we continue along the lines of [5, 6] by propagating the uncertainty in the TDOA estimates to the
tracking stage. This is achieved by interpreting the GCC as a likelihood function of the TDOAs, similar as originally
proposed in [5] and firstly applied in [7] for a steered response power (SRP) [4] approach. Ideally, we would now like
to (1) use all possible TDOA combinations from different sensor pairs, weighted with the respective GCC values; and
then (2) pass these combinations to a multiple hypothesis Gaussian mixture filter (MH-GMF) [8], as observations.
As the Cartesian product of all TDOA combinations is computationally intractable, we proceed by approximating
the combined likelihood function over the TDOAs as an empirical distribution of around 100 sampled observations.
These samples give a compact point mass representation of the GCCs, which can now reasonably be processed with
a MH-GMF. The main innovation is a Monte Carlo scheme which creates the observations by first drawing TDOAs
from the individual GCCs and then combining the TDOAs in a “proximately consistent” fashion. The angular error
of the resulting filter is 69% lower than that of a UKF [2] and up to 55% lower than that of the particle filter approach
from [5]. This result was obtained on a real corpus [9], with a quickly moving human speaker in a meeting room.

This work was supported by the European Union through the Marie-Curie Initial Training Network (ITN) SCALE (Speech Commu-
nication with Adaptive LEarning, FP7 grant agreement number 213850); and by the Federal Republic of Germany, through the Cluster
of Excellence for Multimodal Computing and Interaction (MMCI).



In the remaining part of this paper, we proceed by briefly reviewing the MH-GMF from [8], in Section 2. This
is followed by an explanation of how the MH-GMF can be applied to source localization, in Section 3, as well as a
presentation of experimental results, in Section 4.

2 Multiple Hypothesis Filter

The problem of tracking a time-varying system state xt based on a sequence y1:t = {y1, . . . , yt} of corresponding
observations is usually formulated as a Bayesian estimation problem in which

1. a process model xt = f(xt−1, vt) is used to construct a prior p(xt|y1:t−1) for the state estimation problem at
time t.

2. the joint predictive distribution p(xt, yt|y1:t−1) of state and observation is constructed according to a measure-
ment model yt = h(xt, wt) with measurement noise wt.

3. the posterior distribution p(xt|y1:t) is obtained by conditioning the joint predictive density p(xt, yt|y1:t−1) on
the realized (actually measured) observation Yt = yt.

The first step is accomplished by transforming the joint random variable of the last state Xt−1 and process noise
Vt according to f : Xt = f (Xt−1, Vt). In step 2, the joint distribution of Xt and Yt is constructed by transforming
(Xt,Wt) according to the augmented measurement function h̃ [10]:[

Xt

Yt

]
= h̃

([
Xt

Wt

])
with h̃

([
xt
wt

])
,

[
xt

h(xt, wt)

]
.

Both these transformations can generally be performed with the fundamental transformation law of probability. A
particular simple case, however, occurs if f , h are linear and Vt, Wt are Gaussian. In this case, all the involved random
variables remain Gaussian at all times and the posterior can be obtained as a conditional Gaussian distribution [10].
This analytical closed form solution is generally known as the Kalman filter (KF).

2.1 Handling Multiple Observations

The Kalman filter was designed to receive a single observation yt at time t. In many applied tracking scenarios,
however, there are several (K) potential observations candidates yt =

{
y1t , . . . , y

K
t

}
available, some of which may be

due to the object of interest, some of which may be due to clutter (noise, reverberation). This problem is typically
treated by taking the single most likely observation or by combining multiple observations in a weighted sum, as
it is done in the probabilistic data association filter (PDAF) [6, 11]. In [8], we have presented an alternative to
these approaches. It treats the multiple observation problem by (1) splitting each Kalman filter at time t into K
filters; (2) assigning each of the resulting filters to one of the observations; and then (3) updating them according
to the conditioning step (the third step) from the previous page. In order to integrate the K resulting conditional
distributions p(xt|y1:t−1, ykt ) in one posterior, p(xt|y1:t) can be written as a marginal distribution of p(xt, k|y1:t),
which, when further expanded under use of p(xt, k|y1:t) = p(xt|k, y1:t)p(k|y1:t), gives:

p(xt|y1:t) =

K∑
k=1

p(xt|ykt , y1:t−1)p(k|y1:t)︸ ︷︷ ︸
=p(xt,k|y1:t)

. (1)

This is a Gaussian mixture distribution in which the indiviudal posteriors p(xt|ykt , y1:t−1) = p(xt|k, y1:t) constitute
Gaussian distributions and in which the p(k|y1:t) constitute the corresponding weights. The latter can be obtained
with Bayes rule:

p(k|y1:t) =
p(yt|k, y1:t−1)γkt∑K

k′=1 p(yt|k′, y1:t−1)γk
′
t

(2)

where γkt = p(k|t) denotes the prior observation probability, which accounts for the confidence or certainty that
we put into the k-th observation (similar as motivated in [5]). The p(yt|k, y1:t−1) = p(ykt |y1:t−1) are observation
likelihoods, which can be evaluated by marginalizing the joint predictive distribution p(xt, yt|y1:t−1) from step two
of the Kalman filter with respect to xt.



2.2 Integration into the Gaussian Mixture Filter Framework

After treating the multiple observation problem as proposed above, we have a Gaussian mixture filtering density.
This can be handled by maintaining a bank of Kalman filters which are operating in parallel [8]. As each of the
filters is split into K filters at each time t, the number of Gaussian components in general grows exponentially in
time. Hence, we reduce the number of mixture components after each iteration by merging Gaussians successively
in pairs [8].

3 Application to Source Localization

The arrival of sound waves at an array of microphones introduces time differences between the individual sensor
pairs. This happens in dependence of the angle of arrival – that is, the azimuth θ and elevation φ – as well as the
positions mi, i = 1, . . . ,M of the microphones. Under the far field assumption, in which the distance of the source
from the microphones is neglected, the TDOA at the (i, j)-th sensor pair (mi,mj) can be calculated as:

τi,j (p[θ, φ]) =
p[θ, φ]T (mj −mi)

c
(3)

where c denotes the speed of sound and where p[θ, φ] denotes the direction of arrival[
cos(φ) sin(θ), cos(φ) cos(θ), sin(φ)

]T
. Source localization approaches may use these time differences by

either

(a) constructing a spatial filter (beamformer), which scans all possible source locations, and then taking that
position where the signal energy is maximized [4].

(b) using a two stage approach, which consists in first estimating the TDOAs of all considered microphone pairs
and then inferring the most likely source position [2, 3].

As our approach falls into the second category we proceed by first explaining TDOA estimation, in Section 3.1, and
then elaborate on how source localization can be performed with a Kalman filter (Section 3.2). Section 3.3 finally
presents the proposed multiple observation approach, which integrates these two stages more closely by passing the
uncertainty from the detection (i.e. TDOA estimation) to the tracking stage, through use of the MH-GMF from
Section 2.

Regarding the above two categories, it is worth mentioning that there is a large variety of other approaches,
including multi-channel cross correlation [12], sub-space approaches [12], combinations of the SRP with particle
filters [7], and many more.

Fig. 1. Handling multiple observations with a Kalman filter (KFi).



3.1 GCC-Based TDOA Estimation

The most popular approach to estimate the TDOA between two microphones mi and mj is to use the generalized
cross-correlation (GCC) with PHAT weighting [1]. This approach is based on calculating the correlation of the signals
si(t) and sj(t), which have been received at the microphones, according to:

Ri,j(τ) =
1

2π

∫ 2π

0

Si(w)S∗j (ω)∣∣Si(ω)S∗j (w)
∣∣ejωτdω (4)

where Si(ω) and Sj(ω) denote the short-time Fourier transforms of si(t) and sj(t), respectively, and where Ri,j is
their weighted cross correlation. Subsequently, the most “likely” TDOA is extracted as:

τ̂i,j = argmaxτ Ri,j(τ) (5)

3.2 Acoustic Source Tracking Based on Estimated TDOAs

Once the TDOA has been estimated for a number of N microphone pairs, source localization can be performed with
a Kalman filter, as described in [2, 3]. In order to do this, we use the following process model for tracking the azimuth
θ and elevation φ of the source: [

θt
φt

]
= f

([
θt−1
φt−1

]
, vt

)
=

[
θt−1 + vt,θ
φt−1 + vt,φ

]
(6)

where vt,θ and vt,φ denote zero-mean Gaussian process noise with a variance of σ2
θ and σ2

φ, respectively. Similar to
the approaches taken in [2, 3, 5], we use

yt = h

([
θt
φt

]
,wt

)
=

 τi1,j1 (p[θt, φt]) + wt,1
...

τiN ,jN (p[θt, φt]) + wt,N

 (7)

as a measurement model. In this equation, τin,jn (p[θt, φt]) denotes the predicted TDOA of the n-th microphone pair
(in, jn), with n = 1, . . . , N , whereas wt,n is zero-mean Gaussian measurement noise with a variance of σ2

W . This
measurement model is nonlinear, as the calculation of the predicted TDOAs according to (3) involves evaluating
sines and cosines for the direction of arrival p[θt, φt]. Hence, we use an unscented Kalman filter (UKF), as originally
proposed in [2].

3.3 Applying the Multiple Hypothesis Gaussian Mixture Filter

In the Kalman filtering approach from [2, 3], the most likely TDOA is determined individually for each microphone
pair. These individual TDOA estimates are subsequently combined to form a joint measurement,

yt =
[
τ̂1, . . . , τ̂N

]
with τ̂n = τ̂in,jn .

The error is assumed to follow a Gaussian distribution [3, 2]. This assumption may be true under ideal conditions.
In practice, however, the errors in the GCCs (i.e. measurement errors) can be expected to have a multimodal
distribution, due to reflections, reverberation and background noise [5]. Hence, we here propose to

1. consider a larger number of observation candidates (hypotheses) ykt with associated confidence weights γkt .

2. process these weighted observations with the multiple hypothesis Gaussian mixture filter (MH-GMF) from
Section 2, with the KFs being replaced by UKFs.

The aim of this procedure is to propagate the uncertainty from the detection (TDOA estimation) to the tracking
stage, by choosing the weighted observation candidates in such a fashion that they capture the observation uncertainty
in the GCCs. In order to achieve this, let us first consider the Cartesian product of all possible TDOAs from N
different microphone pairs (min ,mjn):

Y =
{
y1, . . . , yK

}
,

N

×
k=1

{−τmax, . . . , τmax} (8)



with yk =
[
τk1 , . . . , τ

k
N

]
and with τmax denoting the maximum TDOA. Note that the y here do not have a subscript

t as they are theoretical combinations, which are independent of time. Then, interpreting the GCC as a likelihood
function (as done in [7] for the SRP) and further assuming that the errors in the GCCs are statistically independent
[5], the confidence or prior observation likelihood of a particular combination yk can be calculated as the product of
the individual GCC values Rin,jn(τkn):

γkt =

N∏
n=1

R̃in,jn(τkn) with R̃in,jn(τ) ,
Ri,j(τ)∑
τ ′ Ri,j(τ ′)

(9)

where the division by
∑τmax

τ ′=−τmax
Ri,j(τ

′) normalizes the total probability to 1. This gives us the following observation
density:

pmeasured(yt) =

K∑
k=1

γkt δ
(
yt − yk

)
(10)

where the yk and γkt are given by (8) and (9), respectively. As a next step, we could now pass this density to
the multiple hypothesis filter from Section 2. But, considering the fact that the Cartesian product results in K =
(2τ max + 1)

N
different combinations, this approach has to be dismissed as intractable. Hence, we reduce the number

of observations by approximating (10) through sampling.

Sampling from the GCCs: In order to obtain a set {y1t , . . . , yK
′

t } of K ′ << K samples from (10), we first draw
K ′ TDOAs from each normalized GCC R̃in,jn (interpreted as a pdf); and then combine the resulting τkn to K ′

observations ykt =
[
τk1 , . . . , τ

k
N

]
. As a result of sampling, the weights γkt all need to be set to 1/K ′.

Justification for Sampling: Random sampling ensures that we draw more TDOAs from regions of high likelihood
(GCC peaks) and less TDOAs from regions of low likelihood (GCC valleys). So, we statistically focus on combinations
ykt where the observation probability is high (see Monte Carlo methods in general).

Voice Activity Detection and Gating: As there is no point in tracking an inactive speaker, we use a voice
activity detector [13] for suppressing observations during silence frames. As a further precaution against outliers, the
above sampling scheme is extended through the integration of gating [11]. This is achieved by (1) merging all the
predicted observation densities of the Kalman filters to a single Gaussian p(yt|y1:t−1) = N (yt;µ,Σ); (2) defining a
gating area Gn ,

{
τn|(τn − µn)2/Σn,n ≤ T

}
for each sensor pair (in, jn); and then (3) sampling the TDOAs τkn from

the “gated” pdf

R̄in,jn(τn) =
Rin,jn(τn) · IGn(τn)∑τmax

τ ′=−τmax
Rin,jn(τ ′) · IGn(τn)

.

In these equations, T denotes the gating threshold and IGn(τn) denotes the indicator function, which is 1 if τn ∈ Gn
and 0 otherwise.

Proximate Consistency: The above sampling scheme consists of drawing the τkn independently from the GCCs of
different microphone pairs. This gave good results in practice. But it can also create inconsistent observations. By
that we mean observations ykt for which the chosen combination ykt =

[
τk1 , . . . , τ

k
N

]
of TDOAs does not correspond to a

physically possible location. In order to tackle this problem, the filter’s predicted observation likelihood p(ykt |y1:t) can
be used as an approximate measure for consistency. This motivates the idea of combining the independently drawn τkn
in such a fashion that the total observation likelihood is maximized. In this work, we use a greedy approach which (1)
selects from each sampled set {τ1n, . . . , τK

′

n } that τknn with the highest projected observation likelihood p(τknn |y1:t−1);
(2) combines these samples to an observation ykt = [τk11 , . . . , τkNN ]; (3) removes the τknn from the respective sample
sets and (4) repeats this procedure until all samples are combined.

4 Experiments and Results

In order to evaluate the performance of the proposed algorithm, we performed a set of tracking experiments
on the AV16.3 corpus [9]. In this corpus, real human speakers were recorded in a normal meeting room
(approximately 30m2 in size) with a 20cm 8-channel circular microphone array. The real mouth position is
known with an error of ≤ 1.2cm [9]. Table 1 shows the results for two different sequences of this corpus:
the highly non-stationary sequence “seq11-1p-0100”, in which a single speaker is quickly moving in the room;



Sequence “seq11-1p-0100” / quickly moving

tracking root mean square error real-time
algorithm azimuth elevation DOA factor

UKF 5.56◦ 15.98◦ 16.92◦ 0.336
PF 4.80◦ 10.33◦ 11.40◦ 0.374

UKF + Gating 4.17◦ 7.12◦ 8.24◦ 0.329
MH-PF 3.72◦ 5.94◦ 7.00◦ 0.582

MH-GMF 2.85◦ 4.25◦ 5.11◦ 0.664

Sequence “seq11-1p-0100” / quickly moving

tracking root mean square error real-time
algorithm azimuth elevation DOA factor

UKF 5.56◦ 15.98◦ 16.92◦ 0.336
PF 4.80◦ 10.33◦ 11.40◦ 0.374

UKF + Gating 4.17◦ 7.12◦ 8.24◦ 0.329
MH-PF 3.72◦ 5.94◦ 7.00◦ 0.582

MH-GMF 2.85◦ 4.25◦ 5.11◦ 0.664

Sequence “seq02-1p-0000” / more stationary

tracking root mean square error real-time
algorithm azimuth elevation DOA factor

UKF 8.66◦ 19.28◦ 21.14◦ 0.410
PF 7.54◦ 19.57◦ 20.98◦ 0.432

UKF + Gating 2.71◦ 8.14◦ 8.58◦ 0.329
MH-PF 3.99◦ 6.44◦ 7.58◦ 0.680

MH-GMF 2.71◦ 4.07◦ 4.89◦ 0.793

Sequence “seq02-1p-0000” / more stationary

tracking root mean square error real-time
algorithm azimuth elevation DOA factor

UKF 8.66◦ 19.28◦ 21.14◦ 0.410
PF 7.54◦ 19.57◦ 20.98◦ 0.432

UKF + Gating 2.71◦ 8.14◦ 8.58◦ 0.329
MH-PF 3.99◦ 6.44◦ 7.58◦ 0.680

MH-GMF 2.71◦ 4.07◦ 4.89◦ 0.793

Table 1. Average root mean square error (RMSE) in azimuth, elevation and direction of arrival (DOA), with
respect to the center of the array. Results are shown under use of the unscented Kalman filter (UKF) [2], a standard
sequential importance resampling (SIR) particle filter (PF), the UKF with gating [11, 3], the particle filter (MH-PF)
from [5] and the proposed multiple hypothesis Gaussian mixture filter (MH-GMF) from Section 3.3. The last column
shows the real-time factor, i.e. the processing time divided by the duration of the input.

and the relatively stationary sequence “seq02-1p-0000”, in which a speaker is moving through 16 predefined
locations while uttering one sentence at each of the positions. These sequences are 32 and 185 seconds in
length, respectively; and they can be looked at under http://www.glat.info/ma/av16.3/session09/seq11-1p-0100 and
http://www.glat.info/ma/av16.3/session09/seq02-1p-0000. The average distance of the speaker from the array is
1.18 and 1.53 meters, with a minimum of 0.57 and a maximum of 2.40.

The results in Table 1 show that the proposed multiple hypothesis Gaussian mixture filter performs significantly
better than any of the other methods. Its angular error (DOA) is 69% and 79% lower than that of the UKF [2]; 38%
and 43% lower than that of the UKF with Gating [11]; and still 27% and 35% lower than that of the MH-PF from
[5]. Regarding these results, it should be noted that the main problem of the AV16.3 task is to get the elevation right
(the authors of [12] even claim it is too hard to estimate and, hence, do not report any numbers). But, having a closer
look at Table 1, we find that it is exactly here where our method shows its true strength. In order to compare the
above experiments to other results that have been reported in the literature, we also give numbers under the same
conditions (same corpus, sequence and evaluation scheme) which have been used in [12]. Here, we get an RMSE of
1.41◦for the azimuth in comparison to 1.66◦for the SRP [12] – when matching the anomaly rate (AR) of 35.27% from
[12] for reasons of comparability. At a matched AR of 30.43%, we get an RMSE of 1.60◦in comparison to 1.84◦for the
MCCC [12]. Without matching, the AR of the MH-GMF is 15.54%. The discrepancy to Table 1 can be explained by
the fact that the authors of [12] discard DOAs with an error ≥ 5◦ as “anomalies” and exclude them from the RMSE.

Now having a look at the real-time factors in Table 1, we find that all the considered methods run faster than
real-time on a standard Intel i7-2600K CPU clocked at 3.4GHz. The plain UKF is roughly 2 times faster than the
proposed MH-GMF; and that although the latter runs more than 100 UKFs in parallel. This indicates that most of
the computation time is spend in the generalized cross correlation (GCC). In particular note that the GCCs were all
calculated under use of PHAT [1] weighting. The window length was 1024 samples (64ms). GCC interpolation did
not improve the results. The number of used observations (K) was 100 for the MH-GMF. The particle filters were
using 100 particles (a larger number did not improve the results).

5 Conclusions

We have presented a new multiple hypothesis Gaussian mixture filter for acoustic source localization and tracking. It
reduces the problem of erroneous TDOA estimates by propagating the uncertainty of the TDOAs rather than passing



a point estimate. This approach is justified in room acoustical environments where the presence of reverberation
and noise smears and changes the GCC function. We plan to extend the proposed MH-GMF to multiple speaker
tracking.
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