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Abstract

In recent works, the use of phone class-conditional posterior
probabilities (posterior features) directly as features provided
successful results in template-based ASR systems. Moreover, it
has been shown that these features tend to be sparse and orthog-
onal. Given such properties, new types of ASR may be inves-
tigated. In this work, we investigate the use of Self-Organizing
Maps to transform sequences of posterior feature vectors rep-
resenting words into sparse fixed-size patterns. We evaluate
the ability of these patterns to discriminate between words in
the context of template-based ASR using a simple histogram
matching technique (i.e. without the use of dynamic program-
ming). We present experiments on 75-word speaker- and task-
independent isolated word recognition task.

Index Terms: Self-Organizing Maps, posterior features, iso-
lated word recognition, fixed-size word patterns.

1. Introduction

In the context of template-based ASR, it has been shown that
the use of phone class-conditional probabilities (posterior fea-
tures), at the cost of training an estimator, can yield signifi-
cantly better performance than standard acoustic features us-
ing a fewer number of templates [1]. Furthermore, it has been
shown that posterior features have interesting orthogonality and
sparsity properties [2]. These “binary-like” properties of poste-
rior features could be exploited to build new type of ASR sys-
tems that go beyond the strict sequential comparison (like Hid-
den Markov Models or template matching based on Dynamic
Time Warping, DTW). In particular, it would be interesting to
use associative memory techniques together with posterior fea-
tures to understand if such methods can benefit from the prop-
erties of these features.

Associative memory [3] is a recurrent neural network that
can store patterns; once a pattern has been stored, it can be re-
called by giving as input to the network a test pattern that is
a variation or just a fraction of the stored one. However, this
method in general requires that the input is sparse, binary and
of a fixed length. When associative memory is used to store
words (i.e. a sequence of feature vectors), we need to deal with
the fact that different words have different lengths. Thus, there
is a need to introduce a technique to transform the sequence of
feature vectors representing a word into a pattern that satisfies
the requirements for the associative memory input.

In previous works, Self-Organizing Map (SOM) [4] has
been used to produce binary fixed-size patterns representing
words [5, 6, 7]. More specifically, SOM has been used to
project the input sequence of acoustic feature vectors onto a
two-dimensional binary pattern. The training algorithm for

these maps preserves topological information of the input space
that may be useful in discriminating between words. The pat-
terns obtained have been, then, classified using a Multilayer Per-
ceptron (MLP) [5, 6] or Support Vector Machine (SVM) [7].

In this work, we perform a preliminary study to investigate
the use of SOM to transform sequences of posterior feature
vectors corresponding to words into fixed-size patterns (Sec-
tions 2). As a first step, we evaluate these patterns by perform-
ing a simple histogram-based word classification, where no dy-
namic programming is involved (Section 3). More specifically,
we perform template-based isolated word recognition, where
templates are represented by such fixed-size patterns instead
of sequences of feature vectors (as in standard DTW-based ap-
proach). On 75-word speaker- and task-independent isolated
word recognition task, this method yields up to 95.2% accuracy
(Section 4).

2. System Layout

The present work investigates the use of SOM based on poste-
rior features to model word patterns in the context of isolated
word recognition. The framework is shown in Figure 1. The
input sequence of feature vectors (either cepstral-based features
or posterior features) is given as input to a SOM (Section 2.2)
and the map of the Best Matching Units (BMU) is stored in a
matrix of the same size as the feature map (Section 3).

We aim at understanding if the discrimination between
words represented using these patterns can benefit from the
properties of posterior features. In other words, we want to un-
derstand if the pattern obtained using posterior features can be
more easily discriminated compared to the use of standard cep-
stral features. In order to do this we perform, for both kind
of features, template-based isolated word recognition where the
templates are represented using such fixed-size patterns. In the
decision making step, each test pattern is compared to (pre-
viously stored) templates and the word corresponding to the
“closer” template is provided as final output of the recognizer.

In the following sections we describe each element of this
framework.
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Figure 1: Block diagram of the proposed system. A sequence
of feature vectors is first transformed by SOM into a fixed-size
pattern. The pattern is then compared to (previously stored)
templates and the “closer” word is provided as output.




2.1. Posterior features

Traditional cepstral-based features, like Mel-frequency cepstral
coefficients (MFCCs) or Perceptual Linear Predictive (PLP) co-
efficients, are generally susceptible to undesirable variability,
such as speaker or environment. Recently, the use of posterior
features estimated using MLP directly as features was proposed
[1]. They typically represent the phone class-conditional poste-
rior probabilities of each speech frame. The standard cepstral-
based feature vectors are thus transformed into linguistically
meaningful dimensions.

Formally, given a cepstral-based feature vector, x =
[',..., 2], and given a set of possible phone classes ¢ with
k € {1,2,..., K}, the vector y of the posterior probabilities is
given by y = [P(c1]z), ..., Pcx|x)]” = [y, ..., v™]7. As
discrete distribution, the vector y has two properties: a) Vk €
{1,2,...,K},y* €[0,1]and b) S5, v~ = 1.

In our previous work [1], we showed that posterior features
can yield better performance than standard acoustic features. In
particular, the use of distance measures that take into account
the probabilistic nature of posterior features (such as Kullback-
Leibler divergence or dot product) provides significant improve-
ment. Furthermore, it was shown that posterior features could
be efficiently estimated using MLP trained on auxiliary corpus.

2.2. Self-Organizing maps

SOM is a biologically-inspired neural network introduced by
Kohonen in [8]. It aims to find a mapping from the input space
to a D-dimensional map (the feature map) such that, after train-
ing, input vectors that are “similar” will correspond to topolog-
ically close nodes in the feature map. The mapping is defined
finding the Best Matching Unit (BMU), i.e. the node (or unit)
of the map that is the “most similar” to the input vector given a
similarity measure.

Formally, the network consists of M processing nodes ar-
ranged in a D-dimensional map, with D typically equal to 2.
Each processing node receives input from N input nodes that
constitute the N-dimensional input vector z = [z, ...2"]T.
The processing node m in the map are specified by the code-
book vector wy, = [wh,,...,wh]? (an N-dimensional vector
of weights) and their coordinates in the map lattice.

The training process follows an iterative procedure where,
at each iteration ¢, an input vector z; is selected from the train-
ing dataset. Usually, the winner node j in the feature map is

selected as: .
j = arg min{d(z;, wm)}-

where d() denotes the Euclidean distance. The weights of
the network are then updated according to the following rule:

Wi (t+ 1) = wm (¢) + a(t) H(wj, wm, t)[zi — wm(t)]

where a(t) is the learning rate and H is the neighbourhood
function, typically a Gaussian function which specifies the set
of neighbours for each node.

Both cepstral feature vectors, x, or posterior feature vectors,
y, can be used as input vector z in the SOM training (thus hav-
ing N = S or N = K, respectively). Traditionally, Euclidean
distance is well suited for cepstral feature vectors. However,
when posterior features are used, other distance measures that
take into account the probabilistic nature of these features are
better suited than Euclidean distance. Also, posterior features
tend to be sparse and orthogonal [2]. In addition to it, in [2] it
was also shown that dot product is the “optimal” estimation of
the probability that a pair of posterior features vectors belong to
the same class when MLP is used as estimator.

Motivated by these observations, in this work we investi-
gate the use of dot-product SOM [4] for posterior features. In
this formulation, the winner node is selected as,

j = argmax{z] - wm)}

and the weights of the network are updated according to:

w _ wm(t) + a(t)H(wj, wm, t)zi(t)
D) = {0 T ) E (g, won, D)z (0]

where || - || denotes the Euclidean norm of the vector.

3. Word-map Modelling
In this section we describe a method to produce and classify
fixed-size patterns representing words through the use of SOM
and a simple classification framework.

3.1. Word-map generation
When a sequence of feature vectors is given as input, SOM re-
sponds activating one node of the feature map for each vector.
A matrix of the same size as the feature map can be used to keep
trace of these outputs. At the end of this process, the matrix will
contain only 0/1 values: there will be 1’ in the positions cor-
responding to the BMUs of each vector of the sequence. This
matrix, representing a sequence of speech vectors (correspond-
ing to a word), is a binary, sparse and fixed-size pattern.
Figures 2 and 3 show examples of word-maps for two dif-
ferent words obtained using PLP cepstral features and poste-
rior features, respectively. It can be noticed that when posterior
features are used the variability in the maps is lower and the
sparseness is higher compared to the use of cepstral features.
Moreover, in case of posterior features each area of the map can
be considered as locally modelling one phone class.

3.2. Word-map histogram generation and classification
Word-map histogram generation. In this work, we represent
each word-map by a histogram instead of a binary map. The his-
togram is estimated by collecting in the matrix the count of how
many times each node has been a BMU for the input sequence.
Then, each value in the matrix is normalised by the number of
frames in the sequence. Finally, cascading the columns of the
matrix we obtain the histogram. It can be observed that such
a histogram tries to retain somewhat duration information. In
the reminder of this paper, when we refer to a word-map we
actually refer to the corresponding histogram.

Word-map classification. The goal of this study is to investi-
gate the discriminative power of the word-map obtained using
posterior features compared to the use of cepstral features. For
this reason, we prefer to adopt a simple classification framework
rather than training a sophisticated classifier.

In our system, the templates and the test words are transformed
into fixed-size pattern, thus we can classify each test sample
simply searching the “closer” word among a set of stored tem-
plates. More precisely, we first store the word-maps of each
template sample. Then, each test sample is transformed into
a word-map and compared with all the stored templates. The
word corresponding to the closer templates (with respect of a
similarity measure) is provided as output. In standard template-
based approach, words are generally represented as sequences
of feature vectors and DTW algorithm is used to compute the
distance between two samples (i.e. the test sample and each
template). In SOM-based approach, since the word-maps are
represented as histograms (with fixed length), the similarity



.,

F -
oo m B —
(a) Columbus (b) Columbian

Figure 2: Word-maps for a sample of the word Columbus
(kalambas) and the word Columbian (kolambian) using PLP
Seatures with 30x30 SOM. The number of frames for Colum-
bus is 124. The number of frames for Columbian is 122.
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Figure 3:  Word-maps for a sample of the word Columbus
(kalambas) and the word Columbian (kalambian) using Pos-
terior features with 30x30 SOM. The number of frames for
Columbus is 124. The number of frames for Columbian is 122.
Each label indicates the phone associated to the component
with the highest value in the corresponding codebook vector of
the feature map.

measure is defined as the Bhattacharyya distance, thus no dy-
namic programming is involved.

Exploiting the fact that the word-maps have the same size, we
investigated the possibility of storing one average template per
word rather than the individual templates. In other words, given
the set of templates, we compute a single average word-map for
each word. To some extent, this correspond to train a model for
each word, thus providing more robustness compared to the use
of the individual templates. The results showed that the use of
average templates always yielded the best performance. Also,
since only one template per word is stored, this method requires
less storage and computational time for the classification task.
In Section 4.3, we only present the results using the average
template for each word.

3.3. Temporal information

It can be noted that in the word-maps showed in Figures 2 and
3 the temporal information is lost (the order of activation of the
nodes or how many times a node has been activated). How-
ever, such information can help to discriminate, for example,
sequences with the same phones in different order.

As proposed in [5], some temporal information can be in-
cluded by splitting the input sequence into two parts and map-
ping each part into a different matrix. In this case, the sequence
of feature vectors is first split into two equal-size parts. For each
part a word-map is computed, and then the two maps are con-
catenated and considered as a single pattern. It should be noted
that in this case the size of the word-map is double than the case
when the input sequence is not split. We refer to the case when
the sequence is mapped into a single map (i.e. no splitting) as

one-matrix map, and the case when the sequence is split in two
halves as two-matrix map.

4. Experiments
In this section, we present studies where we evaluate how well
the word-maps obtained with posterior features can discrimi-
nate between words compared to those obtained with cepstral
features.

4.1. Database and features

We use the Phonebook speech corpus [9] for speaker- and task-
independent small vocabulary isolated word recognition. Since,
at this stage, we are not working yet at the final framework of
our system, we use for our studies the cross-validation dataset.
It consists of 8 subsets of utterances, each containing 75 words
uttered on average by 11 speakers once. The speakers and the
words present in the training data do not appear in cross vali-
dation set. There are 42 context-independent phones including
silence. For more details about this dataset, the reader may refer
to [10].

In our experiments, we split the cross validation data in two
(roughly) equal-size sets. The first set contains 3618 word sam-
ples considered as templates; the second set contains 3672 sam-
ples used as test data. Again, it should be noted that the speak-
ers present in the template set do not appear in the test data. We
created several scenarios where the number of templates was
varied from 1 up to 7.

In our experiments, we use two different kind of features:

- PLP features: 39-dimensional PLP cepstral features
computed every 10ms of speech using window of 25ms.

- posterior features:  42-dimensional phone class-
conditional posterior probabilities estimated using an
off-the-shelf MLP trained on PLP features along with a
temporal context of 90ms. This estimator was used in
our previous work on posterior features [1].

4.2. SOM training

The SOMs used in our experiments have been trained using the
SOM toolbox [11]. We trained SOMs with different feature
map sizes, more specifically 10x 10, 20x 20, 30x30 and 40 x40
nodes. For all the trained systems, the map had a rectangu-
lar structure and used a Gaussian neighbourhood function. The
codebook vector of each node was initialized with uniformly
distributed random values. For each size, we trained a SOM
using PLP features and a SOM using posterior features. As dis-
cussed in Section 2.2, in case of cepstral features the standard
SOM formulation using Euclidean distance as distance measure
was used. In case of posterior features dot-product SOM was
used.

4.3. Results
In this section we present the results obtained using different
conditions, in particular using one-matrix maps (Figure 4a) and
two-matrix maps (Figure 4b). In both cases, we compared the
use of PLP cepstral features with the use of posterior features
to obtain word-maps. Furthermore, for each kind of feature the
systems have been tested on 7 scenarios (varying the number of
templates per word) and 8 subsets. The performance reported
in the figures for each system is measured as average accuracy
over the 8 subsets.

The results show that posterior features significantly out-
perform PLP features. In previous works [5, 6, 7], cepstral
features were used to obtain binary word-maps through SOM.
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Figure 4: Average recognition accuracy over the 8 subsets for
each of the 7 scenarios (i.e. having different number of tem-
plates) using both PLP and posterior features. For posterior
features the 30x 30 map always perform better than the others,
whereas 20x 20 map is the best performing in case of cepstral
features.

These maps were then classified using classifiers such as MLP
or SVM. In [5], the MLP approach was shown to yield perfor-
mance of 99.5% accuracy on speaker-dependent task with 20-
word vocabulary. In [6], it was shown to yield performance of
99.3% on speaker-independent task with 10-word vocabulary.
In [7], the SVM approach on speaker-dependent 10-word vo-
cabulary task yields up to 100% accuracy.

However, in this work we have a more challenging task with
75-word vocabulary, speaker-independent conditions and only
few templates per word (which may not be enough to train a so-
phisticated classifier). Thus, the poor performance of PLP fea-
tures in our experiments could be attributed to all these factors.
This suggests that for PLP-based maps a sophisticated classifier
may be needed while for posterior features a simple classifier
could be sufficient.

Furthermore, it can be observed that the use of two-matrix
maps yields better results than the corresponding scenario with
one-matrix maps. This suggests that introducing temporal in-
formation improves the discrimination between words. It is in-
teresting to notice that in case of posterior features the use of
two-matrix maps reduces the difference in terms of performance
between the various feature map sizes. Whereas, in case of PLP
features the use of two-matrix maps increases the difference in
the performance.

For a complete comparison, in the Figures 4a and 4b we
also indicate the performance obtained for each scenario when
a standard DTW-based recognition system is used for both PLP
and posterior features. Comparing these two systems, it is evi-
dent that in case of PLP features the gap in the performance be-
tween DTW-based approach and SOM-based approach is wide.
Even using two-matrix maps the distance between the perfor-
mance of the two systems is still highly significant. In contrast,
using posterior features and two-matrix maps the performance
of SOM-based system approaches those of the DTW-based sys-
tem.

S. Conclusions

In this work, we aimed at investigating the use of posterior
features with SOM to produce fixed-size patterns representing
words. We evaluated these patterns in the context of isolated
word recognition. The results show that the maps obtained
using posterior features are more sparse and easy to discrimi-
nate compared to those obtained using PLP features without the
need of dynamic programming. This complements previous ev-
idence [1, 2] that posterior features have interesting properties
that could be exploited in new type of ASR systems. Along this
direction, in our future work we intend to investigate the use of
associative memory techniques which will replace the decision
making step in Figure 1.

Also, in the context of posterior features it may be inter-
esting to investigate the use of other distance measures, such as
Kullback-Leibler divergence, in the formulation of SOM. In ad-
dition, it may be interesting to compare SOM with other clus-
tering methods, such as K-means or Generative Topographic
Mapping [12], to produce the same kind of patterns.
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