IDIAP RESEARCH REPORT

%chlao

RESEARCH INSTITUTE

JOINT SIMILARITY LEARNING FOR
PREDICTING LINKS IN NETWORKS WITH
MULTIPLE-TYPE LINKS

Majid Yazdani Andrei Popescu-Belis

Idiap-RR-29-2015

AUGUST 2015

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T+41 2772177 11 F+4127 72177 12 info@idiap.ch www.idiap.ch

Joint Similarity Learning for Predicting Links
in Networks with Multiple-type Links

Maijid Yazdani
Idiap Research Institute and EPFL
Centre du Parc, Rue Marconi 19
1920 Martigny, Switzerland

majid.yazdani@idiap/epfl.ch

ABSTRACT

This paper addresses the problem of link prediction on large
multi-link networks by proposing two joint similarity learn-
ing architectures on nodes’ attributes. The first model is
a similarity metric that consists of two parts: a general
part, which is shared between all link types, and a specific
part, which learns the similarity for each link type specif-
ically. The second model consists of two layers: the first
one, which is shared between all link types, embeds the ob-
jects of the network into a new space, while the second one
learns the similarity between objects for each link type in
this new space. The similarity metrics are optimized using
a large-margin optimization criterion in which connected ob-
jects should be closer than non-connected ones by a certain
margin. A stochastic training algorithm is proposed, which
makes the training applicable to large networks with high-
dimensional feature spaces. The models are tested on link
prediction for two data sets with two types of links each:
TED talks and Amazon products. The experiments show
that jointly modeling of the links given our frameworks im-
prove link prediction performance significantly for each link
type. The improvement is particularly higher when there
are fewer links available from one link type in the network.
Moreover, we show that transfer learning from one link type
to another one is possible using the above frameworks.

1. INTRODUCTION

The problem of new link prediction in networks is particu-
larly relevant to networks that are collaboratively built over
time, whether they are document-based (such as Wikipedia,
or databases of products or multimedia records) or person-
based (social networks such as Facebook or LinkedIn) or
both. In such situations, some nodes become connected over
time due to similarities or affinities that are noticed and val-
idated by users. Predicting such connections is a function-
ality which is valuable to speed up network construction,
for instance by presenting these connections as recommen-
dations to users. This is particularly challenging when links
are of multiple types. Moreover, accurate modeling of the

Andrei Popescu-Belis
Idiap Research Institute
Centre du Parc, Rue Marconi 19
1920 Martigny, Switzerland

andrei.popescu-belis@idiap.ch

connections in the network can assist prediction of the phe-
nomena like evolution of the network or even marketing via
the network.

We introduce here two joint link prediction models for net-
works with multiple link types. Link prediction is formu-
lated as a learning to rank problem: given a query node,
all other nodes must be sorted according to a score that is
related to the likelihood of creating a link between them and
the query node. The proposed link prediction models in this
paper learn a similarity metric according to which connected
nodes are closer than non-connected nodes.

Two different joint models are proposed. The shared simi-
larity model consists of two parts: the general part, which
is a shared similarity function between all types of links,
and the specific part, which learns similarity specifically for
each type of links. The two-layer similarity model consists
of two layers: in the first layer, objects in the network are
embedded into a new space, while the second layer learns
the similarity between objects for each link type specifically
in this new space. The first layer is shared between all link
types and can also be considered as a representation of ob-
jects which is common across all link types.

The training algorithm is applicable to large networks with
high-dimensional features and was tested on two data sets:
one built from TED talks (1150 items) and one built from
Amazon products (10,000 items), both with two types of
links. The results show that our joint modeling and training
frameworks improve link prediction for each link type, in
comparison to several state-of-the-art models.

This paper is organized as follows. In Section 2 we re-
view previous related work and highlight the main differ-
ences with our proposal. In Section 3 we introduce the joint
models for multiple-type links, first by defining the shared
similarity model, and then by defining the two-layer simi-
larity model. We then propose a large-margin method for
training the similarity functions (3.4). We also show how to
generalize the proposed frameworks for the related problems
including jointly model link prediction and classification in
a network (3.5). The experiments described in Section 4
on the above-mentioned networks demonstrate the predic-
tive power of the joint model, in comparison with separate
models, as well as with SVM Rank and cosine similarity.
Moreover, transfer from one link type to another one enables
prediction when no training data from one type is available.

2. RELATED WORK

Related work on this topic falls into two main categories:
learning to rank and link prediction which both have been
studied in the recent past. The main advantage of our model
over previous ones is that we model large networks with
multiple-type links, also called multi-link networks, by shar-
ing information between different link types.

2.1 Link Prediction

Authors in [13] discuss the link prediction task as a ranking
task over pairs of nodes, based on link structure similarity
metrics, and demonstrate the difficulty of the link predic-
tion task. They show in particular that the Adamic and
Adar [1] similarity measure, which makes use of common
neighborhoods, yields high performance in comparison to
other link-based approaches for link prediction. A short-
coming of this work is that all studied approaches are based
on the link structure and, therefore, attribute information
— for nodes and for edges — is not exploited. This is more
problematic when the query node does not have many known
links in the network. Authors in [2] proposed a supervised
learning method for ranking the objects in a graph. Their
method uses a random walk model and learns the transition
probabilities from the ordered pairs of objects in the train-
ing data. A transition probability is learned for each link,
which makes overfitting likely and is not effective for large-
scale graphs with many edges, given that there are many
parameters to learn. Supervised random walk [3] overcomes
one of the main shortcomings of the link structure based
similarity metrics by using attribute information to make
predictions. A weight function for each edge is trained over
nodes’ attributes in a way that the probability resulting from
random walk for the connected nodes be higher than non-
connected nodes. This approach, along with the other ap-
proaches above, is not yet applicable when the query object
is not part of the network (i.e. it does not have any link) as
it is supervised generalization of random walk model.

Authors in [14] are pursuing a generative Bayesian nonpara-
metric approach to simultaneously infer the number of la-
tent features and to learn which entities have each feature.
The method is difficult to train, and inference for large
scale graphs is time-consuming. Relational Topic Models
(RTM) [8] consider both the documents and the links be-
tween them. For each pair of documents, an RTM models
their link as a binary random variable that is conditioned
on their contents. The inference and learning algorithms are
based on variational methods. The original RTM algorithm
is not applicable to large graphs, although it is possible to
consider an online algorithm for training the model.

In contrast to the above-mentioned methods, the main ad-
vantage of our proposed models is jointly modeling of the
links in the multi-link networks, which is not clear how to
address in those frameworks. Furthermore, learning sim-
ilarity over query and target nodes’ attributes makes our
models effective in comparison to random walk based meth-
ods when the query object does not have many known links
in the network .

2.2 Distance Metric Learning for
Learning to Rank

Perception Ranking [9] is an online algorithm for ordinal
classification which can be employed for ranking as a point-
wise method. Its main idea is to learn several parallel per-
ceptron models which make classification between the neigh-
boring grades. The main difference of this algorithm with
our ranker is that we use a pairwise method, which is shown
to be more effective than pointwise methods.

IR SVM [7] is a pairwise method which formulates the rank-
ing problem as an SVM classification , and adapts this to
the document retrieval problem. The feature selection that
transforms the ranking problem into a classification one —
building features for classification from the query and each
target document — is not effective on all data sets. This
is especially problematic for a task such as link prediction,
where we have many non-linked examples. Similarly Svm-
Rank [11] is a pairwise ranking algorithm which transforms
the pairwise ranking to svm binary classification. For Svm-
Rank, batch optimization on large graphs is not possible
considering the number of non-connected pairs.

Authors in [4] perform supervised training of a nonlinear
model over vectors of words, to preserve a pairwise ranking
between documents. Their approach scales well to large data
sets with a large number of words. Similarly, authors in [16]
train a distance metric by stochastic gradient descent over
a hinge loss function that preserves the network structure.
We will follow the same general line to build our ranking
method based on similarity learning, by keeping in mind
that the framework should be applicable to large graphs. In
addition, we allow different link-type rankers sharing infor-
mation among them.

3. JOINT SIMILARITY FOR MULTIPLE-
TYPE LINK PREDICTION

Link prediction can be viewed as a ranking problem in which
all objects in the network are ranked based on their similar-
ity score with respect to a query object. A “better” ranking
is one that places objects that are actually linked to the
query object at the top of the ranked list. The score be-
tween the two objects in the network can be considered as
a similarity metric (or, conversely, a distance one), and link
prediction can be interpreted as a task in which linked ob-
jects should be closer to the query object, in comparison to
the non-linked objects.

We model the link structure of a network by learning a sim-
ilarity measure which, for each object in the network, as-
signs larger scores to the objects that are linked to it than
to those that are not. To model N different types of links,
we train N different similarity functions, so that we model
the link structure of each type separately. However, in many
real-world networks, links of a certain type are not entirely
independent from links of other types. To consider this de-
pendency, each link-type similarity model shares informa-
tion with the other models. We will show in Section 4 that
the joint modeling increases generalization abilities, hence
link prediction performance, especially when there are few
links from one specific link type.

3.1 Similarity Learning Framework

In this section, we build a similarity based ranker to model
links in the network. The ranker returns a score for a given
query object ¢ and a target object ¢t by using a similarity
function over their features. If f;(q,t) represents the ranker
for link type i, and z, is the feature vector of an object o
from the network, then we have:

fi(g,t) = similarity,(zq, x+¢)

The similarity, function computes a similarity for link type
i between objects ¢ and t using their attributes, following
a classical approach for learning to rank methods. Many
similarity functions (or, equivalently, distance metrics) with
various learning abilities have been studied in the literature,
for instance RankNet [6], polynomial semantic indexing [5]
or structure preserving metric learning [16] (see also Sec-
tion 2 above). In this study, we use inspiration from these
previous studies and define the similarity function as follows:

similarity, (zq, v1) = xq X M; X T}

where matrix M, is a Z X Z matrix, Z being the size of
the features, and = is the transpose of z;. The similarity;
function is not necessarily symmetric, which makes it com-
patible with networks with directed links. In practice, to
make training and storage possible, particularly when deal-
ing with high-dimensional data such as text in a word vector
representation, a low-rank factorization of M is considered
for training [5, 16]. Each ranker in the above formulation
is ignorant about the other link types, therefore we call this
model separate model and it is used in the experiments sec-
tion as a baseline. We introduce two models by extending
this approach to share information among rankers.

3.2 Shared Similarity Model

To introduce joint modeling among rankers, and share infor-
mation between them, we assume that each matrix M; con-
sists of two parts: a general matrix noted G, which is shared
between all rankers, and a specific matrix noted S;, which is
learned separately for each link type i. Hence, M; = G+ S;.
The similarity function can thus be formulated as:

similarity; (zq, x¢) = g X (G+ S;) X ;=

/ /
= x4 xGxaxy + Tqg X Si X x4

General Similarity Specific similarity for the type ¢

The similarity function thus in its turn consists of two parts:
first, a general similarity measure which is shared (and iden-
tical) across link types and second, the specific similarity
measure which is adapted to each link type. Matrices G
and S; s are the parameters of the similarity function which
are going to be trained.

Matrix G would represent the correlation between link types.
To better explain the role of G let us consider a network with
two link types and extreme hypothetical cases: when the two
link types are independent, and when they are identical. If
the two link types are independent, then the matrix G will
be the 0 matrix and the model would be equivalent to the
separate model introduced in the previous section. On the
other hand, if the two link types are identical, then matrix
G is identical to the link specific matrices S;. For the other
situations between these two extreme cases, matrix G would
be trained to represent the correlation between the two link

types.

However, this model is able to handle dependencies between
the link types only if they are positively correlated. In cases
where two link types in the network are negatively corre-
lated, this correlation would not be modeled by G since
having a link of the first type between two objects prevents
us from having the other type of link between them and G
would be simply 0. For example consider a network consist-
ing of researchers and two types of collaboration between
them: first intra-institute collaboration and second, inter-
institute collaboration. If there is a link of the first type
between two researchers in the network, then the second
link type can not exist between them. This model can not
represent this negative correlation between link types and is
equivalent to the separate model on this network.

The above-mentioned problem is the main drawback of our
first model. In the following section we introduce a two-layer
similarity model to overcomes this problem.

3.3 Two-layer Similarity

The two-layer similarity model consists of two layers: the
first layer embeds objects in the network to a new space, and
then the similarity for each link type is learned specifically
in this new space. The first layer which embeds the objects
to a new space is the same for all link types. The first layer
can be viewed as a shared representation for objects among
all link types. Figure 1 shows schematically the two-layer
similarity model.

1
M KXK

i
Xi M gxx

% g
= 3
- -
-] ™~
- -
- =3
- -
’6’ =3
= 3
- -
= =3
s s
s s
= e

N
M KXK

Figure 1: A schematic representation of the two-
layer similarity model. Matrix A embeds the objects
in the network to a K-dimensional space. Matrix
M* computes the similarity between objects for link

type :.

The matrix Azxx transforms the objects to a new space
with dimension K where Z is the dimension of objects’ fea-
tures and matrix M; is the matrix representing the similarity
for the link type ¢ in the new space. The similarity function
can thus be formulated as:

($t X A),
——

similarity;(xq, x¢) = (zq X A)

N——

Shared representation

X (M;) X

Matrices A and M; are the parameters of the model which
are going to be trained. This two-layer model overcomes
the main problem of the previous model, since it can also
model negatively correlated link types through the shared

Shared representation

representation. To explain intuitively how this can be done
assume again the hypothetical network of researchers and
the two types of relations between them. If we assume there
are two institutes in our network, the first layer could poten-
tially embed objects into the two clusters in the latent space
corresponding to the two institutes. Then the similarity
matrices M; in the latent spaces would learn that first type
similarity is higher between the objects in the same cluster,
and second type similarity between objects in different clus-
ters. If there exist a first link type between two researchers,
then they are embedded in the same cluster and the score
of the second link type drops, therefore the shared represen-
tation enables joint modeling of even negatively correlated
link types.

3.4 Training the Joint Models

We can formulate the learning criterion for a specific link
type as a pairwise ranking problem, in which given an object,
other objects that are linked in the training data should be
ranked higher than non-linked ones. Below, we formalize the
learning-to-rank problem and then place the joint rankers
introduced in the previous section in this framework.

We make use of a loss function noted L(-,-) to evaluate the
prediction result of ranking upon training. The feature vec-
tors are ranked according to their scores, and the result-
ing ranking is evaluated against the corresponding expected
links (known in the training set). If the feature vectors of
linked objects are ranked higher, then the loss will be small,
otherwise it will be large.

We define here a pairwise hinge loss function L, which at-
tempts to preserve the pairwise order between objects in the
training set by maintaining a margin between the scores of
each pair [4]. For instance, in a friendship social network, the
hinge function (computed only using feature vectors) aims
to preserve the order between the scores of the friend pairs
and the non-friend pairs, scoring all friends higher than all
non-friend. Similarly, in the case of hyperlinked documents,
the score of the linked documents pairs should be higher,
with a certain margin, than the score of the non-linked doc-
uments.

The goal of training is to approximate the parameters of a
similarity function for rankers which minimizes the pairwise
hinge loss function L over the network G with the various
types of links that are given in the training set. Training is
performed over the graph G = (V, F1 U E2 U ... En), where
V is the set of vertices (objects) and E; is the set of edges
(links) of type 1.

3.4.1 Training the Shared Similarity Model

The empirical risk minimization by using a pairwise hinge
loss function over the training set is as follows. We start
from training sets for each link type i:

Train; = {(a, b, c)|(a,b) € E; A (a,c) ¢ Es}

The goal is to minimize the loss function L as follows:

) A A
Min L= Z||G|fF + 52; 15l % +

Zi Z(a,b,c)e Train; max(o’ d— f2 (CL, b) + fi(av C))
(22, [Traing|)

The first two terms, the Frobenius norms of matrices G and
S;, enforce a regularization on the parameters and prevent
the arbitrary increase of the parameters in the optimization.
The third term of the loss function maintains the order, with
a margin d, between the scores of the connected nodes and
the unconnected nodes for link type i.

If we consider the definition of f; from the previous section
and the decomposition of M; into G and S;, then the sub-
gradients of the loss function with respect to G and to S;
are the following;:

220 2y (ab)— fiane)<d Ta X (Tc — Tp)
>, | Traing|
2 fi(ab)—fi(ae)<d Ta X (Te — Tp)
| Train;|

VL(G) = A\G +

If the training graph G is large, then minimizing the above
summation is not tractable. To overcome this problem we
make use of a stochastic gradient descent algorithm in which
at each iteration we select N samples (a, b, ¢), one randomly
from each Train; set, and perform gradient descent on each
of them. As we are interested in modeling large scale graphs,
we will always make use of this stochastic gradient descent
algorithm in the rest of the paper. The subgradients of the
approximate loss function at iteration ¢ are the following,
for an iteration over one of the samples (a,b,c) € Train;:

, .
_ t l’a(fL‘c—Z‘b) if fi(a7b)_fi(aac) <d
VL(G) = AG"+{ 0 otherwise
, .
N t xa(mcixb) if fi(aab)ifi(avc) <d
VLi(Si) = A8+ { 0 otherwise

The update of the parameters is done consequently as fol-
lows:

G =G — 7 Li(G)
St = g;f — e 7 L+ (S)

where 7; is the learning rate at the iteration t.

Analysis of the training algorithm. The first obser-
vation is that the time complexity of each iteration of the
stochastic gradient algorithm is O(N%) where Nz is the av-
erage of the number of non-zero features of the x,, x, and
Zc. In the textual domain, the number of non-zero features
Nz is usually a couple of hundreds, which is much smaller
than the dimension of a word vector representation of the
data, which is usually several hundred thousands (number
of all possible words).

We can follow the same approach that is used to prove the
convergence of the PEGASOS algorithm in [15] in order to
prove the convergence of the training algorithm presented

above. In fact, we can show that the above algorithm is a
special case of PEGASOS. Prove of the convergence is in
Appendix .1.

Low-Rank Factorization. The dimension of G and S; is
Z? where Z is the number of features of the data points.
In practice, to make training and storage possible, particu-
larly when we are dealing with high dimension data such as
text, a low-rank factorization of G and S; should be consid-
ered. In this case we assume that G = AA’ and S; = S;15i,
so that A, S;1 and S;2 are matrices from Z to a lower di-
mension. Given that M, is not necessarily symmetric we
decompose the specific part S; to two lower-rank matrices.
Also we change the regularization on G and S; with the reg-
ularization on A, S;1 and S;2 in the objective function. The
objective function consisting of the low-rank matrices is not
convex any more, but in practice it has been shown that the
low-rank factorization performs well [5]. The subgradients
are as following for a given sample (a, b, c) € Train;:

VLi(A) = A" +

(Tl (ze — 2p) A" + (e — 1) T A
0

VLi(Sin) = ASH +

{ (e — x3)St if fi(a,b) — fi(a,c) < d
0 otherwise

otherwise

v Li(Si2) = A\S}, +

{ (xC - xb)lmﬂsfl if fi(a7 b) - fi(av C) <d
0 otherwise

3.4.2 Training two-layer Similarity Model

Similarly to the previous section, for the two-layer model
the empirical risk minimization using a pairwise hinge loss
function over the training set is as follows. We start from
training sets for each link type i:

Train; = {(a, b, c)|(a,b) € E; A\ (a,c) ¢ E;}

The goal is to minimize the loss function L as follows:

. A A
Min L= G4l +5 536 +

Zi z(a,b,c)e Train; maz((), d— f1 (CL, b) + fi(a7 C))
(3=, | Train;|)

Again, the first two terms enforce a regularization on the
parameters and prevent the arbitrary increase of the pa-
rameters in the optimization. If we consider the definition
of f; then the subgradients of the loss function with respect
to A and to M; are the following:

if fi(a,b) — fi(a,¢) <

TL(A) = A\ +

(za((ze = 20)A) + (e — 1) (20 A)) X M;

i fi(a,b)=fi(a,c)<d

> | Traing)

> (Ta X A) ((xc — x) X A)

fila,b)—fi(a,c)<d

VL(MZ) = \M,; +

| Train;|

If the training graph G is large we make use of a stochastic
gradient descent algorithm in which at each iteration we
select N samples (a,b,c), one randomly from each Train;
set, and perform gradient descent on each of them. The
subgradients of the approximate loss function at iteration ¢
are the following, for an iteration over one of the samples
(a,b,c) € Train;:

marg = fi(a,b) — fi(a,c)
VLi(A) = AA" +
((o ((ze — 2p) A") + (Tc — 21) (T2 A")) x M
0
L (M) = AM;* +
((za x A ((ze — xp) x A
0

The update of the parameters is done consequently as fol-
lows:

if marg < d
otherwise

AT =AY — 7 Lie(A)
M = M;' — 7 Lo (M)

where 7; is the learning rate at the iteration t.

Analysis of the training algorithm. The time complex-
ity of each iteration of the stochastic gradient algorithm is
O(K? + Nz x K) where Nz is the average of the number
of non-zero features of the z,, xp and xz. and K is the size
of latent space. The loss function is not convex in the two-
layer similarity model and, therefore, the initialization of the
parameter can have a significant effect on the performance.

3.5 Generalization for Related Problems

In this section we show that the above architectures for joint
link prediction on multi-networks can be extended for the
similar problems.

3.5.1 Joint Classification and Link Prediction

We show that a joint classification and link prediction task
over a network can be reformulated as a multi-link prediction
task, thus enhancing the generality of our proposal. Indeed,
in most real-world networks, objects are labeled with a cer-
tain finite label set, and these labels are not independent
from the link structure. For example, in a papers/citations
network, it is more likely that machine learning papers cite
other machine learning papers rather than biology papers.
Conversely, a paper which cites many machine learning pa-
pers is more likely to be a machine learning paper rather
than a biology paper.

if marg < d
otherwise

We introduce here a new link type based on the similarity of
objects’ labels: every two objects in the network that have
the same label will be connected by such a link. There-
fore, the classification and the link prediction tasks can be
casted to a multi-type link prediction problem, in which one
of the link types is based on the similarity of objects’ la-
bels. Consequently, the goal of learning for this task is to
find similarity functions for which objects with the same la-
bels are closer than the other objects, and (as above) linked
objects are closer than non-linked objects. For the classi-
fication task, i.e. to determine the label of a yet unlabeled
object, we consider the majority label of the closest objects
to that object.

The empirical risk minimization for joint classification and
link prediction by using a pairwise hinge loss function over
the training set is as follows. To simplify notations, we as-
sume that there is only one link type ¢ in the network, and
we note C(o0) the label or class of an object o. First, the
training sets are defined as:

Train;, = {(a,b,c)|(a,b) € E,(a,c) ¢ E}
Trainc = {(a,b,c)|C(b) =C(a),C(c) # C(a)}

Then, training is defined as minimizing the loss function L :

Min L = X X Regularization on the parameters +
Z(a,b,c)e Train U Trainc max(o’ d— f’ (CL, b) + fi(a’ C))

(| Trainc| + | Trainc|)

Both models introduced above can be used as the similar-
ity model in the above formulation. In the shared similarity
model case we consider a general similarity function which is
shared between classification and link prediction tasks, along
with specific similarity functions for each task separately. In
the two-layer model the first layer is the shared representa-
tion between classification and link prediction task, and the
second layer shows the specific similarity in the embedded
space. The training algorithm is identical to the case of
link prediction on the multi-type links networks, which was
discussed above.

3.5.2 Networks without attributes

Throughout this paper, we assume that the similarity func-
tions are learned over node attributes. However, in networks
where nodes do not have attributes or attributes are not pre-
dictive , the proposed framework can still be applied. For
each node, a feature vector is defined of the size of all nodes
in the graph, in which only the element corresponding to the
node has value 1 and the others are set to 0.

In this case, the low rank factorization of the similarity ma-
trix in shared similarity model, or the first layer in the two-
layer model is similar to the existing methods for network
matrix decomposition, such as singular value decomposi-
tion or non-negative matrix factorization, except that our
method enforces the large margin criterion and is trained
jointly. The empirical exploration of this case is the topic of
future work.

3.5.3 Inter-Network transfer learning

We show in this paper that we can transfer the learning from
one link type to another link type through the shared infor-
mation part. Transferring learning from one network to an-
other one is another interesting and related problem. Con-
sidering two different online social networks, one based on
friendship (such as Facebook) and the second one based on
professional relations (such LinkedIn), the model described
here could be applied to share the learning between the two
networks as long as it is possible to build identical feature
vectors for the nodes in both networks. This problem also
deserves further investigations.

4. EXPERIMENTAL RESULTS

Many real-world networks have multiple types of links. For
example, in online social networks, people have different
types of relationships and interactions. In many such net-
works, especially those that are collaboratively built, some
objects often have fewer links from one link type. In this sec-
tion, we consider two networks: TED videos and Amazon
products. We show that our joint link prediction algorithm
improves the link prediction performance, especially when
there are fewer links from one link type.

4.1 Network of TED Talks

TED is an online audio-visual broadcasting platform for the
TED talks. ' We consider a network consisting of nearly
1,200 TED talks, with metadata and transcripts, linked by
two types of links. The first type relate two talks based on
the similarity of contents. We derive such content links from
the suggestions of similar talks made by experts from TED.
The second type of links connects two videos if they co-
exist in many users favorite lists. Since less popular talks do
not appear in many people’s favorite lists, there are fewer
links based on users favorite lists for such talks, and pre-
sumably the links for these talks are not very reliable. Note
that recognizing automatically that two talks have similar
contents is difficult, but inference about the content can be
done more easily when two talks co-occur in many people’s
favorite lists.

More specifically, the second type of links based on users’
favorite lists is built as follows. Each talk is represented by
a vector in the space of all users, and an element of the vector
is 1 if the talk is in the favorite list of the corresponding user,
and 0 otherwise. Given one specific talk, the rest of the
talks can be sorted according to cosine similarity between
their vectors and the initial talk in the space of users. If
two talks co-exist in many users’ favorites list, the cosine
similarity between their vectors in the space of users is high.
Therefore, to build the second type of links, we connect each
talk with the top k talks based on cosine similarity between
their vectors in the users space. We will call this type of
links “co-liked”.

For example, the TED talk “Lucien Engelen: Crowdsource
your health” has two content links (two recommendations
of topically-related talks from TED experts): “Jacqueline
Novogratz on patient capitalism” and “Nicholas Christakis:

!This data set has been collected by Nikolaos Pappas from
Idiap, who has kindly shared it for the work presented here.
See http://www.ted.com for the original website.

How social networks predict epidemics”. The three highest
score co-liked talks are: “Marco Tempest: Augmented re-
ality, techno-magic”, “Aparna Rao: High-tech art (with a
sense of humor)” and “Sheikha Al Mayassa: Globalizing the
local, localizing the global”. We can observe that the re-
lated videos are about the same topic, but co-liked videos
are much less predictable from the content.

We build a feature vector for each talk from three sources:
(1) speaker name, (2) title of the talk, and (3) talk descrip-
tion as provided by TED (a short text). Each feature vector
has a dimension of 4,771 (based on a filtered vocabulary of
4,771 words), but vectors are very sparse, on average with
only 35 non-zero coefficients.

4.2 Network of Amazon Products

We build a network from a subset of Amazon products (de-
scribed in [12]) with two types of links between them. The
first type comes directly from the Amazon website: for each
product, some of the co-purchased products are shown by
Amazon. Each product in the network is connected to the
products which are claimed to be mostly co-purchased by the
Amazon website. We call this type of links “co-purchased”.

Each product is assigned to at least one category, often to
more. Categories form a hierarchy, from more general ones
to the most detailed ones. We represent each product as a
vector in the space of all categories: if the product is assigned
to a category, the corresponding element is 1, otherwise it is
0. Cosine similarity between category vectors of two prod-
ucts is high if they are mostly in the same categories from
the hierarchy. To build this type of the links, we connect
each product to the £ most similar products using cosine
similarity between the category vectors of the products. We
call this type of links “category links”.

For example, consider the book “Writers in the Schools: A
Guide to Teaching Creative Writing in the Classroom”. This
book is co-purchased with the following other books: “The
Magic Pencil: Teaching Children Creative Writing [...]” and
“Journal Jumpstarts: Quick Topics and Tips for Journal
Writing”. Two category links are “Reading, Writing, and
Learning in ESL (2nd Edition)” and “Time to Know Them:
A Longitudinal Study of Writing and Learning at the College
Level”.

Features of each product in the network come from the title
and description of the product. We use a dictionary of 3,765
words and sampled 10,000 products to build our network of
products. So, our second network is about eight times larger
than the first one.

4.3 Prediction Performance

To study the link prediction ability of our models experi-
mentally, we split the objects of each network into disjoint
training and test sets. The training is performed on the
objects in the training set and the links between them, ex-
cluding links from these objects to the test set. To evaluate
prediction performance, for each object in the test set, all
the objects in the entire data set (training plus test sets)
are ranked by the ranker, and the Mean Average Precision
(MAP) is calculated for the resulting ranked list according
to the links in the test set. The final scores are the aver-

age of 5-fold cross validation, with 80% of the data used for
training and 20% for testing, in each fold.

We are interested in observing the prediction performance of
the joint model when there are few available links from one
link type. To perform such an analysis, we make available
to the joint learner a full training set for one link type (80%
of the objects in the network), and a variable-sized training
set for the other link type, varying from a smaller subset
(30% of the nodes) to the full training set (80%) by fixed
increments (10%). The test set is always fixed (20%). We
observe the evolution of prediction performance with the size
of the training set for the second type of links.

Table 1 shows the average MAP for the objects in the test set
for the co-purchased links, in the Amazon products network,
for several models. As explained, the size of the co-purchase
training set varies from 30% to 80% of the entire network,
while the training set for category links is constant (80%).
Both ’separate’ and shared similarity model are using low
rank factorization of M due to the dimension size of the
features, with a latent space of dimension 100. The size of
latent space in two-layer network is set to 100 as well. All
matrices are initialized by random values.

The ‘separate’ model shown in Table 1 uses only the link
type that must be predicted and is identical to the classi-
cal distance learning model that has been used in previous
works [4, 16, 5]. This model was previously compared with
state-of-the-art link prediction methods and was shown to
be effective for link prediction on networks. The separate
model is ignorant about the other link type. The joint mod-
els make use of both link types according to the models
described in this article. Table 1 clearly shows that the
joint models improve the results significantly comparing to
the separate model, SymRank and Cosine similarity. The
separate model is itself superior to the other models tested
in [4, 16, 5]). SVMrank [11, 10] has shown high performance
in ranking; to make it applicable to large graphs (here, the
Amazon products) the optimization was performed on the
primal form by using stochastic gradient descent. Not sur-
prisingly, the two-layer Similarity model has better perfor-
mance in comparison to the Shared Similarity model.

Table 2 shows similar results, but reversing the link types.
In this experiment, we varied the proportion of category
links made available for training, from 30% to 80% of the
total number of objects, and kept the co-purchase links at
a constant value (all links over 80% of the nodes used for
training).

The important observation is that when there are few links
available for training (columns at the left of the tables), the
improvement of using both link types by the joint ranker is
higher, percentage of the improvement is given in the paren-
thesis. However, even when the training set is large, the
joint modeling is useful. Moreover, we observe in the ex-
treme case when there is no training data available (marked
“0 (transfer)” in the tables) and the ranker is only trained on
the other link type, still the performance reached through
transferring the learning from the other link type is sig-
nificantly higher than the ad-hoc similarity metric in base-
lines (cosine-similarity). In the two-layer Similarity model

Proportion of training set

Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8
Cosine Similarity 8.03 8.03 8.03 8.03 8.03 8.03

SVMrank - 8.94 9.06 8.99 8.92 9.11
Separate Model - 8.39 8.53 8.70 8.92 9.13
Shared Similarity §.43 9.16 (1+9.1%) | 9.21 (+7.9%) | 9.31 (+7.0%) | 9.56 (+7.1%) | 9.59 (+ 5.0%)

two-layer 9.00 9.33 (+11.2%) | 9.43 (+10.5%) | 9.48 (+8.9%) | 9.60 (+8.18%) | 9.70 (+7.22%)

Table 1: Average Mean Average Precision (MAP) for predicting co-purchase links between Amazon products,
when the size of co-purchase training set varies from 30% to 80% of the entire network. The joint model uses
both co-purchase and category links (training set for the latter is always 80% of the network). Bold results
are significantly better (t-test, p < 0.001).

Proportion of training set

Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8
Cosine Similarity 7.50 7.50 7.50 7.50 7.50 7.50

SVMrank - 7.73 7.82 7.89 7.92 7.92
Separate Model — 7.86 7.99 8.07 8.38 8.61
Shared Similarity 7.97 8.31 (15.7%) | 8.42 (£5.3%) | 8.53 (15.7%) | 8.73 (+4.1%) | 8.92 (+ 3.6%)

two-layer 548 8.79 (+11.8%) | 8.8(+10.51%) | 8.8(+9.66%) | 9.12(+8.8%) | 9.25(+7.4%)

Table 2: Average Mean Average Precision (MAP) for predicting category links between Amazon products,
when the size of category training set varies from 30% to 80% of the entire network. The joint model uses
both co-purchase and category links (training set for the former is always 80% of the network). Bold results

are significantly better (t-test, p < 0.001).

we transfer the first layer and use an orthogonal matrix with
all elements one for the second layer. The results confirm
that there is correlation between categorical similarity of the
products in Amazon and being co-purchased by customers,
and each of them can help in modeling and predicting of the
other one.

Table 3 similarly shows the average MAP of the TED dataset
for the content links and Table 4 shows the average MAP
for the co-liked links. The Joint models, specially two-layer
model, significantly improve the link prediction performance
for both link types. This shows that there is a big correlation
between relatedness of talks in TED platform and being in
the favorite list of many users.

The joint models have a higher performance than the sep-
arate models on both networks that we experimented with.
The difference in the performance of the joint model and sep-
arate model is higher when there are fewer number of links
from one link type. In that case, the denser link type can
help more strongly the sparser link type through the shared
information part. But even when there are equal links from
different link types, joint modeling through shared informa-
tion helps with the generality of the model and improves the
link prediction performance.

4.4 Effect of Low-rank Factorization Dimen-
sion

We finally study the effect of low-rank factorization on the

performance of ranking when the full training set is avail-

able. When the graph is larger, it is possible to train larger

dimensions, but when the network is not large, larger di-

mensions make over-fitting more likely.

Table 5 shows the effect of dimension on link prediction per-

formance for Amazon products. We observe that the growth
of increase in the performance decreases when we increase
the dimension. The time complexity of the algorithm lin-
early depends with the dimension. Therefore, for large scale
graphs, one should choose a dimension by considering the
trade-off between the time complexity and the performance.

Table 6 similarly shows the effect of dimension on the link
prediction performance over the TED talks. Considering
the size of network, increasing the dimension decreases the
performance, as it over-fits the training set.

S. CONCLUSION

In this papar, we proposed two joint similarity learning mod-
els over nodes’ attributes for link prediction in networks
with multiple link types. The first model learns a simi-
larity metric that consists of two parts: the general part,
which is shared between all link types, and the specific part,
which is trained specifically for each type of link. The sec-
ond model consists of two layers: the first layer, which is
shared between all link types, embeds the objects of the
network into a new space, and then a similarity is learned
specifically for each link type in this new space. Both mod-
els are applicable to large networks with high-dimensional
feature spaces. The experiments show that the proposed
joint modeling and training frameworks improve link predic-
tion performance significantly for each link type in compari-
son to multiple baselines. This improvement is higher when
there are fewer links available from one link type in the net-
work. The two-layer similarity model outperforms the first
one which is expected due to its capability of modeling neg-
ative correlations among different link types. Moreover, we
illustrated that even if the models are trained completely
on one link type and tested on the other, our models sig-
nificantly improve the performance in comparison to ad-hoc

Proportion of training set
Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8
Cosine Similarity 4.55 4.55 4.55 4.55 4.55 4.55
SVMrank 5.10 6.44 6.87 7.44 8.02
Separate Model 4.94 5.78 6.49 8.18 9.28
Shared Similarity 6.30 5.96 (+20.6%) | 6.98 (+20.7%) | 7.52 (+ 15.8%) | 9.27 (+ 13.3%) | 10.38 (+ 11.8%)
two-layer 7.61 8.72(+76.5%) | 8.95(+54.8%) | 9.50(+46.3%) | 9.91(+21.1%) | 11.13(+19.9%)

Table 3: Average Mean Average Precision (M AP) of content links in TED when the size of content train set
is changed. The joint model uses both content and co-liked links, the size of co-liked links is 0.8. Bold results
are significantly better (t-test, p < 0.001).

Proportion of training set
Model 0 (transfer) 0.3 0.4 0.5 0.6 0.8
Cosine Similarity 2.84 2.84 2.84 2.84 2.84 2.84
SVMrank - 2.40 2.72 2.73 2.33 3.77
Separate Model - 3.42 3.75 4.02 4.82 5.70
Shared Similarity 4.77 4.14 (+21.0%) 4.54 (+21%) | 4.83 (+20.1%) | 6.10 (+26.5 %) | 6.44 (+ 12.9%)
two-layer 5.50 6.11(4+78.6%) | 6.22(+65.8%) | 6.49(+61.4%) 6.97(+44.6%) | 7.60(+33.3%)

Table 4: Average Mean Average Precision (MAP) of co-liked links in TED when the size of co-liked train set
is changed. The joint model uses both content and co-liked links, the size of content links is 0.8. Bold results
are significantly better (t-test, p < 0.001).

Dimension
Model 20 50 100 150
Separate Model (co-purchase) | 6.60 | 8.52 (+29.9%) | 9.13 (+7.16%) | 9.31(4+1.97%)
Shared Similarity (co-purchase) | 7.20 | 9.24 (1.26.75%) | 959 (+3.79%) | 9.91(+3.34%)
two-layer (co-purchase) 7.29 | 8.94(+22.63%) | 9.70 (+8.50%) | 10.11(+4.22%)
Separate Model (category) 7.59 | 8.41 (+10.08%) | 8.61 (+2.38%) | 8.67(+0.70%)
Shared Similarity (category) | 7.96 | 8.76 (+10.05%) | 8.92 (+1.83%) | 8.98(+0.67%)
two-layer (category) 7.96 | 8.84(+11.05%) | 9.25 (+4.63%) | 9.40(+1.62%)
Table 5: Average Mean Average Precision (MAP) for predicting links between Amazon products.
Dimension

Model 10 20 50 100 150

Separate Model (content) | 9.33 | 10.63 | 9.52 | 9.47 | 9.28

Shared Similarity(content) | 9.53 | 11.39 | 11.05 | 11.02 | 10.38

two-layer (content) 9.90 | 11.72 | 11.67 | 11.13 | 11.06

Separate Model (co-liked) | 5.95 | 6.48 | 6.21 | 589 | 5.70

Shared Similarity (co-liked) | 6.30 | 6.96 | 7.09 | 6.39 | 6.44

two-layer (co-liked) 763 | 7.99 | 7.97 | 7.60 | 7.67

Table 6: Average Mean Average Precision (MAP) for predicting links between TED videos.

similarity metrics.

APPENDIX
.1 Convergence of the Training Shared Simi-
larity Model

To prove the convergence, first we need to establish an upper
bound for the norm of the subgradients at each iteration
|| ¢ ()|]3 < U which can be easily found if the data points
are bounded. For example, if all data points vectors are
normalized, then they are bounded, which is the case in our
study.

_ 1T
- T t=1

THEOREM 1. Let G = %3/ G' and S; St

be the averages of G and S; so far. Let the update rate be
e = with A\ < 1/4. Let also G* = argmin L(G) and
a

=

At

If the data points are bounded, i.e.

argmin L(S;).
s

llzhxs||3 < R with R > 1, then with a probability of at least
1 — 6, we have (with r = 4R?):
21rIn(T/9)

L(G) < L(G") + =7

L(S) < L(ST) + 217‘1;15?/5)

PRrROOF. Each of the L;(G) and L(S;) is A—strongly con-
vex as they consist of a part with a shape %||M||7 and a

convex function (the average hinge function). According to
the Theorem 1 in [15] the upper bound of the subgradients
norms || Lu(S)I% , || 7 L(G)|[% is r = 4R2.

L(S;) and L(G) can be considered as the loss function of
a one-class PEGASOS algorithm for which the input data
pints are (v, — xp) for (a,b,c) € Train,. In Lemma 2 in
[15] the inequalities stated in the theorem are proven for the
PEGASOS loss function and are therefore valid for the L(G)
and L(S;). O

As a consequence of the above theorem we can write :

21(N + 1)rIn(T/9)
AT

L=LG)+Y L(S:) < L(G*)+L(S;)+

Therefore we can see that to obtain an error inferior or equal
to e with the confidence 1 — § we need O(Z£L) iterations.

A. REFERENCES

[1] L. A. Adamic and E. Adar. Friends and neighbors on
the web. SOCIAL NETWORKS, 25:211-230, 2001.

[2] A. Agarwal, S. Chakrabarti, and S. Aggarwal.
Learning to rank networked entities. In Proceedings of
the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, KDD ’06, pages
14-23, New York, NY, USA, 2006. ACM.

[3] L. Backstrom and J. Leskovec. Supervised random
walks: Predicting and recommending links in social
networks. In Proc. Web Search and Data Mining
(WSDM), 2011.

[4] B. Bai, J. Weston, D. Grangier, R. Collobert,

K. Sadamasa, Y. Qi, O. Chapelle, and K. Weinberger.
Learning to rank with (a lot of) word features. Inf.
Retr., 13(3):291-314, June 2010.

[5] B. Bai, J. Weston, D. Grangier, R. Collobert,

K. Sadamasa, Y. Qi, C. Cortes, and M. Mohri.
Polynomial semantic indexing.
[6] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proceedings of the 22nd
international conference on Machine learning, ICML
’05, pages 89-96, New York, NY, USA, 2005. ACM.

[7] Y. Cao, J. Xu, T.-Y. Liu, H. Li, Y. Huang, and H.-W.
Hon. Adapting ranking svm to document retrieval. In
Proceedings of the 29th annual international ACM
SIGIR conference on Research and development in
information retrieval, SIGIR 06, pages 186—-193, New
York, NY, USA, 2006. ACM.

[8] J. Chang. Relational topic models for document
networks. In In Proceedings of the Conference on Al
and Statistics (AISTATS, 2009.

[9] K. Crammer and Y. Singer. Pranking with ranking. In
Advances in Neural Information Processing Systems
14, pages 641-647. MIT Press, 2001.

[10] R. Herbrich, T. Graepel, and K. Obermayer. Large
margin rank boundaries for ordinal regression. In
A. Smola, P. Bartlett, B. Scholkopf, and
D. Schuurmans, editors, Advances in Large Margin
Classifiers, pages 115-132, Cambridge, MA, 2000.
MIT Press.

[11] T. Joachims. Optimizing search engines using
clickthrough data. In Proceedings of the eighth ACM
SIGKDD international conference on Knowledge
discovery and data mining, KDD ’02, pages 133—142,
New York, NY, USA, 2002. ACM.

[12] J. Leskovec, L. A. Adamic, and B. A. Huberman. The
dynamics of viral marketing. ACM Trans. Web, 1(1),
May 2007.

[13] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In Proc. ACM
International Conference on Information and
Knowledge Management (CKIM), 2003.

[14] K. Miller, T. Griffiths, and M. Jordan. Nonparametric
latent feature models for link prediction. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and
A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 12761284, 2009.

[15] S. Shalev-Shwartz, Y. Singer, N. Srebro, and
A. Cotter. Pegasos: primal estimated sub-gradient
solver for svm. Math. Program., 127(1):3-30, 2011.

[16] B. Shaw, B. Huang, and T. Jebara. Learning a
distance metric from a network. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger,
editors, Advances in Neural Information Processing
Systems 24, pages 1899-1907. 2011.

