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Abstract—HMM state mapping with the Kullback-Leibler
divergence as a distribution similarity measure is a simpleand
effective technique that enables cross-lingual speaker agtation
for speech synthesis. However, since this technique doest nake
any other potentially useful information into account for mapping
construction, an approach involving phonological knowlege in a
data-driven manner is proposed in order to produce better sate
mapping rules — state distributions from the input and output lan-
guages are clustered according to broad phonetic categogeising
a decision tree, and mapping rules are constructed only witim
each resultant leaf node. Apart from this, previous researg
shows that a regression class tree that follows the decisidree
structure for state tying is detrimental to cross-lingual peaker
adaptation. Thus it is also proposed to apply this new approeh to
regression class tree growth — state distributions from theutput
language are clustered according to broad phonetic categims
using a decision tree, which is then directly used as a regrsi®n
class tree for transform estimation. Experimental resultsshow
that the proposed approach can reduce mel-cepstral distoidn
consistently and produce state mapping rules and regressicaclass

trees that generalize to unseen test speakers. The impact$ o

the phonological/acoustic similarity between input and otput
languages upon the reliability of state mapping rules and upn
the structure of regression class trees are also demonsted and
analyzed.

Index Terms—data-driven enhancement, phonological con-
straints, minimum generation error, regression class treeHMM
state mapping, cross-lingual speaker adaptation

I. INTRODUCTION

recorded a large amount of training data, so that high quatit
output synthesised speech can be guaranteed. Such a speaker
specific solution is mature, but training data preparation f
speaker-specific model training is inherently time-conisigm
and costly. As a result, the speech synthesis module lacks
voice diversity. For the sake of voice diversity, researsh i
being conducted on personalisation of S2S translatiohae

to make the output synthetic voice sound like a user’s input
voice despite the difference in language between the twis. Th
research would enable translated speech to be produced with
input voice characteristics of a user.

Owing to its statistical parametric nature, HMM-based
speech synthesis [5] is a very flexible framework, in which,
for example, voice characteristics, speaking styles artiem
of a speaker can be easily modified by adjusting parameters
of HMM synthesis models. More specifically, HMM-based
speech synthesis lends itself particularly well to pertined
S2S translation since it includes a range of highly effectiv
speaker adaptation algorithms that centre arounchtieeage
voice synthesis paradigm [6], [7]. An average voice is an
artificial voice trained on speech data collected from midti
real speakers (for example, by speaker adaptive trainifg [8
ideally modelling speaker-independent, phonetic andqatics
variations only. Before speech parameter generation, an av
erage voice is adapted to a given target voice by speaker
adaptation algorithms like CMLLR [9]. As only tens of adap-
tation utterances (i.e., a few minutes long in total) aredede

HE language barrier is a prominent hurdle to overconfeom the target speaker for reproducing his/her voice, &oic
in order to facilitate better communication among peopkiversity in output synthesized speech can be easily aetiev

across the globe. Real-time automated speech-to-spe2&h (Shus, the HMM-based speech synthesis framework and the
translation [1]-[3] is a technology which can provide a neearaverage voice paradigm are the foundation of this work. én th
to bridge the gap between languages and has the potentiatafitext of personalized S2S translation, the teross-lingual
largely reducing the cost of relying upon human interpeterspeaker adaptation is generally used to refer to adapting the
Therefore it has emerged as an important research topic. Moéce characteristics of average voice synthesis models to
typical architecture of an S2S translator consists of thrélgose of given adaptation data in a different language from
modules: speech recognition, machine translation andchpe¢hat of desired synthesis output. The respective languafjes
synthesis. The output voice of the speech synthesis modatiaptation data and synthesis models are catiaa |language
usually comes from a professional speaker (e.g. the systéhy,, i.e. the language spoken by the target speakerpatpulit
presented in [4] and the Google Translate service), who Hasguage (Lo, i-€. the language in which output speech is

synthesized) hereafter.
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The lack of correspondence between phonological repre-
sentations of adaptation data ih;, and underlying state
distributions of average voice synthesis model&inp presents
a difficulty to cross-lingual speaker adaptation, sinceraghe

is no straightforward way of associating the adaptatiora dat

with these synthesis models. The state-of-the-art tecieniq



that can construct this correspondence is HMM state mapping [I. CLSA & HMM S TATE MAPPING

across languages, which is performed by training two sets of ] o
average voice synthesis models fig, and Loy respectively A target speaker’'s voice can b_e reproduced by training
and finding the closest matching states between the two moglegaker-dependent HMM synthesis models on speech data
sets. Then adaptation data i, can be associated with from the speaker alone [17]. Un_fortunately, building rdbus_
average voice models ibyy; via resulting state mapping rules SPeaker-dependent models requires a large amount of train-
Since the HMM state mapping technique was introduced [18]9 data from a target speaker. This requirement makes the
the minimum Kullback-Leibler divergence (KLD) criteriomé  SPeaker-dependent solution expensive, time-consuming an
been typically employed to construct state mapping ruléss T impractical for situations where diversity of syntheticices
purely data-oriented criterion for finding the closest rhatg 1S €xpected. Due to the statistical parametric nature of HMM
states across languages, though working acceptably well f#Sed speech synthesis [18], speaker adaptation techrjiijue
cross-lingual speaker adaptation [11]-[13], may not ak/vagf]' [20] and the average voice synthesis paradigm [6], [7]
produce meaningful state mapping rules from the point 88ve been_developed in order to addre.s.s. this problem. An
view of phonological features, especially whép, is sub- average voice can be regarded as an artificial, more adaptabl
stantially phonologically distinct fronLoy. Less meaningful [21] voice trained on speech data collected from multiple
state mapping rules are presumably more detrimental to fi§&l Speakers (and probably involving shared-decisiee-tr
performance of cross-lingual speaker adaptation, thudinge based context clustering [7, Ch. 4] and speaker adaptive
to be identified and corrected. training [8]). By means of speaker adaptation and the aeerag

Moreover, HMM state mapping has no explicit mechanisiPice sy_nthesis paradigm, the voice characteristics afirtss’
to eliminate any damaging impact of the mismattletween synthe3|s models can be adapted to tho_se of a target speaker,
the input and output languages, though it constructs cpores 91Ven only a small number of utterances in the target spé&aker
dence between them. It was discovered that state mappiMgL®€:
based cross-lingual speaker adaptation could not benefit fr Unlike intra-lingual speaker adaptation, cross-lingual
the use of a regression class tree that followed the decisRfaker adaptation adapts the voice characteristics chgee
tree structure for state tying in the training stage of sgath Voice synthesis models ifioy into those of a target speaker
models [14]: given two substantially different languagiks | Who can only provide adaptation data ffm. As Lin # Lout
Mandarin and English, a global transform was a better choit?e inherent difficulty in cross-lingual speaker adaptatis
[15]. Obviously, a global transform is not capable of fulgpe oW to extract speaker characteristics fram and apply
turing a speaker’s voice characteristics and thus a newadetfihem to Loy Without having access to any direct relationships
of growing a regression class tree needs to be investigated?€tween phonological representations of adaptation data i

In this paper, we firstly propose a refinement of the mirn @nd underlying state distributions iho,. Two types of
imum KLD criterion by introducing phonological knowledget€chniques have been investigated so far: i) phoneme mappin
into HMM state mapping construction. The key idea of thE#21-{24], HMM state mapping [10]-[12] and speech feature
proposed approach is to group average voice state distritsut ffRme mapping [25]; ii) bilingual modelling [10], [26]-[28
of two languages into phonologically consistent clustargj 2nd speaker & language factorization [29]. Their common key
then to construct mapping rules onwithin each of these p0|_nt is tp establish the missing relationships, eithedieitly
clusters as per the minimum KLD criterion. This grouping i§" ImPplicitly.
achieved by decision tree-based clustering [16]. Phoncabg ~ This paper is focused on the investigation of HMM state
constraints (i.e., questions for node splitting) are disced Mapping. It is built upon the assumption that languages
node by node using a small set of development data hgve significant overlap in acoustic feature space and state
Lous, 0N which resulting state distribution clusters maximallj"@pping provides an appropriate level of granularity totesep
provide reduction of mel-cepstral distortion (MCD). Sedlyn this overlap while maintaining some correspondence betwee
instead of constructing a regression class tree by follgwicoustic units (e.g., phonemes). HMM state mapping was
the decision tree structure for state tying [14], we alsolyppntroduced into cross-lingual speech synthesis by Qiaal.
phonological constraints to the regression class treestmunes [10]. Establishing state mapping rules is carried out in @-da
for node splitting of a regression class tree (i.e., phogictl oriented manner, by finding the nearest state emission pdf
constraints) are discovered node by node using a small se{%#y. Y) of models in languaged., for each (say.X) of
development data ifiey, 0N Which a resulting regression clasghe state emission pdfs of models in langudge according
tree maximally provides MCD reduction. to a similari_ty measure of state emission pdfs_ (typicallgth

This paper is structured as follows: Cross-lingual speak€h!lback-Leibler divergence). HMM state mapping worksglik
adaptation (CLSA) is reviewed in brief in Section II. Our pro@ function My .1, (X) =Y, which captures the relation-
posed approach is elaborated in Section Ill. Speaker-digmen ShiPS betweenli, and Loy at the sub-phonemic level. It is
and speaker-independent experiments are presented iorgectioped that state mapping rules reflect correspondence &etwe

IV and V respectively. Section VI provides conclusions anfvo different languages and are irrelevant to any specific
insights on future research directions. speaker, so average voice synthesis models [6], [7], whieh a

speaker-independent, are employed in the constructiotatd s

li.e. the fact that their acoustic spaces, phoneme investoprosodic mapping rules. .
patterns and so forth partially overlap Wu et al. proposed two manners to utilize HMM state



. . . TABLE |
mapping rules [12]. Thelata mapping manner functions as  RresyLTs OBTAINED UNDER THEK-TH BEST MATCH CRITERION FOR

follows: i) to apply state mapping rules betweBp and Loyt  CROSSLINGUAL SPEAKER ADAPTATION IN THE DATA MAPPING MANNER
to adaptation data such that the adaptation datd.jnis .
represented as a state sequencéqg; ii) to carry out “intra- T ~ 57 0 =76
lingual” speaker adaptation on the side ;. As reported 2 7.64 20 7.98
in [12], the data mapping manner provides good speaker 2 ;-22‘ ig g-:{)g
similarity, but a slight foreign accent can be perceived and 5 780 50 818
the speech quality is degraded.
As for the transform mapping manner proposed in [12],

conventional intra-lingual speaker adaptation on the sfd&, We evaluated for ten values df in turn and calculated
is performed first. Then resultant speaker-specific trans0 corresponding MCD. Results in Table | show that while MCD
for Lin are associated with state distributions of Synthe%es genera”yincrease with increasmghis is on|y apparent
models inLoy through state mapping rules betwekg, and for k5. This phenomenon suggests that while KLD is an
Lir. So the average voice synthesis modellip: can be effective measure of model distribution similarity, themay
adapted with the transforms fdri,. As reported in [12], the exist additional latent factors that can be combined witto it

transform mapping manner provides good speech quality, kighieve more effective state mapping rules.
speaker similarity is degraded.

: The Ia_ck of aan_ accent in _the synthesized SPeecivbie g Attempt to Introduce Smple Phonological Knowledge into
is sometimes considered detrimental to speaker similddty

in generallL;, is the native language of a target speaker ar%ate Mapping Construction

his/her Loy accent is more or less affected y,. This does ~ Having demonstrated that the minimum KLD criterion may
not matter in the case of cross-lingual speaker adaptation,NOt be optimal for constructing HMM state mapping rules,
speaker similarity should be actually judged by compariﬂbwas hypothesized that the most significant missing factor
synthesized speech ibo,; With original speech irLi,. Using Was the potential lack of phonological consistency in the
original speech inLoy, whose accent is fairly likely to be constructed mapping rules. For example, a state repragent
affected by Lin, as reference speech is only for making i¥owels could be mapped to a state representing consonants

manageable to evaluate speaker similarity during reseamchWhen minimum KLD is the only criterion. Obviously this
cross-lingual speaker adaptation [30]. kind of mapping rule does not make much sense. Hence,

such undesirable mapping rules may be avoided by taking

advantage of the knowledge of underlying phoneme categjorie
Taking the case of=1 in Table | (i.e., the data mapping

baseline), state distributions of the average voice swighe

. . models in English and Mandarin were categorized according
In this paper HMM state mapping is presented from thg seven proad phoneme categories (silence, vowel, plosive

data mapping perspective since previous analysis [13], [154jcative, affricate, approximant and nasal) and therestaap-

has shown a preference for data mapping, though the proposggh rjes were constructed under the minimum KLD criterion
approach may equally generalize to transform mapping @&nin each of the seven categories. A state was assigned to a
well. We also focus on adaptation of spectrum, which is thg, e category, providing that one of the central phone

dominant component of speaker identity [31]. Since the Spegiexts to which the state had been tied belonged to the
tral feature is mel-cepstrum, mel-cepstral distortion (B)C category. Thus, it was possible for a state to be a member
is employed as the objective measure of spectrum adaptatign,ore than one phoneme category.

performance.

MCD (dB) | kK MCD (dB)

IIl. ENHANCING STATE MAPPING-BASED CLSA USING
PHONOLOGICAL KNOWLEDGE IN A DATA-DRIVEN
MANNER

The US English average voice models were then adapted
using 100 Mandarin adaptation utterances in speaker MMh'’s
A. Optimality of Purely KLD-Based State Mapping Construc-  voice and the new set of 2975 state mapping rules in total
tion of mel-cepstral features. Then mel-cepstral distortiors wa

Itis natural to question the optimality of the minimum KLDCalculated and is presented in Table II.

criterion for state mapping construction, since it is pydata- TABLE Il
oriented without taking any other potentially useful knewl ogjecTive EVALUATION RESULTS OF DATA MAPPING SYSTEMS USING

edge into consideration. To test its optimality, a croagplial DIFFERENT METHODS OF STATE MAPPING CONSTRUCTION
spe_aker adaptation expe.nment_ln the data_mapplng manner Method of state mapping construction MCD (dB)

as in [15] was conducted: adapt!ng US English average voice minimum KLD criterion only 767
models trained on WSJ-SI84 with 100 Mandarin adaptation phonological knowledge-guided 7.48

utterances in speaker MMh's voice recorded in a soundproof

and anechoic chamber (see Sec. IV-Al). A slight difference i The introduction of phonological knowledge into state map-
this experiment was that this time HMM state mapping rulgsng construction had 1342 out of the 2975 state mappingrule
defined by the:-th best match i were used for each statecorrected. Table Il shows the details of the 1342 “incairec
in Li,, instead of always selecting the best match satisfyirsgate mapping rules that resulted from the use of only the
the minimum KLD criterion (i.e.k = 1). minimum KLD criterion.



TABLE Il . . .
DETAILS OF “INCORRECT STATE MAPPING RULES THAT ResuLTED From  Phonological knowledge should be developed in a data-drive

ONLY THE MINIMUM KLD CRITERION manner. As a result, decision tree-based state clustesing i
SETReT e SETReT P employed in this work in a similar fashion to that in syn-
Ma,?_e Caéﬂgry m;p. Man. ae e egﬂg m:p_ thesis model .training. Well-trained HMM state distriburtso
S P 534 \Y Ap+F ] of average voice synthesis modelslip and L are grouped
\l\/l Q/P 18%0 Af;'\"fp AFP g using a decision tree such that each leaf node of the tree is a
Af E 59 Vp F4S 3 phonologically consistent cluster. Optimization of thi_eet_is
N Ap 33 Af N 2 performed such that the MCD of development datd.ig; is
P F 31 Af+F P 2 minimized.
Af P 28 A F+P 2 : . .
P S 26 Apr v 5 1) Qgestlon Design: Ou_t of a huge number of phonetic gnd
S N 23 Ap+S Y 2 prosodic contexts used in HMM-based speech synthesis, the
S F+P 21 F+P S 2 most important ones for spectrum modelling are assumed to
S | AfF+P | 20 S Af+P 2 be the trioh t — left bh ap tral oh
F S 18 v Ap+N+P 5 e the triphone part — left phoneme (“L-"), central p 'oneme
Ap S 17 \Y% F+P 2 (“C-") and right phoneme (“R-"). Consequently, the tripteon
ASD x ig A/.‘.\IF ASP i contexts are considered an essential factor for groupieg av
F Vv 12 || Afenep = 1 age voice state distributions d@f, and Loy In particular, we
F P 13 Af+P F 1 use the seven broad phoneme categories based on artioulatio
t Ap 12 Af+P S 1 manners that are commonly shared across languages: silence
N F 1 PPN P ! vowel, plosive, fricative, affricate, approximant and alas
Ap P 10 Ap+N S 1 » plosive, ) , app _
% P 10 || Ap+P+S F 1 Thus for triphone contexts, there are a total of 21 questions
Af;N F;P g ﬁpg F;P i used in the decision tree-based state clustering/grouping
N p s F,’: APV 1 A state distribution belongs tc_> a particular_ ca_tegory if any
Ap N 7 F+N Ap 1 context-dependent model to which the state is tied belomgs t
g 29 ; F‘I;N S\:V i this category. Therefore, a state may be associated with mul
v Np 7 P Y 1 tiple questions. For example, a state distribution is dased
Y, S 7 P+S Ap+F 1 with both questions “Caffricate” and “C plosive” if it is tied
2; E:g g 2 A/f:F:fFV i to context-dependent phonesch+x*, - k+x and+- p+x.
P FiS 6 S Ap+HEAN+PHY | 1 _2) _Queﬂlon Selection Crlten(_)n. Th_e_maX|mum likelihood
Af S 5 S Ap+N+P 1 criterion has been employed in decision tree-based clogter
AFfm Z g g:x Ag] i during synthesis model training for selecting the best tioies
N S 5 vV Af+E+P 1 Fo split a node [16]. Nonetheless, the goal of speech ;ylst_hes
Af+N F+S 4 v Af+F+P+S 1 is to generate speech as close as natural speech, whictyis onl
E F+§+V i x AAffFF:S i achieved indirectly through the maximum likelihood criter.
=silence, V=vowel, P=plosive, F=Ticative, N=nasal The minimum generation error (MGE) criterion was pro-
Af=affricate, Ap=approximant posed [32] to more directly target the goal of speech syighes

“Generation error” refers to the distortion of generateeesh
parameters from corresponding natural speech parameters,

Table Il clearly shows that phonological knowledge can helphich can be defined as an objective metric (e.g. mel-cdpstra
to improve state mapping rules constructed under the mimimwistortion). The MGE criterion has been applied to model
KLD criterion. This finding indicates that phonologicallyss parameter training [32] as well as decision tree-basec stat
meaningful mapping rules are harmful in practice and shouttustering [33], and was found to outperform the maximum
be eliminated. Therefore, the investigation of further neealikelihood criterion. According to this criterion, the cste®n
to exploit phonological knowledge was pursued as detailed gelected to split a decision tree node should be the one that
the remainder of this paper. minimizes a predefined measure of distortion over a pagicul
set of speech data (the training data of synthesis models or
a new set of development data) — this idea is used in the
proposed approach to grow decision trees for state mapping
construction.

In Sec. IlI-B, a naive grouping of average voice state Mel-cepstral distortion is chosen to measure generation

distributions was applied based on phonologically coasist error and is minimized on development datalig,; based on
clusters, such that state mapping rules were constructger uradaptation of synthesis models using datd.in Therefore a
the minimum KLD criterion, butvithin each of these clusters.bilingual corpus (inLi, and Loy is required in the proposed
Hence an HMM state inLi, could only be mapped to its approach. The bilingual corpus does not need to be large as it
phonologically consistent counterpart I, and vice versa. is not used for model training like in [10].
Previous evidence is noted that usually purely knowledge-Such a bilingual corpus is indispensable when the focus
based approaches are not as effective, for instance, theahaof research is on adapting only speaker characteristics in
phoneme mapping construction between Mandarin and Bhe context of cross-lingual speaker adaptation. Without a
glish presented in [24]. Preferably, a method of introdgcirbilingual corpus, the difference in speaker between swishe

C. Phonological Knowledge-Guided State Mapping Construc-
tion



models and adaptation data would be always handled together
with that in language by the same adaptation transformstwhi
are actually supposed to capture only characteristics axfget
speaker’s voice.

3) Procedure for Enhancing HMM State Mapping Con-
structions:  Bilingual data (in Li, and Loy) from a certain
number of speakers is collected such that adaptation data in
L, is used to estimate adaptation transforms and development
data in Loy is used for optimization according to the MGE
criterion. A separate set of test data is retained, which has
no intersection with training, adaptation or developmeatad
The overall procedure can be summarized as follows:

1) For each of theV emitting states of an HMM, form one
root node by pooling all average voice state distributions
of Liy and Loy that correspond to this emitting state.

2) Find the next non-terminal leaf nod€ across theNV
decision trees in the manner of breadth-first search.

state 2 state 3 state 4 state5 state6

) e (0 ()
7\
l‘-‘\ l.-~\
GEE @D

Fig. 1. lllustration of step 1 and step 2 in the caseNof5. The numbers
within the nodes indicate the order in which the nodes ari. spl

R
4

[ g

CLSA, synthesis,
MCD calculation

max. MCD reduction

CLSA, synthesis,
MCD calculation

Fig. 2. Procedure of finding the best question to split a nodieuthe MGE
criterion for state mapping construction. The blue/redritlistions indicate
those belonging td.out/Lin and the background colours indicate that the state
distributions belong to different triphone categories.

D. Phonological Knowledge-Guided Regression Class Tree
3) Find the best split for leaf nod& under the MGE Construction

criterion. If either of the following conditions is true,
X is considered a terminal leaf node. Otherwiseis
split using the selected question.

In

previous experiments [15], it was demonstrated that

regression class trees derived using the usual approaabed b
on either state tying [14] or Euclidean clustering [34, Ch.

a) One or both child nodes contain state distributior‘g‘i did not lead to effective cross-lingual speaker adaptati

from only one language;

Thus it is proposed to apply the approach elaborated in Sec.

b) The best split produces an MCD reduction less tha[}.c o regression class tree growth. The same question set

thresholde amcp (Eamcp > 0).

guestion selection criterion and principle of growing aetre

4) Go back to Step 2 or stop when all leaf nodes aggn be applied. HMM state mapping rules are fixed while a

terminal leaves.

regression class tree is generated by the proposed approach

In order to find the best split for a nod¥ in Step 3 The overall procedure can be summarized as follows:

above, average voice state distributions belongingXtare
categorized according to every question and the improvemen
is found by:

1) Recalculating state mapping rules between the input and
output languages based on each of the possible nod%)
splits;

2) Performing cross-lingual speaker adaptation in the nor-
mal data mapping manner using these newly formed
mapping rules inX’s child nodes;

3) Calculating MCD on held-out development data. The
guestion producing the greatest reduction is selected.

This procedure is visualised in Fig. 2, where nodeX3-8) in
Fig. 1 is taken as an example.

As [32] and [33] report, MGE is a remarkably time-
consuming optimization criterion, especially when it iseds
for decision tree-based clustering. Fortunately, as tlaeee
merely 21 questions altogether in the proposed approaeh, th
computational cost is still manageable. Note that the pegdo
approach degenerates into the conventional state mapping

1)

Form the root node of a regression class tree by pooling
all the average voice state distributionsiaf;.

Find the next non-terminal leaf nodein the regression
class tree in the manner of breadth-first search.

Find the best split for non-terminal leaf node under

the MGE criterion:

a) SplitY according to each of thealid questions
(“valid” means that a question does not produce a
child containing no state distributions);

b) Perform cross-lingual speaker adaptation with the
current regression class tree structure;

c) Calculate MCD on held-out development data.

The question producing the greatest MCD reduction
exceeding thresholéamcp (eamcp > 0) is selected for
splitting Y. OtherwiseY is considered a terminal leaf
node.

4) Go back to Step 2 or stop growing the regression class

tree when all leaf nodes are terminal leaves.

construction if none of théV root nodes are split (i.e., noThis key idea of the above process is visualised in Fig. 3,

phonologically consistent clusters are created).

whereY =3 is taken as an example.



Mandarin and English. MF2 is a truly bilingual speaker of
Mandarin and English, and the remaining four are native Man-
darin speakers. MMh, MF7 and MM3 have reasonably natural
English accenfsbut MM6’s English is strongly Mandarin-
accented. Therefore, only MF2, MMh, MF7 and MM3 were
considered training speakers of enhanced state mappieg rul

I i | |
1 | 1 |

splitnode 3 l @ P @I Adaptation data of each of the five speakers consisted of 100
i i i i Mandarin utterances (files 0026125). Development data of

regression class tree that is
being generated

now trying to

h;:{h"_d "CL_S;T;__" each of the four training speakers consisted of 100 English
meD catulation | *** | McD caculaton utterances (files 00280125). Test data of each of the five
speakers consisted of 25 English utterances (files ©0025).
2) Systems for Comparison: Four groups of experiments

were conducted. Within each group, state mapping rules of
Fig. 3. Key idea of the process of finding the best questiorptid & node mel-cepstra between Mandarin and English were derived from

of a regression class tree under the MGE criterion. The blegilslitions one of the four training speakers by the proposed approach
indicate those belonging tboyut and the background colours indicate that the g sp y prop PP

state distributions belong to different triphone categ@riThe numbers within Wh”e those Oflog Fy, band aperiOdi?it_y and duration Were
the nodes indicate the order in which the nodes are split. still constructed under only the minimum KLD criterion.

Then all these mapping rules were used for cross-lingual
adaptation of the US English average voice towards each of
Note that the above approach degenerates into cross-ling#@ four remaining speakersaycp was set to 0.0005dB. The
speaker adaptation based on a single global transform if p@seline system merely involved the minimum KLD criterion
split that reduces MCD on the root node is produced. | construction of state mapping rules of all the streaméef t
such cases, the ability to transfer speaker-specific irdiom  state emission pdfs.
between the particular pair of input and output languagas Vi Only global transform-based adaptation was investigated i
the state mapping technique is limited, as we would expeglese speaker-dependent experiments. Investigatiorgoése
for two very disparate languages. sion class-based adaptation is provided in Sec. V.
Due to the use of the MGE criterion, the proposed approach
needs much longer time to generate a regression class Ee

than conventional ones (e.g. [14] and [34, Ch. 9]). However, ~ . ]

regression class tree applies to any target speaker. Tleus &figned using the English average voice models and speech
computational cost is still acceptable. samples for objective evaluation were synthesized usieg th

resulting durations. Results of objective evaluation &f fbur
groups of cross-lingual speaker adaptation experimerdgs ar
presented in Fig. 4 and Table IV. These MCD measurements
A. Experimental Setup were calculated on the entire test data set of the five speaker

We trained two sets of average voice, single Gaussian- TABLE IV
per'Staj[e synthes!s models on the corpora SPEECON _(12'3MCD REDUCTION(AMCD) IN DB PRODUCED BY THE PROPOSED
hours in Mandarin asli;) and WSJ-SI84 (13.7 hours in  APPROACH I.E., THE DIFFERENCE BETWEEN THE LEFTMOST AND

bej ective Evaluation

IV. SPEAKER-DEPENDENTEXPERIMENTS

US English aslLqy) respectively using the HTS-2007 system RIGHTMOST VALUES ON EACH CURVE INFIGURE 4
[35] for speaker-dependéngxperiments. The HMM topology TrnSpkr

used was five-state and left-to-right with no skip. Speech ,\El)ggads:\f '(\)".';g MMh__MM3__MF7
features were 39th-order STRAIGHT [37] mel-cepstra plus MF2 test | 0.39 021 026 0.23
one dimension of energ¥g Fy, five-dimensional band ape- MMh_dev 0.29

riodicity, and their delta and delta-delta coefficientsyaated mm—ge:\: 020 0.26 002116 0.17
from 16kHz recordings with a window shift of 5ms. All the MM3 test | 0.14 014 021 011
speaker-dependent cross-lingual adaptation experinvesrs MF7_dev 0.23
performed on these two sets of average voice models, using th MF7 test | 0.16 016 013 025

MM6_test | 0.05  0.06 0.02 0.09

CSMAPLR [38] algorithm for speaker adaptation and global
variances calculated on adaptation data for synthesis.

1) Speakers and Speech Data: Three male (MMh, MM3 It can be seen from Fig. 4 that enhanced mapping rules con-
and MM6) and two female (MF2 and MF7) speakers werstructed on the development data of a single bilingual spreak
selected from a bilingual corpus recorded in a soundprogbnsistently provide improvement on his/her own test data.
anechoic chamber [39] for speaker-dependent experimemithen applying such mapping rules to other target speakers,
The five speakers read exactly the same prompts in bdths observed that the MCD curves of these target speakers

2'gpeaker-dependent” in this section means HMM state mapnpites are 3“Natural” refers to English accents that people speakingligh as their
enhanced on the basis of development data from a single epebBkese first language have and that are not affected by the phonenteprasody of
speaker-dependent experiments were originally present{2b]. other languages.
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Fig. 4.  MCD in relation to the leaf node count during decisitre . . . )
generation (Crosses indicate minimums on the curves. flknglev” refers It iS also interesting to note from both Table IV and Fig. 5

to the development data of respective training speaketsst” refers to test that the proposed approach has the most impact when the truly

ggtstlir-:—:.()a six points on the vertical axis in each sub-figurecérom the biIinguaI speaker MF2 was thg training speaker, in tgrms of
the number of changed mapping rules, MCD reduction and
providing the best generalization to other speakers (éxcep

still have a nearly monotonically decreasing tendencytheo MM6, as discussed previously).

words, mapping rules constructed from a single speakér stil

maintained a degree of speaker independence. The exceptionQuestions Used for Root Node Splitting

is MM6, who received the least MCD reduction among all the

. One means to analyze the generalization of the proposed
speakers. This result may come from the fact thatMM_G has tQ\‘Bproach is to take into account questions which are close

b the root nodes of the decision trees. Table V shows the
guestions associated with the root node of each decisien tre
Jgr each of the training speakers.

of-the-art cross-lingual speaker adaptation techniquesat
effective at transferring accent information so that therage
voice synthesis models in natural US English retain their

accent even after adaptation. The MCD measurements on his TABLE V
English test data thus inherently give lower reductions fue ROOT NODE QUESTIONS FOR THE EMITTING STATE$2~6) IN AN HMM
the disagreement in accent between the natural and syrgdesi | MFR2 MMh MM3 MF7
utterances. 2 L-nasal L-nasal L-nasal L-nasal
3 C-nasal C-nasal C-vowel C-nasal
4 C-nasal C-nasal C-affricate  C-affricate
. . 5 | R-fricative C-affricate C-nasal C-affricate
C. Impact of Phonological Knowledge on Mapping Rules 6 | L-silence  L-plosive  L-plosive  L-silence

A total of 2975 mapping rules of mel-cepstra were con-
structed, one for each of the state distributions in the $et o

. . _ . It is interesting to see that most questions chosen by the
Mandarin average voice models. Fig. 5 shows howaries

der the data-dri f bhonolodical : proposed method are shared across speakers, thereby confirm
under the data-driven use of phonological constraints fsee ing that phonological constraints plays a remarkably speak

definition of & in Sep. I-A). ) independent role in enhancing state mapping rules.
Two common traits are observed across the four histograms

in Fig. 5. Firstly, the bars corresponding k&1 are signif- o )

icantly taller than any others and mapping rules are concén- Subjective Evaluation

trated in the range df<20. Thus, the minimum KLD criterion ~ Formal subjective evaluation was performed in the form
continues to play a dominant role and KLD remains as @& AB and ABX listening tests for naturalness and speaker
good measure of phonological similarity of context-depgmrid similarity, respectively. All of the speech samples were se
model distributions from two different languages. Secgndl lected from the experiment group corresponding to the top-
significant proportion (with a minimum of 59.9%) of statdeft sub-figure in Fig. 4, since MF2 seems to provide the
mapping rules were selected witti>1 after phonological best generalisation to other speakers. Using the basatide a
constraints were introduced. Therefore, it is also evidetite proposed approach, five sentences from the 25 used in
that the minimum KLD criterion on its own may not bethe objective evaluation were synthesized for each of the fiv
sufficient, as suggested by the initial analysis in SecAlll- speakers. As a result, each listener was presented withi&0 pa



. . TABLE VI
of utterances in total: 5 (pairs of sentenceS)(speakers)2  sraristics oFKLD OVER THE ENTIRE STATE MAPPING SETS OF THE TWO

(tests). Note that unadapted duration models of the EngliShLANGUAGE PAIRS WHEN ONLY THE MINIMUM KLD CRITERION WAS

average voice were used and that original reference spaech i APPLIEDTO MAPPING CONSTRUCTION
the speaker similarity test was in English. Formal subjecti Language pair | KLD mean KLD median
evaluation results are shown in Fig. 6. ,ﬁ;&ﬁ&%iﬂ:ﬂ ol oo
§ - naturalness evaluated by 21 listeners § - speaker similarity evaluated by 17 listeners
S S e The HMM topology used was five-state and left-to-right
gg‘; gg‘; with no skip. Speech features were 39th-order STRAIGHT
g 50 g 50 [37] mel-cepstra plus one dimension of enerty Fy, 21-
E‘:’jz E‘:’jz dimensional band aperiodicity, and their delta and dedtitad
g g co_efﬂments, extracted from 16kHz_record|ngs with a W!ndow
:.325 55.2%| [55.2%| |55.2%| |55.2%| | 59%| |51.4% :.325 53.6%| [54.1%| |54.1%| |49.4%| |50.6%| | 60% shift of 5ms. All of the Speaker-|ndependent Cross_“ngua|
B e st | MME B vl MRz e T "™® speaker adaptation experiments were performed using the

CSMAPLR [38] algorithm, transforms being estimated from
one iteration. Global variances for synthesis were caledla
on adaptation data.

Fig. 6 suggests that the proposed approach produced stactsis-l:en Mandarin-English speakers (Chinese) [39] and ten

tically significant improvement in naturalness with an @ter erman-.Engllsh (Germans? [41] speakers were used in
%Qeaker—mdependent experiments. They all have reasonabl

preference score of 55.2%, while speaker similarity was n . R
greatly impacted. To be more specific, it was observed tH?ﬁturaI English accents (see the accent rating in [39]) g

speech was produced with less “muffled” characteristics gere groupeql as_shovyn in Table VII. The groupings were used
the proposed approach. r cross validation since the number of available bilingua

training speakers was limited.

Fig. 6. Subjective evaluation results produced on the leddid-2-dependent
state mapping rules (Whiskers indicate 95% confidenceviaie)

V. SPEAKER-INDEPENDENTEXPERIMENTS TABLE VI
GROUPING OF TRAINING SPEAKERS IN SPEAKERNDEPENDENT

The effectiveness and genera“zation across Speakers I@fPERIMENTS(FOR EACH LANGUAGE PAIR, EACH TIME FOUR SPEAKER

the proposed approach to state mapping construction haveGROUPS\[VEEFRTECEEEDSQEJEERTSRVC'EEE?ggfg;g:'(ég; THETWO
been demonstrated in Sec. IV. It has been also confirmed

. . . . . o Group 1D 1 2 3 4 5
that while KLD is a good objective function for determining male Germans. GMI GMZ — GM3  GM6 — GM7
state mappings, the minimum KLD criterion on its own female Germans GF1 GF2 GF4 GF6  GF7
may produce phonologically inconsistent associations&en GroupD| 6 7 8 9 0
states, thereby leading to sub-optimal results. In thisiGec male Chinesel MMh ~ MM3 = MM4 ~ MMS  MM7

. . female Chinese| MF1 MF2 MF4 MF5 MF7
we examine enhanced state mapping rules on speech data of
multiple bilingual speakers and the use of a regressiorsclas
tree in the speaker adaptation process. Adaptation data of each of the 20 speakers consisted
of 100 Mandarin or German utterances (files 00R625).
. Development data consisted of 100 English utterances (files
A. Bxperimental Setup 0026~0125) and test data consisted of 25 English utterances
We trained three sets of average voice, single Gaussigfites 0001-0025).

per-state synthesis models on the corpora GlobalPhoné (13.
hours in Mandarin ad.n), PHONDAT1 (9.6 hours in German B, Systems for Analysis of the Proposed Approach
as Lin) gnd WS,‘]CAMO (18.9 hours in UK English @) Experiments were conducted in the form of 5-fold cross
respectlvely using the HTS-2010 system [40] fpr Spe,"’}kgyélidation with gender balance maintained. There were ydwa
independerttexperiments. The use of WSJCAMO in addition, - male and four female speakers (i.e., four speaker group
to WSJ-SI84 was for testing the proposed approach on mgierape vii) in the training partition and one male and one

corpora. Mandarin from the Sino-Tibetan language familgt aftg 516 speakers (i.e., the leftover speaker group) in the te
German from the West Germanic language family were Chosﬁgrtition.

as input languages because they are “far from” and “close t0", o5ch experiment, enhanced state mapping rules of mel-

English respegtively, which i,S a!so a West Germanic Iangu"’_‘g:epstra between English and German/Mandarin were derived
This _shc_JuI_d give us some insights into the extent to whigh,, the training partition by the proposed approach, while
the dissimilarity of Lin and Lou can affect the performancey,gge of 100 7, band aperiodicity and duration were  still
of cross-lingual speaker adaptation. Table VI indicates ty,girycted under the minimum KLD criterion. These mapping
similarity of Mandarin/German to English from another angl ,jes were used for cross-lingual adaptation of the UK Ehgli

4 . N . _ average voice towards each of the test speakers.
“Speaker-independent” in this section means HMM state rnimgppules

and regression class trees are enhanced on the basis ajpiaeslt data from Likewise, the proposed approach to growmg. a regres§|on
multiple speakers. class tree for mel-cepstra was applied to the training tpamti




of each experiment. Global transforms were employed f@erman and English. These phenomena demonstrate that the
log Fy, band aperiodicity and duration. The resulting regreghonological similarity of the input and output languages
sion class tree and global transforms were used for crogspacts on the effectiveness of the minimum KLD criterion
lingual adaptation of the UK English average voice towards creating links between the two languages.
each of the test speakers.
. TABLE X

Four settings (praglo, pro.dec, kidpro and propro as \icp (pB) on THE DEVELOPMENT DATA OF THE TRAINING PARTITION&
described in Table VIII) were evaluated in the speaker- THE NUMBER OF REGRESSION CLASS TREE LEAVES
independent experimentsamcp was set to 0.0005dB.

Lang. Lin = German, Loyt = British English

Groups | 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 Avg.
kid_glo 6.04 6.13 6.08 6.07 6.08 6.08
kld_pro 5.87 6.00 5.94 5.93 5.95 5.94
State mapping construction  Regression class tree growth diff. 0.17 0.13 0.14 0.14 0.14 0.14
kld_glo minimum KLD criterion 19 9 18 14 14 14.8
pro_glo goposed approach pro_glo 5.93 6.04 5.98 6.00 5.99 5.99
kld_dec minimum KLD criterion pro_pro 5.79 5.92 5.86 5.86 5.87 5.86

TABLE VI
SETTINGS OF SPEAKERINDEPENDENT EXPERIMENTS

g_IobaI transform

pro_dec proposed approach dedsion tree structure diff. 015 012 013 013 012 | 013

KId_glo . o global transform 14 12 12 12 12 | 124
kld_pro ALERC_ DS E proposed approach Lang. Lin = Mandarin, Loyt = British English

Droglo ~global transform Groups | 6-7-8-9 6-7-80 6-7-9-0 6-8-9-0 7-8-9-0 Avg.

pro_pro proposed approach proposed approach Kid_glo | 7.07 7.09 7.04 7.06 7.08 | 7.07

— Kid_pro | 7.05  7.07 7.01 7.03 7.07 | 7.05

diff. 002 002 003 003 001 | 002

8 7 9 13 2 7.8

proglo | 696  6.97 6.01 6.93 697 | 6.95

L . ropro | 695  6.97 6.91 6.91 6.97 | 6.94

C. Objective Evaluation P difﬁ 001 000 00l 002 001 | 001

6 1 4 3 2 3.2

Original recordings of development and test data of the 20

speakers were aligned using the UK English average voicel_able X shows that the proposed approach could reduce
models and speech samples for objective evaluation wer . .

. P np D) I %D by enhancing the regression class tree structure, espe-
synthesized using resulting durations. Results of objecti jally for the language pair of German and English. When
evaluation on the development data set are presented iasTalﬁie language pair was Mandarin and English, the broposed
IX and X. o ' ;

approach could only produce negligible MCD reductions and
TABLE IX very small regression class trees. These results suggast th
MCD (DB) ON THE DEVELOPMENT DATA OF THE TRAINING PARTITION&  the proposed approach also can be used to control the appro-
THE PERCENTAGE OF MAPPING RULES THAT REMAINED UNCHANGED . . .
priate number of transforms, depending on the phonological

Lang. Lin = German, Loy = British English similarity of two languages. They also strengthen the figdin
SQOUIIDS 1'62634:4 16-521-.2-5 t'%';'f’ 2'8;4'5 62638-4- 2\/3{3 in [15] that a global transform is sufficient when the inputian
_glo . . . . . . . . Lo
proglo | 5.93 6.04 508 6.00 5 09 5 99 ogtpult languages are substantially phonologically distiin
diff. 0.11 0.09 0.10 0.07 0.09 0.09 this circumstance, it would be enough to apply the proposed

50.2%  56.8%  455% 49.3% 52.1% 50.8%  gpproach to state mapping construction only and to use a

Kid_dec | 5.93 6.04 6.00 5.99 6.00 5.99 - ;
proldec|| Sie2 504 588 591 592 589 global transform in adaptation.

diff. 0.11 0.09 0.12 0.09 0.08 0.10 In Fig. 7, objective results on the test data of the two test
54.4% 476%  455% 542%  60.0% 52.3%  speakers of each fold of the cross-validation experimergs a
Lang. Lin = Mandarin, Loy = British English presented for a comparative analysis.

Groups | 6-7-8-9 6-7-8-0 6-7-9-0 6-8-9-0 7-8-9-0 Avg. ; ; ; : :
Kd glo | 707 s o — - o The two columns on the right side in Fig. 7 confirm that the

pro_glo | 6.96 6.97 6.91 6.93 6.97 6.95 best solution in the case of Mandarin and English was actiieve
diff. 3%.%/ gélgo/ gélséo/ o?.’é37% 0.212080 3%.%%/0 by only f_;lpplying the proposed approac_h to state mapping
K dec 7.'19" =5 > 5 0 15 -5 =5 construction and using a global transform in adaptanms_TEh
pro_dec | 7.06 708 6.99 702 710 705 understandable. Firstly, one purpose of using a regrestass
diff. 0.13 0.14 0.18 0.17 0.13 0.15 tree in speaker adaptation is to capture speaker informatio
41.7%  46.1%  41.7%  47.5%  42.4% 43.9% iy gdaptation data at an increasingly finer grained level by
dividing and clustering model distributions according heit
Table I1X shows that in comparison with mapping rules bgroximity in the model space into different regression séss
tween Mandarin and English, a significantly larger promorti and then estimating respective transforms for these dasse
of state mapping rules between German and English remairg&etondly, adaptation algorithms like CMLLR blindly handle
unchanged after the proposed approach was applied, whathkinds of mismatch (in terms of speaker, language, raogrd
suggests that the state mapping rules between German andironment, etc) between synthesis models and adaptation
English constructed under the minimum KLD criterion weredata with a single set of transforms. Thus as the number of
more reliable than those between Mandarin and English. Thidaptation transforms increase, more Mandarin-specii-in
is also reflected in the fact that MCD reduction concermnation that had no relation to speaker identity is inadvelye
ing Mandarin and English was greater than that concerniogptured from adaptation data. Given the substantialréifiee




—e—kId_pro ——— pro_pro

—e— kid_pro —=—— pro_pro

—e— kid_pro ——— pro_pro

10

—e— kid_pro —— pro_pro

69 T T Kiddecy g
= ec
o] o] o] ® 755k — - o XA dec)
g o T 6585 g7
° S 6.55 o S g
E g g 6.8 pro_dec E )
5 S B5p Yoo K dee) 6.75 B g 74 - pro_dec
D oeel \ o N kid_dec ) o o 74
T T T k)
= =~ 6.45 = 6.7 Z
a a a a 7%
Q54 \\\—K,,._*‘ pro_dec g 64 \\\_H pro_dec < 665 Q 73
’ 6.6 \ 7.25b 0
0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18
number of transforms (GM1) number of transforms (GF1) number of transforms (MMh) number of transforms (MF1)
l —=— kid_pro ——— pro_pro ‘ l —=— kid_pro ——— pro_pro ‘ l —=— kid_pro ——— pro_pro ‘ l —e— kid_pro ——— pro_pro ‘
o I I L - ____.___kdde] =705
S 6 g 6.45 g 755 g 7,,*,,,,7,,,14@_@&
@ 3 3 @ pro_dec
=P R, G S S SO Kddec| 2 64 L e o - - ey e < 695
o . o o o
o @ g7 L .. ..., prodec o 69
Ssg S 6.35 pro_dec ) S 685
a \ a) Q 74 a ™~
S Q 63 2 \\ Q 68
5.7 ﬂm pro_dec )
- 7.35 6.75t au?
0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18
number of transforms (GM2) number of transforms (GF2) number of transforms (MM3) number of transforms (MF2)
—e— kid_pro ——— pro_pro ‘ —=— kid_pro ——— pro_pro ‘ —=— kid_pro ——— pro_pro ‘ —e— kid_pro ——— pro_pro ‘
5.9 83—~ - — T - —_ kit der
o] ol o] kld_dec ]
£ 585 & & L _ - _ _._ _ . _ _ _ Kkddec] &
g = g 645 goxn
g 58 g 2 o & 82
c c c - c
5575 2 2 2 815 pro.dec
g s7 g 8 635 pro_dec g
8.1} ev ettt
8 565 5 3 3
s s s 63 s
56 S L prodec T 805f e
0 3 6 9 12 15 18 "o 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18
number of transforms (GM3) number of transforms (GF4) number of transforms (MM4) number of transforms (MF4)
—=— kid_pro ——— pro_pro ‘ —e— kid_pro ——— pro_pro ‘ —e— kid_pro ——— pro_pro ‘ —e—kId_pro ——— pro_pro ‘
5.9 7.4
< ol kid_dec ] o] kld_dec
k| - - Mddec) T T T gL Kddee] S F T T T T T T T T
8 8 g 73 8
§ § 58 § 7.5 o § 8
E_g \‘ pro_dec Eg ﬁg pro_dec E_g U
5’ 5.95 E 5.75 E 7.2 E 7.9
o Q Q O ro_dec
7.15 pro_
= = = =
59 \\V\AH 57 e pro_dec 7qLe 7.8
0 3 6 9 12 15 18 0 3 6 9 12 15 18 o 3 6 9 12 15 18 0 3 6 9 12 15 18
number of transforms (GM6) number of transforms (GF6) number of transforms (MM5) number of transforms (MF5)
l —=—Kkid_pro —— pro_pro ‘ l e Kid_pro —e— pro_pro ‘ l —e—Kkid_pro —— pro_pro ‘ l —e—Kkid_pro —— pro_pro ‘
6.4 6.7
] o] kld_dec ) kid_dec
% 6.38 £ § [~ Tm o So s e— R e
p S 6.65 ps 7 75
% 636 8 '2 % 7.45
S 634 S 66f e ooz Kd decy 5 69 S 74 pro._dec
m ~— o ) pro_dec m
= 62 pro_dec s AN S 68 .//KH S
[ ) S a 6. : a
0 63 ec § 6.55 pro_dec o o 73
= 6 s e = R \/\«H
6.28 6.5 6.7 oy e -
0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18 0 3 6 9 12 15 18

number of transforms (GM7)

number of transforms (GF7)

number of transforms (MM7)

number of transforms (MF7)

(a) male German/English speakers (b) female German/English speakers(c) male Mandarin/English speakergd) female Mandarin/English speakers

Fig. 7. MCD measurements in relation to the number of trans$oin various conditions (The four columns correspond téen@ermans, female Germans,
male Chinese and female Chinese, respectively. The leftpmst on each red curve indicates the result of gto and the leftmost point on each blue curve
indicates the result of kigylo.)
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. . L . TABLE XI
between Mandarin and English, it is not surprising that thgcp (pB) on THE DEVELOPMENT DATA OF THE TRAINING PARTITION&

quality of synthesized English is degraded immediatelgraft THE PERCENTAGE OF MAPPING RULES THAT REMAINED UNCHANGED
the number of adaptation transforms grows. AFTER STATE MAPPING ENHANCEMENT IN THE SECOND ITERATION
As for German and English, the two columns on the left Lang. Lin = German, - Lout = UK English
side in Fig. 7 show that the proposed approach can be appliegaps | 1234 1235 1245 1345 2343 Ag
g. /st propo PP PPHecelind| 579 592 586 586 587 | 586
to state mapping construction first and then to regressiomn 577 5.01 585 5.85 5.85 585
class tree growth, producing a further MCD reduction in most 64.7%  73.6% 658% 64.2%  56.6% 65.0%
i i 5.77 5.89 5.85 5.85 5.84 5.84
cases. The regression class trees in the case of Germgn amdext T I T N Y T
English were larger and produced greater MCD reductions; , ,
. . . . The baseline results are the outcome of_pro (i.e.,
compared with those in the case of Mandarin and English. jteration).
This demonstrates that owing to the phonological and amoust
similarity of German to English, adaptation algorithms are
better able to utilize greater quantities of adaptatioa dgaten . . . .
. gre 9 P Gt econd iteration of regression class tree growth are listed
an appropriate regression class tree. These two columas als
. . 8ble XIl.
show: (1) the MCD scores produced by applying the propose
approach to both state mapping construction and regression TABLE XII
class tree growth (prquO’ the red curves) are more Iiker toMCD (DB) ON THE DEVELOPMENT DATA OF THE TRAINING PARTITION&
d f h h R h d d b | . h THE NUMBER OF REGRESSION CLASS TREE LEAVES AFTER REGRESSION
ecrease further than those produced by applying the pedpos CLASS TREE GROWTH IN THE SECOND ITERATION
approach to regression C||_’:lSS tree growth only_(|ktd,_ the Lang. T = German, Lo = UK Engiish
blue curves); (2) when using enhanced state mapping rulesgroups | 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 Avg.
enhanced regression class trees generated by the proposeapeliné| 14 12 12 12 12 | 124
approach (propro, the red curves) eventually produced MCD {19 Si? 5'1931 5'1825 S'ff 5'?2 i’fg
scores _smaller than those the regression c_Iass tree fntjpvyi Using 577 5.89 585 585 584 | 584
the decision tree structure of the UK English average voice M-ext 16 14 12 12 13 | 13.4
models produced (pralec, the solid black horizontal lines), T The baseline results are the outcome of_pro (i.e., from the first
except for the speaker GM7. Thus it is concluded that the best iteration).

and most robust approach for German and English should be

the combination of state mapping enhancement and regressioy; i gpserved that the further improvements given by state

class tree enhancement by the proposed approach. mapping enhancement and regression class tree enhancement
in the second iteration are negligible, no matter whethed M-

D. Iterative Enhancement or M-ext was employed. Consequently, it can be confirmed that

The proposed approach can be applied to state mappﬁw@ingle iteration of state mapping construction.and rgsgnes
enhancement and regression class tree enhancemenvitgratc/ass tree growth by the proposed approach is sufficient for
in an alternating fashion. Namely, using the regressiosscla>erman and English.
tree obtained in the-th iteration, state mapping rules can be
enhanced again and then this regression class tree from EheSubjective Evaluation

i-th iteration can continue to grow in_ thet()-th iterat_ion. . Naturalness and speaker similarity of speech which was

. There_are two methods of enhancmg state mappings in %thesized by the proposed approach being applied to both
(z+1)-th |t_erat|on based on the regression class tree from %te mapping construction and regression class tree lgrowt
i-th iteration: (i.e., system propro) were assessed in the form of AB and

1) Construct state mapping rules from scratch. This metha@X tests respectively. The three systems to be compared

is denoted by “M-0" hereafter. against were a conventional intra-lingual speaker adiaptat

2) Construct state mapping rules by extending the decisigistem, kidglo (i.e. the starting point which the proposed

tree that has produced enhanced mapping rules in #sproach was applied to) and kiiec (i.e. the conventional,
i-th iteration. This method is denoted by “M-ext” heredata mapping-based CLSA system as in [12]). Each listener
after. was presented with 60 utterance pairs in total: 3 (pait€)

In the case of Mandarin-to-English adaptation, this is uiftest speaker groupsyp (tests). The sentence of each pair was
likely to have any impact due to the small size of the regogssirandomly selected from the 25 test sentences. All the natura
class trees obtained in the first iteration. However, resflthe and synthesized stimuli were in English and duration models
German-to-English adaptation suggest some potentialcélef the UK English average voice were used in the synthesis
both M-0 and M-ext were tested in the second iteration for thod all these stimuli. Subjective evaluation results candetl
language pair of German and English. MCD measuremeinsFig. 8.
after the second iteration of state mapping enhancement ar€&irstly, it is noted that the proposed approach mainly
listed in Table XI. improved naturalness of synthesized speech in the speaker-

Then enhanced state mapping rules obtained in the secamtbpendent experiments, as observed in the previousepeak
iteration were used to continue to grow regression clags tralependent experiments in Sec. IV. According to the speaker
obtained in the first iteration. MCD measurements after tliiscrimination experiments in [30], we hypothesize that a

from the first




10 German-English speakers; 17 listeners

preference (%) in naturalness

pro_pro pro_pro pro_pro

preference (%) in speaker similarity

10 German-English speakers; 13 listeners

pro_pro pro_pro pro_pro

(@

10 Mandarin-English speakers; 17 listeners

preference (%) in naturalness

pro_pro

pro_pro pro_pro

preference (%) in speaker similarity

(b)

10 Mandarin—-English speakers; 13 listeners

pro_pro

pro_pro

pro_pro

(©

Fig. 8. Results of subjective evaluations on the proposedoagh (Whiskers

indicate 95% confidence intervals.)

(d)
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different languages, the minimum KLD criterion on its own
may not be sufficient. It is also apparent that training spesik
proficiency in their non-native languages is important. A
high level of proficiency can potentially produce bettertesta
mapping rules, in other words, a greater MCD reduction.

The effectiveness and generality of the proposed approach
was then demonstrated on two language pairs (German &
English, Mandarin & English) in a speaker-independent set-
ting. It was further found that the less phonologically $ami
the input and output languages were, the less effective the
minimum KLD criterion was for creating links between the
two languages. The phonological/acoustic similarity oé th
input language to the output language also has a significant
impact on the size of a regression class tree that can be
grown by the proposed approach. It continues to be observed
that a large regression class tree is of much less use in the
current state mapping-based cross-lingual speaker atapta
framework.

The iterative enhancement under the MGE criterion shows
rapid convergence. This appears to suggest that thereitedim
room to improve the simple HMM state mapping technique
with the K-L divergence as a measure of state distribution si
ilarity. An explicit step to separate language informatimom

limiting factor in these experiments is the quality of sgeecspeaker characteristics in adaptation transforms is Bages
generated by cross-lingual speaker adaptation, whichemind(e g. [29]).

listeners’ judgment of speaker identity.

Secondly, it is observed that applying the proposed approac
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