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Abstract—HMM state mapping with the Kullback-Leibler
divergence as a distribution similarity measure is a simpleand
effective technique that enables cross-lingual speaker adaptation
for speech synthesis. However, since this technique does not take
any other potentially useful information into account for mapping
construction, an approach involving phonological knowledge in a
data-driven manner is proposed in order to produce better state
mapping rules – state distributions from the input and output lan-
guages are clustered according to broad phonetic categories using
a decision tree, and mapping rules are constructed only within
each resultant leaf node. Apart from this, previous research
shows that a regression class tree that follows the decisiontree
structure for state tying is detrimental to cross-lingual speaker
adaptation. Thus it is also proposed to apply this new approach to
regression class tree growth – state distributions from theoutput
language are clustered according to broad phonetic categories
using a decision tree, which is then directly used as a regression
class tree for transform estimation. Experimental resultsshow
that the proposed approach can reduce mel-cepstral distortion
consistently and produce state mapping rules and regression class
trees that generalize to unseen test speakers. The impacts of
the phonological/acoustic similarity between input and output
languages upon the reliability of state mapping rules and upon
the structure of regression class trees are also demonstrated and
analyzed.

Index Terms—data-driven enhancement, phonological con-
straints, minimum generation error, regression class tree, HMM
state mapping, cross-lingual speaker adaptation

I. I NTRODUCTION

T HE language barrier is a prominent hurdle to overcome
in order to facilitate better communication among people

across the globe. Real-time automated speech-to-speech (S2S)
translation [1]–[3] is a technology which can provide a means
to bridge the gap between languages and has the potential of
largely reducing the cost of relying upon human interpreters.
Therefore it has emerged as an important research topic. The
typical architecture of an S2S translator consists of three
modules: speech recognition, machine translation and speech
synthesis. The output voice of the speech synthesis module
usually comes from a professional speaker (e.g. the system
presented in [4] and the Google Translate service), who has
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recorded a large amount of training data, so that high quality of
output synthesised speech can be guaranteed. Such a speaker-
specific solution is mature, but training data preparation for
speaker-specific model training is inherently time-consuming
and costly. As a result, the speech synthesis module lacks
voice diversity. For the sake of voice diversity, research is
being conducted on personalisation of S2S translation, i.e. how
to make the output synthetic voice sound like a user’s input
voice despite the difference in language between the two. This
research would enable translated speech to be produced with
input voice characteristics of a user.

Owing to its statistical parametric nature, HMM-based
speech synthesis [5] is a very flexible framework, in which,
for example, voice characteristics, speaking styles and emotion
of a speaker can be easily modified by adjusting parameters
of HMM synthesis models. More specifically, HMM-based
speech synthesis lends itself particularly well to personalized
S2S translation since it includes a range of highly effective
speaker adaptation algorithms that centre around theaverage
voice synthesis paradigm [6], [7]. An average voice is an
artificial voice trained on speech data collected from multiple
real speakers (for example, by speaker adaptive training [8]),
ideally modelling speaker-independent, phonetic and prosodic
variations only. Before speech parameter generation, an av-
erage voice is adapted to a given target voice by speaker
adaptation algorithms like CMLLR [9]. As only tens of adap-
tation utterances (i.e., a few minutes long in total) are needed
from the target speaker for reproducing his/her voice, voice
diversity in output synthesized speech can be easily achieved.
Thus, the HMM-based speech synthesis framework and the
average voice paradigm are the foundation of this work. In the
context of personalized S2S translation, the termcross-lingual
speaker adaptation is generally used to refer to adapting the
voice characteristics of average voice synthesis models to
those of given adaptation data in a different language from
that of desired synthesis output. The respective languagesof
adaptation data and synthesis models are calledinput language
(Lin, i.e. the language spoken by the target speaker) andoutput
language (Lout, i.e. the language in which output speech is
synthesized) hereafter.

The lack of correspondence between phonological repre-
sentations of adaptation data inLin and underlying state
distributions of average voice synthesis models inLout presents
a difficulty to cross-lingual speaker adaptation, since there
is no straightforward way of associating the adaptation data
with these synthesis models. The state-of-the-art technique
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that can construct this correspondence is HMM state mapping
across languages, which is performed by training two sets of
average voice synthesis models inLin and Lout respectively
and finding the closest matching states between the two model
sets. Then adaptation data inLin can be associated with
average voice models inLout via resulting state mapping rules.
Since the HMM state mapping technique was introduced [10],
the minimum Kullback-Leibler divergence (KLD) criterion has
been typically employed to construct state mapping rules. This
purely data-oriented criterion for finding the closest matching
states across languages, though working acceptably well for
cross-lingual speaker adaptation [11]–[13], may not always
produce meaningful state mapping rules from the point of
view of phonological features, especially whenLin is sub-
stantially phonologically distinct fromLout. Less meaningful
state mapping rules are presumably more detrimental to the
performance of cross-lingual speaker adaptation, thus needing
to be identified and corrected.

Moreover, HMM state mapping has no explicit mechanism
to eliminate any damaging impact of the mismatch1 between
the input and output languages, though it constructs correspon-
dence between them. It was discovered that state mapping-
based cross-lingual speaker adaptation could not benefit from
the use of a regression class tree that followed the decision
tree structure for state tying in the training stage of synthesis
models [14]: given two substantially different languages like
Mandarin and English, a global transform was a better choice
[15]. Obviously, a global transform is not capable of fully cap-
turing a speaker’s voice characteristics and thus a new method
of growing a regression class tree needs to be investigated.

In this paper, we firstly propose a refinement of the min-
imum KLD criterion by introducing phonological knowledge
into HMM state mapping construction. The key idea of the
proposed approach is to group average voice state distributions
of two languages into phonologically consistent clusters,and
then to construct mapping rules onlywithin each of these
clusters as per the minimum KLD criterion. This grouping is
achieved by decision tree-based clustering [16]. Phonological
constraints (i.e., questions for node splitting) are discovered
node by node using a small set of development data in
Lout, on which resulting state distribution clusters maximally
provide reduction of mel-cepstral distortion (MCD). Secondly,
instead of constructing a regression class tree by following
the decision tree structure for state tying [14], we also apply
phonological constraints to the regression class tree: questions
for node splitting of a regression class tree (i.e., phonological
constraints) are discovered node by node using a small set of
development data inLout, on which a resulting regression class
tree maximally provides MCD reduction.

This paper is structured as follows: Cross-lingual speaker
adaptation (CLSA) is reviewed in brief in Section II. Our pro-
posed approach is elaborated in Section III. Speaker-dependent
and speaker-independent experiments are presented in Sections
IV and V respectively. Section VI provides conclusions and
insights on future research directions.

1i.e. the fact that their acoustic spaces, phoneme inventories, prosodic
patterns and so forth partially overlap

II. CLSA & HMM S TATE MAPPING

A target speaker’s voice can be reproduced by training
speaker-dependent HMM synthesis models on speech data
from the speaker alone [17]. Unfortunately, building robust
speaker-dependent models requires a large amount of train-
ing data from a target speaker. This requirement makes the
speaker-dependent solution expensive, time-consuming and
impractical for situations where diversity of synthetic voices
is expected. Due to the statistical parametric nature of HMM-
based speech synthesis [18], speaker adaptation techniques [9],
[19], [20] and the average voice synthesis paradigm [6], [7]
have been developed in order to address this problem. An
average voice can be regarded as an artificial, more adaptable
[21] voice trained on speech data collected from multiple
real speakers (and probably involving shared-decision-tree-
based context clustering [7, Ch. 4] and speaker adaptive
training [8]). By means of speaker adaptation and the average
voice synthesis paradigm, the voice characteristics of “source”
synthesis models can be adapted to those of a target speaker,
given only a small number of utterances in the target speaker’s
voice.

Unlike intra-lingual speaker adaptation, cross-lingual
speaker adaptation adapts the voice characteristics of average
voice synthesis models inLout into those of a target speaker
who can only provide adaptation data inLin. As Lin 6= Lout,
the inherent difficulty in cross-lingual speaker adaptation is
how to extract speaker characteristics fromLin and apply
them toLout without having access to any direct relationships
between phonological representations of adaptation data in
Lin and underlying state distributions inLout. Two types of
techniques have been investigated so far: i) phoneme mapping
[22]–[24], HMM state mapping [10]–[12] and speech feature
frame mapping [25]; ii) bilingual modelling [10], [26]–[28]
and speaker & language factorization [29]. Their common key
point is to establish the missing relationships, either explicitly
or implicitly.

This paper is focused on the investigation of HMM state
mapping. It is built upon the assumption that languages
have significant overlap in acoustic feature space and state
mapping provides an appropriate level of granularity to capture
this overlap while maintaining some correspondence between
acoustic units (e.g., phonemes). HMM state mapping was
introduced into cross-lingual speech synthesis by Qianet al.
[10]. Establishing state mapping rules is carried out in a data-
oriented manner, by finding the nearest state emission pdf
(say, Y ) of models in languageLA for each (say,X) of
the state emission pdfs of models in languageLB according
to a similarity measure of state emission pdfs (typically the
Kullback-Leibler divergence). HMM state mapping works like
a functionMLA 7→LB

(X) = Y , which captures the relation-
ships betweenLin and Lout at the sub-phonemic level. It is
hoped that state mapping rules reflect correspondence between
two different languages and are irrelevant to any specific
speaker, so average voice synthesis models [6], [7], which are
speaker-independent, are employed in the construction of state
mapping rules.

Wu et al. proposed two manners to utilize HMM state
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mapping rules [12]. Thedata mapping manner functions as
follows: i) to apply state mapping rules betweenLin andLout

to adaptation data such that the adaptation data inLin is
represented as a state sequence inLout; ii) to carry out “intra-
lingual” speaker adaptation on the side ofLout. As reported
in [12], the data mapping manner provides good speaker
similarity, but a slight foreign accent can be perceived and
the speech quality is degraded.

As for the transform mapping manner proposed in [12],
conventional intra-lingual speaker adaptation on the sideof Lin

is performed first. Then resultant speaker-specific transforms
for Lin are associated with state distributions of synthesis
models inLout through state mapping rules betweenLout and
Lin. So the average voice synthesis model inLout can be
adapted with the transforms forLin. As reported in [12], the
transform mapping manner provides good speech quality, but
speaker similarity is degraded.

The lack of anLin accent in the synthesized speech inLout

is sometimes considered detrimental to speaker similarity, for
in generalLin is the native language of a target speaker and
his/herLout accent is more or less affected byLin. This does
not matter in the case of cross-lingual speaker adaptation,as
speaker similarity should be actually judged by comparing
synthesized speech inLout with original speech inLin. Using
original speech inLout, whose accent is fairly likely to be
affected byLin, as reference speech is only for making it
manageable to evaluate speaker similarity during researchon
cross-lingual speaker adaptation [30].

III. E NHANCING STATE MAPPING-BASED CLSA USING

PHONOLOGICAL KNOWLEDGE IN A DATA -DRIVEN

MANNER

In this paper HMM state mapping is presented from the
data mapping perspective since previous analysis [13], [15]
has shown a preference for data mapping, though the proposed
approach may equally generalize to transform mapping as
well. We also focus on adaptation of spectrum, which is the
dominant component of speaker identity [31]. Since the spec-
tral feature is mel-cepstrum, mel-cepstral distortion (MCD)
is employed as the objective measure of spectrum adaptation
performance.

A. Optimality of Purely KLD-Based State Mapping Construc-
tion

It is natural to question the optimality of the minimum KLD
criterion for state mapping construction, since it is purely data-
oriented without taking any other potentially useful knowl-
edge into consideration. To test its optimality, a cross-lingual
speaker adaptation experiment in the data mapping manner
as in [15] was conducted: adapting US English average voice
models trained on WSJ-SI84 with 100 Mandarin adaptation
utterances in speaker MMh’s voice recorded in a soundproof
and anechoic chamber (see Sec. IV-A1). A slight difference in
this experiment was that this time HMM state mapping rules
defined by thek-th best match inLout were used for each state
in Lin, instead of always selecting the best match satisfying
the minimum KLD criterion (i.e.,k ≡ 1).

TABLE I
RESULTS OBTAINED UNDER THEk-TH BEST MATCH CRITERION FOR

CROSS-LINGUAL SPEAKER ADAPTATION IN THE DATA MAPPING MANNER

k MCD (dB) k MCD (dB)
1 7.67 10 7.76
2 7.64 20 7.98
3 7.64 30 8.16
4 7.64 40 8.38
5 7.80 50 8.48

We evaluated for ten values ofk in turn and calculated
corresponding MCD. Results in Table I show that while MCD
does generally increase with increasingk, this is only apparent
for k>5. This phenomenon suggests that while KLD is an
effective measure of model distribution similarity, theremay
exist additional latent factors that can be combined with itto
achieve more effective state mapping rules.

B. Attempt to Introduce Simple Phonological Knowledge into
State Mapping Construction

Having demonstrated that the minimum KLD criterion may
not be optimal for constructing HMM state mapping rules,
it was hypothesized that the most significant missing factor
was the potential lack of phonological consistency in the
constructed mapping rules. For example, a state representing
vowels could be mapped to a state representing consonants
when minimum KLD is the only criterion. Obviously this
kind of mapping rule does not make much sense. Hence,
such undesirable mapping rules may be avoided by taking
advantage of the knowledge of underlying phoneme categories.

Taking the case ofk=1 in Table I (i.e., the data mapping
baseline), state distributions of the average voice synthesis
models in English and Mandarin were categorized according
to seven broad phoneme categories (silence, vowel, plosive,
fricative, affricate, approximant and nasal) and then state map-
ping rules were constructed under the minimum KLD criterion
within each of the seven categories. A state was assigned to a
phoneme category, providing that one of the central phone
contexts to which the state had been tied belonged to the
category. Thus, it was possible for a state to be a member
of more than one phoneme category.

The US English average voice models were then adapted
using 100 Mandarin adaptation utterances in speaker MMh’s
voice and the new set of 2975 state mapping rules in total
of mel-cepstral features. Then mel-cepstral distortion was
calculated and is presented in Table II.

TABLE II
OBJECTIVE EVALUATION RESULTS OF DATA MAPPING SYSTEMS USING

DIFFERENT METHODS OF STATE MAPPING CONSTRUCTION

Method of state mapping construction MCD (dB)
minimum KLD criterion only 7.67

phonological knowledge-guided 7.48

The introduction of phonological knowledge into state map-
ping construction had 1342 out of the 2975 state mapping rules
corrected. Table III shows the details of the 1342 “incorrect”
state mapping rules that resulted from the use of only the
minimum KLD criterion.
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TABLE III
DETAILS OF “ INCORRECT” STATE MAPPING RULES THAT RESULTED FROM

ONLY THE MINIMUM KLD CRITERION

State category # of State category # of
Man. Eng. map. Man. Eng. map.

S P 534 V Ap+F 4
V Ap 160 Af+N+P Ap 3
N V 86 Ap F 3
Af F 59 V F+S 3
N Ap 33 Af N 2
P F 31 Af+F P 2
Af P 28 Ap F+P 2
P S 26 Ap+N V 2
S N 23 Ap+S V 2
S F+P 21 F+P S 2
S Af+F+P 20 S Af+P 2
F S 18 V Ap+N+P 2

Ap S 17 V F+P 2
Ap V 15 Af Ap 1
S V 15 Af+F S 1
F V 14 Af+N+P F 1
F P 13 Af+P F 1
P Ap 12 Af+P S 1
V F 11 Ap+N P 1
Ap P 10 Ap+N S 1
V P 10 Ap+P+S F 1

Af+N F+P 9 Ap+S F+P 1
S F 9 Ap+S P 1
N P 8 F Af+P+V 1
Ap N 7 F+N Ap 1
F Ap 7 F+N V 1
S Ap 7 P S+V 1
V N 7 P V 1
V S 7 P+S Ap+F 1
Af F+P 6 S Af+P+V 1
Af F+S 6 S Ap+F 1
P F+S 6 S Ap+F+N+P+V 1
Af S 5 S Ap+N+P 1

Af+N P 5 S+V Ap 1
F+N S 5 S+V P 1

N S 5 V Af+F+P 1
Af+N F+S 4 V Af+F+P+S 1

P F+S+V 4 V Af+P 1
P N 4 V Ap+F+S 1

S=silence, V=vowel, P=plosive, F=fricative, N=nasal
Af=affricate, Ap=approximant

Table II clearly shows that phonological knowledge can help
to improve state mapping rules constructed under the minimum
KLD criterion. This finding indicates that phonologically less
meaningful mapping rules are harmful in practice and should
be eliminated. Therefore, the investigation of further means
to exploit phonological knowledge was pursued as detailed in
the remainder of this paper.

C. Phonological Knowledge-Guided State Mapping Construc-
tion

In Sec. III-B, a naive grouping of average voice state
distributions was applied based on phonologically consistent
clusters, such that state mapping rules were constructed under
the minimum KLD criterion, butwithin each of these clusters.
Hence an HMM state inLin could only be mapped to its
phonologically consistent counterpart inLout and vice versa.
Previous evidence is noted that usually purely knowledge-
based approaches are not as effective, for instance, the manual
phoneme mapping construction between Mandarin and En-
glish presented in [24]. Preferably, a method of introducing

phonological knowledge should be developed in a data-driven
manner. As a result, decision tree-based state clustering is
employed in this work in a similar fashion to that in syn-
thesis model training. Well-trained HMM state distributions
of average voice synthesis models inLin andLout are grouped
using a decision tree such that each leaf node of the tree is a
phonologically consistent cluster. Optimization of this tree is
performed such that the MCD of development data inLout is
minimized.

1) Question Design: Out of a huge number of phonetic and
prosodic contexts used in HMM-based speech synthesis, the
most important ones for spectrum modelling are assumed to
be the triphone part – left phoneme (“L-”), central phoneme
(“C-”) and right phoneme (“R-”). Consequently, the triphone
contexts are considered an essential factor for grouping aver-
age voice state distributions ofLin andLout. In particular, we
use the seven broad phoneme categories based on articulation
manners that are commonly shared across languages: silence,
vowel, plosive, fricative, affricate, approximant and nasal.
Thus for triphone contexts, there are a total of 21 questions
used in the decision tree-based state clustering/grouping.

A state distribution belongs to a particular category if any
context-dependent model to which the state is tied belongs to
this category. Therefore, a state may be associated with mul-
tiple questions. For example, a state distribution is associated
with both questions “Caffricate” and “C plosive” if it is tied
to context-dependent phones*-ch+*, *-k+* and*-p+*.

2) Question Selection Criterion: The maximum likelihood
criterion has been employed in decision tree-based clustering
during synthesis model training for selecting the best question
to split a node [16]. Nonetheless, the goal of speech synthesis
is to generate speech as close as natural speech, which is only
achieved indirectly through the maximum likelihood criterion.

The minimum generation error (MGE) criterion was pro-
posed [32] to more directly target the goal of speech synthesis.
“Generation error” refers to the distortion of generated speech
parameters from corresponding natural speech parameters,
which can be defined as an objective metric (e.g. mel-cepstral
distortion). The MGE criterion has been applied to model
parameter training [32] as well as decision tree-based state
clustering [33], and was found to outperform the maximum
likelihood criterion. According to this criterion, the question
selected to split a decision tree node should be the one that
minimizes a predefined measure of distortion over a particular
set of speech data (the training data of synthesis models or
a new set of development data) – this idea is used in the
proposed approach to grow decision trees for state mapping
construction.

Mel-cepstral distortion is chosen to measure generation
error and is minimized on development data inLout based on
adaptation of synthesis models using data inLin. Therefore a
bilingual corpus (inLin andLout) is required in the proposed
approach. The bilingual corpus does not need to be large as it
is not used for model training like in [10].

Such a bilingual corpus is indispensable when the focus
of research is on adapting only speaker characteristics in
the context of cross-lingual speaker adaptation. Without a
bilingual corpus, the difference in speaker between synthesis
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models and adaptation data would be always handled together
with that in language by the same adaptation transforms, which
are actually supposed to capture only characteristics of a target
speaker’s voice.

3) Procedure for Enhancing HMM State Mapping Con-
structions: Bilingual data (inLin and Lout) from a certain
number of speakers is collected such that adaptation data in
Lin is used to estimate adaptation transforms and development
data inLout is used for optimization according to the MGE
criterion. A separate set of test data is retained, which has
no intersection with training, adaptation or development data.
The overall procedure can be summarized as follows:

1) For each of theN emitting states of an HMM, form one
root node by pooling all average voice state distributions
of Lin andLout that correspond to this emitting state.

2) Find the next non-terminal leaf nodeX across theN
decision trees in the manner of breadth-first search.

1

76

2

98

3

1110

4 5

state 2 state 3 state 4 state 5 state 6

node X

Fig. 1. Illustration of step 1 and step 2 in the case ofN=5. The numbers
within the nodes indicate the order in which the nodes are split.

3) Find the best split for leaf nodeX under the MGE
criterion. If either of the following conditions is true,
X is considered a terminal leaf node. OtherwiseX is
split using the selected question.

a) One or both child nodes contain state distributions
from only one language;

b) The best split produces an MCD reduction less than
thresholdε∆MCD (ε∆MCD > 0).

4) Go back to Step 2 or stop when all leaf nodes are
terminal leaves.

In order to find the best split for a nodeX in Step 3
above, average voice state distributions belonging toX are
categorized according to every question and the improvement
is found by:

1) Recalculating state mapping rules between the input and
output languages based on each of the possible node
splits;

2) Performing cross-lingual speaker adaptation in the nor-
mal data mapping manner using these newly formed
mapping rules inX ’s child nodes;

3) Calculating MCD on held-out development data. The
question producing the greatest reduction is selected.

This procedure is visualised in Fig. 2, where node 3 (X=3) in
Fig. 1 is taken as an example.

As [32] and [33] report, MGE is a remarkably time-
consuming optimization criterion, especially when it is used
for decision tree-based clustering. Fortunately, as thereare
merely 21 questions altogether in the proposed approach, the
computational cost is still manageable. Note that the proposed
approach degenerates into the conventional state mapping
construction if none of theN root nodes are split (i.e., no
phonologically consistent clusters are created).

Ques 1 Ques 21

3 3

CLSA, synthesis, 

MCD calcula!on

CLSA, synthesis, 

MCD calcula!on

Ques i

max. MCD reduc!on

3

Fig. 2. Procedure of finding the best question to split a node under the MGE
criterion for state mapping construction. The blue/red distributions indicate
those belonging toLout/Lin and the background colours indicate that the state
distributions belong to different triphone categories.

D. Phonological Knowledge-Guided Regression Class Tree
Construction

In previous experiments [15], it was demonstrated that
regression class trees derived using the usual approaches based
on either state tying [14] or Euclidean clustering [34, Ch.
9] did not lead to effective cross-lingual speaker adaptation.
Thus it is proposed to apply the approach elaborated in Sec.
III-C to regression class tree growth. The same question set,
question selection criterion and principle of growing a tree
can be applied. HMM state mapping rules are fixed while a
regression class tree is generated by the proposed approach.
The overall procedure can be summarized as follows:

1) Form the root node of a regression class tree by pooling
all the average voice state distributions ofLout.

2) Find the next non-terminal leaf nodeY in the regression
class tree in the manner of breadth-first search.

3) Find the best split for non-terminal leaf nodeY under
the MGE criterion:

a) Split Y according to each of thevalid questions
(“valid” means that a question does not produce a
child containing no state distributions);

b) Perform cross-lingual speaker adaptation with the
current regression class tree structure;

c) Calculate MCD on held-out development data.

The question producing the greatest MCD reduction
exceeding thresholdε∆MCD (ε∆MCD > 0) is selected for
splitting Y . OtherwiseY is considered a terminal leaf
node.

4) Go back to Step 2 or stop growing the regression class
tree when all leaf nodes are terminal leaves.

This key idea of the above process is visualised in Fig. 3,
whereY =3 is taken as an example.
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1

32

Ques 1 Ques 21

3 3

CLSA, synthesis, 

MCD calcula!on

CLSA, synthesis, 

MCD calcula!on

Ques i

3

max. MCD reduc!on

54

now trying to

split node 3

regression class tree that is 

being generated

76

node Y

Fig. 3. Key idea of the process of finding the best question to split a node
of a regression class tree under the MGE criterion. The blue distributions
indicate those belonging toLout and the background colours indicate that the
state distributions belong to different triphone categories. The numbers within
the nodes indicate the order in which the nodes are split.

Note that the above approach degenerates into cross-lingual
speaker adaptation based on a single global transform if no
split that reduces MCD on the root node is produced. In
such cases, the ability to transfer speaker-specific information
between the particular pair of input and output languages via
the state mapping technique is limited, as we would expect
for two very disparate languages.

Due to the use of the MGE criterion, the proposed approach
needs much longer time to generate a regression class tree
than conventional ones (e.g. [14] and [34, Ch. 9]). However,
this process needs to be carried out only once and a resultant
regression class tree applies to any target speaker. Thus the
computational cost is still acceptable.

IV. SPEAKER-DEPENDENTEXPERIMENTS

A. Experimental Setup

We trained two sets of average voice, single Gaussian-
per-state synthesis models on the corpora SPEECON (12.3
hours in Mandarin asLin) and WSJ-SI84 (13.7 hours in
US English asLout) respectively using the HTS-2007 system
[35] for speaker-dependent2 experiments. The HMM topology
used was five-state and left-to-right with no skip. Speech
features were 39th-order STRAIGHT [37] mel-cepstra plus
one dimension of energy,logF0, five-dimensional band ape-
riodicity, and their delta and delta-delta coefficients, extracted
from 16kHz recordings with a window shift of 5ms. All the
speaker-dependent cross-lingual adaptation experimentswere
performed on these two sets of average voice models, using the
CSMAPLR [38] algorithm for speaker adaptation and global
variances calculated on adaptation data for synthesis.

1) Speakers and Speech Data: Three male (MMh, MM3
and MM6) and two female (MF2 and MF7) speakers were
selected from a bilingual corpus recorded in a soundproof,
anechoic chamber [39] for speaker-dependent experiments.
The five speakers read exactly the same prompts in both

2“Speaker-dependent” in this section means HMM state mapping rules are
enhanced on the basis of development data from a single speaker. These
speaker-dependent experiments were originally presentedin [36].

Mandarin and English. MF2 is a truly bilingual speaker of
Mandarin and English, and the remaining four are native Man-
darin speakers. MMh, MF7 and MM3 have reasonably natural
English accents3 but MM6’s English is strongly Mandarin-
accented. Therefore, only MF2, MMh, MF7 and MM3 were
considered training speakers of enhanced state mapping rules.

Adaptation data of each of the five speakers consisted of 100
Mandarin utterances (files 0026∼0125). Development data of
each of the four training speakers consisted of 100 English
utterances (files 0026∼0125). Test data of each of the five
speakers consisted of 25 English utterances (files 0001∼0025).

2) Systems for Comparison: Four groups of experiments
were conducted. Within each group, state mapping rules of
mel-cepstra between Mandarin and English were derived from
one of the four training speakers by the proposed approach
while those oflogF0, band aperiodicity and duration were
still constructed under only the minimum KLD criterion.
Then all these mapping rules were used for cross-lingual
adaptation of the US English average voice towards each of
the four remaining speakers.ε∆MCD was set to 0.0005dB. The
baseline system merely involved the minimum KLD criterion
in construction of state mapping rules of all the streams of the
state emission pdfs.

Only global transform-based adaptation was investigated in
these speaker-dependent experiments. Investigation of regres-
sion class-based adaptation is provided in Sec. V.

B. Objective Evaluation

Original recordings of the test data of the five speakers were
aligned using the English average voice models and speech
samples for objective evaluation were synthesized using the
resulting durations. Results of objective evaluation of the four
groups of cross-lingual speaker adaptation experiments are
presented in Fig. 4 and Table IV. These MCD measurements
were calculated on the entire test data set of the five speakers.

TABLE IV
MCD REDUCTION (∆MCD) IN DB PRODUCED BY THE PROPOSED
APPROACH, I .E., THE DIFFERENCE BETWEEN THE LEFTMOST AND

RIGHTMOST VALUES ON EACH CURVE INFIGURE 4

TrnSpkr
Data set MF2 MMh MM3 MF7
MF2 dev 0.36
MF2 test 0.39 0.21 0.26 0.23
MMh dev 0.29
MMh test 0.20 0.26 0.16 0.17
MM3 dev 0.21
MM3 test 0.14 0.14 0.21 0.11
MF7 dev 0.23
MF7 test 0.16 0.16 0.13 0.25
MM6 test 0.05 0.06 0.02 0.09

It can be seen from Fig. 4 that enhanced mapping rules con-
structed on the development data of a single bilingual speaker
consistently provide improvement on his/her own test data.
When applying such mapping rules to other target speakers,
it is observed that the MCD curves of these target speakers

3“Natural” refers to English accents that people speaking English as their
first language have and that are not affected by the phonemes and prosody of
other languages.
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Fig. 4. MCD in relation to the leaf node count during decisiontree
generation (Crosses indicate minimums on the curves. “TrnSpkr dev” refers
to the development data of respective training speakers. “test” refers to test
data. The six points on the vertical axis in each sub-figure come from the
baseline.)

still have a nearly monotonically decreasing tendency. In other
words, mapping rules constructed from a single speaker still
maintained a degree of speaker independence. The exception
is MM6, who received the least MCD reduction among all the
speakers. This result may come from the fact that MM6 has the
most pronounced foreign accent when speaking English. State-
of-the-art cross-lingual speaker adaptation techniques are not
effective at transferring accent information so that the average
voice synthesis models in natural US English retain their US
accent even after adaptation. The MCD measurements on his
English test data thus inherently give lower reductions dueto
the disagreement in accent between the natural and synthesized
utterances.

C. Impact of Phonological Knowledge on Mapping Rules

A total of 2975 mapping rules of mel-cepstra were con-
structed, one for each of the state distributions in the set of
Mandarin average voice models. Fig. 5 shows howk varies
under the data-driven use of phonological constraints (seethe
definition of k in Sec. III-A).

Two common traits are observed across the four histograms
in Fig. 5. Firstly, the bars corresponding tok=1 are signif-
icantly taller than any others and mapping rules are concen-
trated in the range ofk<20. Thus, the minimum KLD criterion
continues to play a dominant role and KLD remains as a
good measure of phonological similarity of context-dependent
model distributions from two different languages. Secondly, a
significant proportion (with a minimum of 59.9%) of state
mapping rules were selected withk>1 after phonological
constraints were introduced. Therefore, it is also evident
that the minimum KLD criterion on its own may not be
sufficient, as suggested by the initial analysis in Sec. III-A.
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Fig. 5. Histogram of KLD rank (k) using the proposed approach

It is also interesting to note from both Table IV and Fig. 5
that the proposed approach has the most impact when the truly
bilingual speaker MF2 was the training speaker, in terms of
the number of changed mapping rules, MCD reduction and
providing the best generalization to other speakers (except
MM6, as discussed previously).

D. Questions Used for Root Node Splitting

One means to analyze the generalization of the proposed
approach is to take into account questions which are close
to the root nodes of the decision trees. Table V shows the
questions associated with the root node of each decision tree
for each of the training speakers.

TABLE V
ROOT NODE QUESTIONS FOR THE EMITTING STATES(2∼6) IN AN HMM

MF2 MMh MM3 MF7
2 L-nasal L-nasal L-nasal L-nasal
3 C-nasal C-nasal C-vowel C-nasal
4 C-nasal C-nasal C-affricate C-affricate
5 R-fricative C-affricate C-nasal C-affricate
6 L-silence L-plosive L-plosive L-silence

It is interesting to see that most questions chosen by the
proposed method are shared across speakers, thereby confirm-
ing that phonological constraints plays a remarkably speaker-
independent role in enhancing state mapping rules.

E. Subjective Evaluation

Formal subjective evaluation was performed in the form
of AB and ABX listening tests for naturalness and speaker
similarity, respectively. All of the speech samples were se-
lected from the experiment group corresponding to the top-
left sub-figure in Fig. 4, since MF2 seems to provide the
best generalisation to other speakers. Using the baseline and
the proposed approach, five sentences from the 25 used in
the objective evaluation were synthesized for each of the five
speakers. As a result, each listener was presented with 50 pairs
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of utterances in total: 5 (pairs of sentences)×5 (speakers)×2
(tests). Note that unadapted duration models of the English
average voice were used and that original reference speech in
the speaker similarity test was in English. Formal subjective
evaluation results are shown in Fig. 6.
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Fig. 6. Subjective evaluation results produced on the basisof MF2-dependent
state mapping rules (Whiskers indicate 95% confidence intervals.)

Fig. 6 suggests that the proposed approach produced statis-
tically significant improvement in naturalness with an overall
preference score of 55.2%, while speaker similarity was not
greatly impacted. To be more specific, it was observed that
speech was produced with less “muffled” characteristics by
the proposed approach.

V. SPEAKER-INDEPENDENTEXPERIMENTS

The effectiveness and generalization across speakers of
the proposed approach to state mapping construction have
been demonstrated in Sec. IV. It has been also confirmed
that while KLD is a good objective function for determining
state mappings, the minimum KLD criterion on its own
may produce phonologically inconsistent associations between
states, thereby leading to sub-optimal results. In this section
we examine enhanced state mapping rules on speech data of
multiple bilingual speakers and the use of a regression class
tree in the speaker adaptation process.

A. Experimental Setup

We trained three sets of average voice, single Gaussian-
per-state synthesis models on the corpora GlobalPhone (13.4
hours in Mandarin asLin), PHONDAT1 (9.6 hours in German
as Lin) and WSJCAM0 (18.9 hours in UK English asLout)
respectively using the HTS-2010 system [40] for speaker-
independent4 experiments. The use of WSJCAM0 in addition
to WSJ-SI84 was for testing the proposed approach on more
corpora. Mandarin from the Sino-Tibetan language family and
German from the West Germanic language family were chosen
as input languages because they are “far from” and “close to”
English respectively, which is also a West Germanic language.
This should give us some insights into the extent to which
the dissimilarity ofLin and Lout can affect the performance
of cross-lingual speaker adaptation. Table VI indicates the
similarity of Mandarin/German to English from another angle.

4“Speaker-independent” in this section means HMM state mapping rules
and regression class trees are enhanced on the basis of development data from
multiple speakers.

TABLE VI
STATISTICS OFKLD OVER THE ENTIRE STATE MAPPING SETS OF THE TWO

LANGUAGE PAIRS WHEN ONLY THE MINIMUM KLD CRITERION WAS
APPLIED TO MAPPING CONSTRUCTION

Language pair KLD mean KLD median
German & English 23.7 18.2

Mandarin & English 75.8 19.0

The HMM topology used was five-state and left-to-right
with no skip. Speech features were 39th-order STRAIGHT
[37] mel-cepstra plus one dimension of energy,logF0, 21-
dimensional band aperiodicity, and their delta and delta-delta
coefficients, extracted from 16kHz recordings with a window
shift of 5ms. All of the speaker-independent cross-lingual
speaker adaptation experiments were performed using the
CSMAPLR [38] algorithm, transforms being estimated from
one iteration. Global variances for synthesis were calculated
on adaptation data.

Ten Mandarin-English speakers (Chinese) [39] and ten
German-English (Germans) [41] speakers were used in
speaker-independent experiments. They all have reasonably
natural English accents (see the accent rating in [39], [41]) and
were grouped as shown in Table VII. The groupings were used
for cross validation since the number of available bilingual
training speakers was limited.

TABLE VII
GROUPING OF TRAINING SPEAKERS IN SPEAKER-INDEPENDENT

EXPERIMENTS(FOR EACH LANGUAGE PAIR, EACH TIME FOUR SPEAKER

GROUPS WERE USED AS THE TRAINING PARTITION AND THE TWO

LEFTOVER SPEAKERS WERE TEST SPEAKERS.)

Group ID 1 2 3 4 5
male Germans GM1 GM2 GM3 GM6 GM7

female Germans GF1 GF2 GF4 GF6 GF7

Group ID 6 7 8 9 0
male Chinese MMh MM3 MM4 MM5 MM7

female Chinese MF1 MF2 MF4 MF5 MF7

Adaptation data of each of the 20 speakers consisted
of 100 Mandarin or German utterances (files 0026∼0125).
Development data consisted of 100 English utterances (files
0026∼0125) and test data consisted of 25 English utterances
(files 0001∼0025).

B. Systems for Analysis of the Proposed Approach

Experiments were conducted in the form of 5-fold cross
validation with gender balance maintained. There were always
four male and four female speakers (i.e., four speaker groups
in Table VII) in the training partition and one male and one
female speakers (i.e., the leftover speaker group) in the test
partition.

In each experiment, enhanced state mapping rules of mel-
cepstra between English and German/Mandarin were derived
from the training partition by the proposed approach, while
those of logF0, band aperiodicity and duration were still
constructed under the minimum KLD criterion. These mapping
rules were used for cross-lingual adaptation of the UK English
average voice towards each of the test speakers.

Likewise, the proposed approach to growing a regression
class tree for mel-cepstra was applied to the training partition
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of each experiment. Global transforms were employed for
logF0, band aperiodicity and duration. The resulting regres-
sion class tree and global transforms were used for cross-
lingual adaptation of the UK English average voice towards
each of the test speakers.

Four settings (proglo, pro dec, kld pro and propro as
described in Table VIII) were evaluated in the speaker-
independent experiments.ε∆MCD was set to 0.0005dB.

TABLE VIII
SETTINGS OF SPEAKER-INDEPENDENT EXPERIMENTS

State mapping construction Regression class tree growth
kld glo minimum KLD criterion
pro glo proposed approach

global transform

kld dec minimum KLD criterion
pro dec proposed approach

decision tree structure

kld glo global transform
kld pro

minimum KLD criterion
proposed approach

pro glo global transform
pro pro

proposed approach
proposed approach

C. Objective Evaluation

Original recordings of development and test data of the 20
speakers were aligned using the UK English average voice
models and speech samples for objective evaluation were
synthesized using resulting durations. Results of objective
evaluation on the development data set are presented in Tables
IX and X.

TABLE IX
MCD (DB) ON THE DEVELOPMENT DATA OF THE TRAINING PARTITION&

THE PERCENTAGE OF MAPPING RULES THAT REMAINED UNCHANGED

Lang. Lin = German, Lout = British English
Groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 Avg.
kld glo 6.04 6.13 6.08 6.07 6.08 6.08
pro glo 5.93 6.04 5.98 6.00 5.99 5.99

diff. 0.11 0.09 0.10 0.07 0.09 0.09
50.2% 56.8% 45.5% 49.3% 52.1% 50.8%

kld dec 5.93 6.04 6.00 5.99 6.00 5.99
pro dec 5.82 5.94 5.88 5.91 5.92 5.89

diff. 0.11 0.09 0.12 0.09 0.08 0.10
54.4% 47.6% 45.5% 54.2% 60.0% 52.3%

Lang. Lin = Mandarin, Lout = British English
Groups 6-7-8-9 6-7-8-0 6-7-9-0 6-8-9-0 7-8-9-0 Avg.
kld glo 7.07 7.09 7.04 7.06 7.08 7.07
pro glo 6.96 6.97 6.91 6.93 6.97 6.95

diff. 0.11 0.12 0.13 0.13 0.10 0.12
39.4% 25.6% 29.3% 35.7% 22.8% 30.6%

kld dec 7.19 7.22 7.17 7.19 7.23 7.20
pro dec 7.06 7.08 6.99 7.02 7.10 7.05

diff. 0.13 0.14 0.18 0.17 0.13 0.15
41.7% 46.1% 41.7% 47.5% 42.4% 43.9%

Table IX shows that in comparison with mapping rules be-
tween Mandarin and English, a significantly larger proportion
of state mapping rules between German and English remained
unchanged after the proposed approach was applied, which
suggests that the state mapping rules between German and
English constructed under the minimum KLD criterion were
more reliable than those between Mandarin and English. This
is also reflected in the fact that MCD reduction concern-
ing Mandarin and English was greater than that concerning

German and English. These phenomena demonstrate that the
phonological similarity of the input and output languages
impacts on the effectiveness of the minimum KLD criterion
in creating links between the two languages.

TABLE X
MCD (DB) ON THE DEVELOPMENT DATA OF THE TRAINING PARTITION&

THE NUMBER OF REGRESSION CLASS TREE LEAVES

Lang. Lin = German, Lout = British English
Groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 Avg.
kld glo 6.04 6.13 6.08 6.07 6.08 6.08
kld pro 5.87 6.00 5.94 5.93 5.95 5.94

diff. 0.17 0.13 0.14 0.14 0.14 0.14
19 9 18 14 14 14.8

pro glo 5.93 6.04 5.98 6.00 5.99 5.99
pro pro 5.79 5.92 5.86 5.86 5.87 5.86

diff. 0.15 0.12 0.13 0.13 0.12 0.13
14 12 12 12 12 12.4

Lang. Lin = Mandarin, Lout = British English
Groups 6-7-8-9 6-7-8-0 6-7-9-0 6-8-9-0 7-8-9-0 Avg.
kld glo 7.07 7.09 7.04 7.06 7.08 7.07
kld pro 7.05 7.07 7.01 7.03 7.07 7.05

diff. 0.02 0.02 0.03 0.03 0.01 0.02
8 7 9 13 2 7.8

pro glo 6.96 6.97 6.91 6.93 6.97 6.95
pro pro 6.95 6.97 6.91 6.91 6.97 6.94

diff. 0.01 0.00 0.01 0.02 0.01 0.01
6 1 4 3 2 3.2

Table X shows that the proposed approach could reduce
MCD by enhancing the regression class tree structure, espe-
cially for the language pair of German and English. When
the language pair was Mandarin and English, the proposed
approach could only produce negligible MCD reductions and
very small regression class trees. These results suggest that
the proposed approach also can be used to control the appro-
priate number of transforms, depending on the phonological
similarity of two languages. They also strengthen the finding
in [15] that a global transform is sufficient when the input and
output languages are substantially phonologically distinct: In
this circumstance, it would be enough to apply the proposed
approach to state mapping construction only and to use a
global transform in adaptation.

In Fig. 7, objective results on the test data of the two test
speakers of each fold of the cross-validation experiments are
presented for a comparative analysis.

The two columns on the right side in Fig. 7 confirm that the
best solution in the case of Mandarin and English was achieved
by only applying the proposed approach to state mapping
construction and using a global transform in adaptation. This is
understandable. Firstly, one purpose of using a regressionclass
tree in speaker adaptation is to capture speaker information
in adaptation data at an increasingly finer grained level by
dividing and clustering model distributions according to their
proximity in the model space into different regression classes
and then estimating respective transforms for these classes.
Secondly, adaptation algorithms like CMLLR blindly handle
all kinds of mismatch (in terms of speaker, language, recording
environment, etc) between synthesis models and adaptation
data with a single set of transforms. Thus as the number of
adaptation transforms increase, more Mandarin-specific infor-
mation that had no relation to speaker identity is inadvertently
captured from adaptation data. Given the substantial difference



10

0 3 6 9 12 15 18

5.4

5.5

5.6

5.7

number of transforms (GM1)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

6.4

6.45

6.5

6.55

number of transforms (GF1)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
6.6

6.65

6.7

6.75

6.8

6.85

6.9

number of transforms (MMh)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
7.25

7.3

7.35

7.4

7.45

7.5

7.55

number of transforms (MF1)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

5.7

5.8

5.9

6

number of transforms (GM2)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

6.3

6.35

6.4

6.45

number of transforms (GF2)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
7.35

7.4

7.45

7.5

7.55

number of transforms (MM3)
M

C
D

 (
dB

) 
on

 te
st

 d
at

a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
6.75

6.8

6.85

6.9

6.95

7

7.05

number of transforms (MF2)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

5.6

5.65

5.7

5.75

5.8

5.85

5.9

number of transforms (GM3)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
6.4

6.45

6.5

6.55

number of transforms (GF4)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

6.3

6.35

6.4

6.45

number of transforms (MM4)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

8.05

8.1

8.15

8.2

8.25

8.3

number of transforms (MF4)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

5.9

5.95

6

6.05

number of transforms (GM6)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18

5.7

5.75

5.8

5.85

5.9

number of transforms (GF6)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
7.1

7.15

7.2

7.25

7.3

7.35

7.4

number of transforms (MM5)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
7.8

7.9

8

8.1

number of transforms (MF5)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

0 3 6 9 12 15 18
6.28

6.3

6.32

6.34

6.36

6.38

6.4

number of transforms (GM7)

M
C

D
 (

dB
) 

on
 te

st
 d

at
a

 

 

pro_dec

kld_dec

kld_pro pro_pro

(a) male German/English speakers
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Fig. 7. MCD measurements in relation to the number of transforms in various conditions (The four columns correspond to male Germans, female Germans,
male Chinese and female Chinese, respectively. The leftmost point on each red curve indicates the result of proglo and the leftmost point on each blue curve
indicates the result of kldglo.)
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between Mandarin and English, it is not surprising that the
quality of synthesized English is degraded immediately after
the number of adaptation transforms grows.

As for German and English, the two columns on the left
side in Fig. 7 show that the proposed approach can be applied
to state mapping construction first and then to regression
class tree growth, producing a further MCD reduction in most
cases. The regression class trees in the case of German and
English were larger and produced greater MCD reductions,
compared with those in the case of Mandarin and English.
This demonstrates that owing to the phonological and acoustic
similarity of German to English, adaptation algorithms are
better able to utilize greater quantities of adaptation data given
an appropriate regression class tree. These two columns also
show: (1) the MCD scores produced by applying the proposed
approach to both state mapping construction and regression
class tree growth (propro, the red curves) are more likely to
decrease further than those produced by applying the proposed
approach to regression class tree growth only (kldpro, the
blue curves); (2) when using enhanced state mapping rules,
enhanced regression class trees generated by the proposed
approach (propro, the red curves) eventually produced MCD
scores smaller than those the regression class tree following
the decision tree structure of the UK English average voice
models produced (prodec, the solid black horizontal lines),
except for the speaker GM7. Thus it is concluded that the best
and most robust approach for German and English should be
the combination of state mapping enhancement and regression
class tree enhancement by the proposed approach.

D. Iterative Enhancement

The proposed approach can be applied to state mapping
enhancement and regression class tree enhancement iteratively
in an alternating fashion. Namely, using the regression class
tree obtained in thei-th iteration, state mapping rules can be
enhanced again and then this regression class tree from the
i-th iteration can continue to grow in the (i+1)-th iteration.

There are two methods of enhancing state mappings in the
(i+1)-th iteration based on the regression class tree from the
i-th iteration:

1) Construct state mapping rules from scratch. This method
is denoted by “M-0” hereafter.

2) Construct state mapping rules by extending the decision
tree that has produced enhanced mapping rules in the
i-th iteration. This method is denoted by “M-ext” here-
after.

In the case of Mandarin-to-English adaptation, this is un-
likely to have any impact due to the small size of the regression
class trees obtained in the first iteration. However, results of the
German-to-English adaptation suggest some potential. Hence
both M-0 and M-ext were tested in the second iteration for the
language pair of German and English. MCD measurements
after the second iteration of state mapping enhancement are
listed in Table XI.

Then enhanced state mapping rules obtained in the second
iteration were used to continue to grow regression class trees
obtained in the first iteration. MCD measurements after the

TABLE XI
MCD (DB) ON THE DEVELOPMENT DATA OF THE TRAINING PARTITION&

THE PERCENTAGE OF MAPPING RULES THAT REMAINED UNCHANGED
AFTER STATE MAPPING ENHANCEMENT IN THE SECOND ITERATION

Lang. Lin = German, Lout = UK English
Groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 Avg.
baseline† 5.79 5.92 5.86 5.86 5.87 5.86

M-0
5.77 5.91 5.85 5.85 5.85 5.85

64.7% 73.6% 65.8% 64.2% 56.6% 65.0%

M-ext 5.77 5.89 5.85 5.85 5.84 5.84
91.2% 86.9% 91.7% 84.7% 79.4% 86.8%

† The baseline results are the outcome of propro (i.e., from the first
iteration).

second iteration of regression class tree growth are listedin
Table XII.

TABLE XII
MCD (DB) ON THE DEVELOPMENT DATA OF THE TRAINING PARTITION&
THE NUMBER OF REGRESSION CLASS TREE LEAVES AFTER REGRESSION

CLASS TREE GROWTH IN THE SECOND ITERATION

Lang. Lin = German, Lout = UK English
Groups 1-2-3-4 1-2-3-5 1-2-4-5 1-3-4-5 2-3-4-5 Avg.
baseline† 14 12 12 12 12 12.4

using 5.77 5.91 5.85 5.85 5.85 5.85
M-0 16 13 12 14 14 13.8
using 5.77 5.89 5.85 5.85 5.84 5.84
M-ext 16 14 12 12 13 13.4

† The baseline results are the outcome of propro (i.e., from the first
iteration).

It is observed that the further improvements given by state
mapping enhancement and regression class tree enhancement
in the second iteration are negligible, no matter whether M-0
or M-ext was employed. Consequently, it can be confirmed that
a single iteration of state mapping construction and regression
class tree growth by the proposed approach is sufficient for
German and English.

E. Subjective Evaluation

Naturalness and speaker similarity of speech which was
synthesized by the proposed approach being applied to both
state mapping construction and regression class tree growth
(i.e., system propro) were assessed in the form of AB and
ABX tests respectively. The three systems to be compared
against were a conventional intra-lingual speaker adaptation
system, kldglo (i.e. the starting point which the proposed
approach was applied to) and klddec (i.e. the conventional,
data mapping-based CLSA system as in [12]). Each listener
was presented with 60 utterance pairs in total: 3 (pairs)×10
(test speaker groups)×2 (tests). The sentence of each pair was
randomly selected from the 25 test sentences. All the natural
and synthesized stimuli were in English and duration models
of the UK English average voice were used in the synthesis
of all these stimuli. Subjective evaluation results can be found
in Fig. 8.

Firstly, it is noted that the proposed approach mainly
improved naturalness of synthesized speech in the speaker-
independent experiments, as observed in the previous speaker-
dependent experiments in Sec. IV. According to the speaker
discrimination experiments in [30], we hypothesize that a
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Fig. 8. Results of subjective evaluations on the proposed approach (Whiskers
indicate 95% confidence intervals.)

limiting factor in these experiments is the quality of speech
generated by cross-lingual speaker adaptation, which hinders
listeners’ judgment of speaker identity.

Secondly, it is observed that applying the proposed approach
to both state mapping construction and regression class tree
growth (i.e. propro) produced a significantly better system
than the conventional CLSA system (i.e. klddec). The pro-
posed approach can automatically generate a suitable regres-
sion class tree structure for cross-lingual speaker adaptation
so thatLin-specific information from adaptation data can be
suppressed as much as possible. The contrast between Figures
8(a) and 8(c) appears to suggest that the proposed approach
is more effective for a pair of languages which are more
phonologically dissimilar.

Lastly, Fig. 8 shows that intra-lingual speaker adaptation
still outperformed cross-lingual speaker adaptation, which
suggests that the language mismatch problem has not yet been
resolved although the proposed approach alleviated some of
the negative effects.

VI. CONCLUSION

An approach that enhanced state mapping-based cross-
lingual speaker adaptation using phonological knowledge in a
data-driven manner was proposed in this paper. It was applied
to HMM state mapping construction such that phonologically
inconsistent state mapping rules can be avoided. It was also
applied to regression class tree growth such that the appropri-
ate size of a regression class tree and phonologically consistent
transform grouping can be achieved automatically.

The proposed approach was firstly applied in a speaker-
dependent setting. It was found that enhanced mapping rules
constructed by the proposed approach still maintained a degree
of speaker independence, even when trained on speech data
of a single speaker. While KLD remains a good measure of
phonological similarity of context-dependent models fromtwo

different languages, the minimum KLD criterion on its own
may not be sufficient. It is also apparent that training speakers’
proficiency in their non-native languages is important. A
high level of proficiency can potentially produce better state
mapping rules, in other words, a greater MCD reduction.

The effectiveness and generality of the proposed approach
was then demonstrated on two language pairs (German &
English, Mandarin & English) in a speaker-independent set-
ting. It was further found that the less phonologically similar
the input and output languages were, the less effective the
minimum KLD criterion was for creating links between the
two languages. The phonological/acoustic similarity of the
input language to the output language also has a significant
impact on the size of a regression class tree that can be
grown by the proposed approach. It continues to be observed
that a large regression class tree is of much less use in the
current state mapping-based cross-lingual speaker adaptation
framework.

The iterative enhancement under the MGE criterion shows
rapid convergence. This appears to suggest that there is limited
room to improve the simple HMM state mapping technique
with the K-L divergence as a measure of state distribution sim-
ilarity. An explicit step to separate language informationfrom
speaker characteristics in adaptation transforms is necessary
(e.g. [29]).
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T. Hirsimäki, R. Karhila, S. King, H. Liang, K. Oura, L. Saheer,
M. Shannon, S. Shiota, J. Tian, K. Tokuda, M. Wester, Y.-J. Wu, and
J. Yamagishi, “Personalising speech-to-speech translation in the EMIME
project”, in Proc. of the ACL 2010 System Demonstrations, Jul. 2010,
pp. 48–53.

[4] S. Bangalore, V. K. Rangarajan Sridhar, P. Kolan, L. Golipour, and
A. Jimenez, “Real-time incremental speech-to-speech translation of
dialogs”, in Proc. of NAACL-HLT, Jun. 2012, pp. 437–445.

[5] H. Zen, K. Tokuda, and A. W. Black, “Statistical parametric speech
synthesis”,Speech Communication, vol. 51, no. 11, pp. 1039–1064, Nov.
2009.

[6] J. Yamagishi and T. Kobayashi, “Average-voice-based speech synthesis
using HSMM-based speaker adaptation and adaptive training”, IEICE
Transactions on Information and Systems, vol. E90-D, no. 2, pp. 533–
543, Feb. 2007.

[7] J. Yamagishi, “Average-voice-based speech synthesis”, Ph.D. disserta-
tion, Tokyo Institute of Technology, Mar. 2006.

[8] T. Anastasakos, J. McDonough, R. Schwartz, and J. Makhoul, “A
compact model for speaker-adaptive training”, inProc. of ICSLP, Oct.
1996, pp. 1137–1140.

[9] M. J. F. Gales, “Maximum likelihood linear transformations for HMM-
based speech recognition”,Computer Speech and Language, vol. 12,
no. 2, pp. 75–98, 1998.

[10] Y. Qian, H. Liang, and F. K. Soong, “A cross-language state sharing
and mapping approach to bilingual (Mandarin-English) TTS”, IEEE
Transactions on Audio, Speech and Language Processing, vol. 17, no. 6,
pp. 1231–1239, Aug. 2009.

[11] Y.-N. Chen, Y. Jiao, Y. Qian, and F. K. Soong, “State mapping for cross-
language speaker adaptation in TTS”, inProc. of ICASSP, Apr. 2009,
pp. 4273–4276.

[12] Y.-J. Wu, Y. Nankaku, and K. Tokuda, “State mapping based method
for cross-lingual speaker adaptation in HMM-based speech synthesis”,
in Proc. of Interspeech, Sep. 2009, pp. 528–531.



13

[13] H. Liang, J. Dines, and L. Saheer, “A comparison of supervised and
unsupervised cross-lingual speaker adaptation approaches for HMM-
based speech synthesis”, inProc. of ICASSP, Mar. 2010, pp. 4598–4601.

[14] J. Yamagishi, M. Tachibana, T. Masuko, and T. Kobayashi, “Speaking
style adaptation using context clustering decision tree for HMM-based
speech synthesis”, inProc. of ICASSP, May 2004, pp. 5–8.

[15] H. Liang and J. Dines, “An analysis of language mismatchin HMM
state mapping-based cross-lingual speaker adaptation”, in Proc. of
Interspeech, Sep. 2010, pp. 622–625.

[16] S. J. Young, J. J. Odell, and P. C. Woodland, “Tree-basedstate tying for
high accuracy acoustic modelling”, inProc. of the Workshop on Human
Language Technology, 1994, pp. 307–312.

[17] K. Tokuda, H. Zen, and A. W. Black, “An HMM-based speech synthesis
system applied to English”, inProc. of IEEE Workshop on Speech
Synthesis, Sep. 2002, pp. 227–230.

[18] A. W. Black, H. Zen, and K. Tokuda, “Statistical parameteric speech
synthesis”, inProc. of ICASSP, Apr. 2007, pp. 1229–1232.

[19] M. Tamura, T. Masuko, K. Tokuda, and T. Kobayashi, “Speaker adapta-
tion for HMM-based speech synthesis system using MLLR”, inProc. of
ESCA/COCOSDA Workshop on Speech Synthesis, Nov. 1998, pp. 273–
276.

[20] ——, “Adaptation of pitch and spectrum for HMM-based speech syn-
thesis using MLLR”, inProc. of ICASSP, May 2001, pp. 805–808.

[21] J. Yamagishi, O. Watts, S. King, and B. Usabaev, “Roles of the average
voice in speaker-adaptive HMM-based speech synthesis”, inProc. of
Interspeech, Sep. 2010, pp. 418–421.

[22] M. Moberg, K. Pärssinen, and J. Iso-Sipilä, “Cross-lingual phoneme
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