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Abstract

The lack of a common benchmark for the evaluation of the gaze estimation task from RGB
and RGB-D data is a serious limitation for distinguishing the advantages and disadvantages
of the many proposed algorithms found in the literature. The EYEDIAP database intends to
overcome this limitation by providing a common framework for the training and evaluation
of gaze estimation approaches. In particular, this database has been designed to enable the
evaluation of the robustness of algorithms with respect to the main challenges associated to
this task: i) Head pose variations; ii) Person variation; iii) Changes in ambient and sensing
conditions and iv) Types of target: screen or 3D object. This technical report contains an
extended description of the database, we include the processing methodology for the elements
provided along with the raw data, the database organization and additional benchmarks we
consider relevant to evaluate diverse properties of a given gaze estimator.

1 Introduction

In recent years there has been a growing interest from diverse domains for using and developing
tools able to automatically retrieve gaze information. Such tools have an important potential in
the development of consumer market applications in human computer interfaces, entertainment,
assistance to person with disabilities, marketing, etc. In another direction, gaze is also of high
interests in the sociology and psychology research where it is considered as one of the most important
cues in non-verbal behavior analysis, as it is involved in many cognitive processes such as discourse
regulation or conveying consciously or not the emotional state of an individual. While head pose
is sometimes sufficient to obtain visual attention information by introducing methods to cope with
the absence of eye information like eye and head pose relationships in gaze shifts [1] or conversation
context [2], and make inference about social construct like dominance [3], it is still fundamentally
limited for finer analysis of gaze behaviors when several attention target direction become close.

Researchers have thus placed important efforts in designing automatic gaze tracking solutions
[4, 5, 6, 7, 8, 9, 10, 11, 12, 13], leading to the development of methods which differ according to
their sensing technique and principles. Some -highly intrusive- approaches are based on electro-
oculography or contact-lense based coils which restrict their use to the controlled conditions of a
laboratory. Video-oculography [4], that is gaze tracking relying on video input and in particular
on remote (not head-mounted) cameras, is often preferred as a less intrusive and more flexible
alternative. Solutions are available in the market, but most of them require specialized hardware
such as calibrated setups of infra-red (IR) light sources and IR cameras [8], making them costly or
limited in terms of the applications and conditions under which they properly function.

Natural light based methods are thus the best candidates in terms of availability, cost and
potential applications. Nevertheless, gaze estimation from remote standard (RGB) cameras remains
a very difficult task. The challenges are many: person variability, head pose variations, eyelids
movements, illumination conditions, specular reflections, image resolution and contrast. Important
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advances have been made leading to many diverse gaze estimation methods that differ in terms of
accuracy, generalization, need for calibration, robustness, head pose invariance, etc.

Two main approach categories can be identified in the literature: model-based and appearance-
based methods. Model-based methods leverage on a parametric description of the gaze observations,
which includes iris/pupil fitting techniques [14], complex models fully describing the eye image
appearance [7], and/or geometric representations of the eyeball [9, 11]. However, these methods
normally require data with high-resolution and good contrast to infer the geometric parameters.

On the other side, appearance based methods avoid the fitting and tracking of local features
by inferring a mapping from the high-dimensional image data to the low-dimensional space of gaze
parameters. This make them a potential solution for low-resolution sensing. This mapping has been
modeled in diverse ways, such as neural networks [6], Semi-supervised sparse gaussian processes [15],
Support Vector Machines [16] or local linear mappings [10, 17].

Even though the evaluation methodologies employed by researchers have clearly advanced the
development of gaze tracking technologies, and have validated their different proposals, it is unlikely
to encounter in the literature comparisons evaluated on the same data and conditions. This makes it
difficult to clearly identify the advantages and disadvantages of each one of the methods. The main
reason is the lack of a standard benchmark under which researchers can evaluate their methods and
report their results.

We intend to fill this need by releasing EYEDIAP: a database for gaze estimation from remote
RGB and RGB-D (standard vision and depth) cameras. We have designed the recording methodol-
ogy in order to systematically include, and isolate, most of the variables which affect gaze estimation
algorithms based on remote sensing: i) Head pose variations; ii) Person variation; iii) Ambient and
sensing condition changes and iv) Types of target: screen or 3D object. We have also defined a
set of benchmarks which are intended to evaluate each one of these aspects in an isolated manner.
We have also pre-processed the data to extract and provide complementary observations (e.g. head
pose) helping researchers to focus on only a subset of the problem, if wanted.

Recently the Columbia gaze data set was released by Smith et al. [18]. This dataset is a promising
resource to advance the research on gaze estimation, in particular, for the training and evaluation of
appearance based gaze estimation methods [19]. It has been carefully collected and contains a large
quantity of participants (56). However it also has limitations: the range of head poses and gaze
directions is small; there is no temporal information (video could be valuable for a given algorithm);
only the RGB image modality is provided; the data is limited to a discrete set of point targets lying
on a plane at a fixed distance, making it not so appropriate for evaluating gaze estimation in more
natural interaction [20] potentially involving larger head poses.

We believe the EYEDIAP database is an important contribution to the community, and we
therefore encourage researchers to develop gaze estimation algorithms and to report results using
this data. This document is an extension of our previous paper [21] and it is organized as follows:
Section 2 describes the recording methodology and the different recording sessions included in the
dataset. Section 3 is devoted to the pre-processed information which is provided along with the data.
Section 4 describes the files organization and format. Section 5 provides a description on how to use
this dataset, including the definition of different benchmark protocols for evaluating gaze estimation
algorithms. Finally, Section 6 concludes this document.

2 Data collection

In this section we first describe our recording methodology and then describe the different recording
sessions constituting the dataset.

2.1 Overview

The recording setup is as shown in Fig. 1. It comprises an RGB-D camera (a Microsoft Kinect),
an HD camera, an ensemble of 5 LEDs located within the field of view of both cameras, a 24”
flat computer screen and a 4cm diameter ball, which was used as a visual target for some of the
recordings. The characteristics and purpose or function of each element are described as follows:
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Figure 1: Recording setup

• Microsoft Kinect: this consumer device provides standard video (RGB) and Depth video streams,
both at VGA resolution (640× 480) and at a 30 frame-per-second acquisition rate.

• HD camera: the Kinect was designed with a large field of view for full body capture, which imposes
less restriction on user mobility but is problematic for eye tracking based on VGA resolution.
Therefore, we also recorded the scene with a full resolution HD camera (1920x1080) at 25fps.
This camera was positioned as close as possible to the Kinect sensor.

• LEDs: we placed 5 LEDs visible by both cameras. The purpose is to synchronize the RGB-D
and HD streams using the code displayed by the LEDs (see Section 3.4)

• Flat screen: we used a 24” computer screen to display a visual target (see Section 2.2.1). The
effective screen resolution was of 1340× 740.

• Small ball: we used a 4cm diameter ball as a visual target with a double purpose: to serve as a
visual target in a 3D environment and, to be discriminative in both RGB and depth data such
that its 3D position could be precisely tracked (see Section 3.6)

As shown in Fig. 1, the cameras are right below the computer screen, such that the eyes of the
participant are observed from below minimizing eyelids occlusions. At each recording, a participant
was requested to sit in front of the setup, within the field of view of the cameras, and a distance as
needed according to the type of visual target (see Section. 2.2.1). Instructions were then given to
gaze at the specified visual target during the recording time. No further requirements were given in
terms of speaking or not, type of facial expressions, etc.

We now describe the different recording sessions that were made using this set-up.

2.2 Recording sessions

In order to evaluate different aspects of gaze estimation algorithms, we designed a set of recording
sessions, each one characterized by a combination of four main variables that can affect gaze estima-
tion accuracy and that we describe below: visual target, head pose activity, participant and ambient
conditions.

2.2.1 Visual target

The visual target is the object which the participant was requested to gaze at during the recording.
In order to be representative of different applications, we included the following cases:

• Discrete screen target (DS): In this case, a small circle was drawn at random locations in the
computer screen. The screen coordinates were drawn from a uniform distribution and changed
every 1.1 seconds. See Fig. 2a for an illustration.
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Figure 2: Example of screen coordinates for a session using: a) Discrete screen target ; b) Continuous
screen target.

• Continuous screen target (CS): The objective of using this target was to have examples of smoother
gaze movements. Therefore, similarly to the DS case, a small circle was drawn in the computer
screen and programmed to move along a trajectory parameterized by a quadratic Bézier curve.
The control points of this curve were drawn from a uniform distribution defined within a smaller
window of the screen and whose position were drawn randomly. A new trajectory was redefined
every 2 seconds. See Fig. 2b for an example.

• 3D floating target (FT): This corresponds to a ball with a 4cm diameter hanging from a thin
thread attached to a stick and that was moved within a 3D region between the camera and the
participant. In contrast to the screen target, the participant was at a larger distance to the
camera to allow for sufficient space for the target mobility. This object is discriminative in both
color and depth, allowing to retrieve its position automatically (see Section 3.6).

For the screen based targets, the participants were at a distance of approximately 80-90cm from
the recording sensor. For the 3D floating target case, the distance to the recording sensor was around
1.2m.

2.2.2 Head pose activity

In order to evaluate methods in terms of robustness to head pose variations, we requested the
participant to keep gazing at the visual target while performing one of the two following head pose
activities:

• Static (S): participants were asked to keep an approximately static head pose facing towards the
screen, thus being visible by the cameras. Fig. 3a shows examples of distributions over the head
pitch and yaw angles recorded in this case.

• Moving (M): participants were told to perform head movements, mostly in terms of rotations, in
order to introduce head pose variations. In Fig. 3b we show examples of distributions over the
head pitch and yaw angles for this case. As it can be observed, the recorded head poses are rich
in terms of variations.

2.2.3 Participants

Our dataset was recorded for 16 different people: 12 males and 4 females. Each participant is
assigned an ID from 1 to 16.

2.2.4 Ambient conditions

For participant 12, 13 and 14, some sessions were recorded twice, in different conditions: different
day, illumination and distance to the camera. We denote the two possible conditions as A or B.
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Figure 3: Frame by frame head pose observations for session 15-B-FT-H, where H corresponds to
the head pose activity, either a) Static or b) Moving. In both cases, the euler angles of the head
pose are shown: yaw in the x axis and pitch in the y axis.

2.2.5 Sessions summary

In total we recorded 94 sessions. Each session will be denoted by the string “P-C-T-H” which refers
to the participant id (1-16), the recording conditions C=(A or B), the used target T=(DS, CS or
FT) and the head pose H=(S or M) respectively. Examples of the recordings can be seen in Fig. 4.

Each session in conditions “A” correspond to 2.5 minutes of recording time, whereas the sessions
recorded in conditions B last approximately 3 minutes each. This corresponds to more than 4 hours
of data. We summarize all recorded data in Table 1.

Table 1: Summary of the recorded sessions.

Participants Recorded sessions
(the participant index is implicit)

1-11 A-DS-S; A-DS-M; A-CS-S;
A-CS-M; A-FT-S; A-FT-M

12-13 B-FT-S; B-FT-M
14-16 A-DS-S; A-DS-M; A-CS-S;

A-CS-M; A-FT-S; A-FT-M
B-FT-S; B-FT-M

(a) (b) (c) (d) (e)

Figure 4: Examples of the recorded data using: a-c) the RGB-D camera; and d-e) the HD camera,
for which the images were cropped to a size of 640 × 480 for display comparison with the VGA
resolution data. In these examples the given participant is: a,d) gazing at the screen target with a
static head pose; b) gazing at the floating target with a static head pose; c,e) gazing at the floating
target while moving the head.
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3 Data processing

Besides the raw data itself that we described in Section 2, we also provided additional information
that is essential for deriving ground truth measures for evaluation or simply useful to exploit the
dataset and run experiments. It comprises the camera(s) calibration information, camera-screen
calibration, synchronization, the 3D head pose, the approximate 3D location of the eyes frame, the
frame by frame 3D location of the visual target and manual annotations.

A visualization of the provided meta-data is shown in Fig. 5. Below we describe the procedure
we employed to estimate these parameters.

3.1 World coordinates system definition

To standarize the definition of all 3D variables in the data, we have defined a common world coordi-
nate system (WCS), in which the variables refer to meters. It was defined with a fix relative position
to the RGB camera of the Kinect, such that the participant is near the [0, 0, 0]> (roughly) and the
axis are consistent with the OpenGL standard. If pκ ∈ R3 is a point defined w.r.t. the coordinate
system of the Kinect RGB camera, then we have defined the WCS such that the equivalent point
pW , w.r.t. the WCS is given by pW = RWpκ + tW where:

RW =

1 0 0
0 −1 0
0 0 −1

 , tW =

0
0
1

 (1)

3.2 RGB-D sensor intrinsic calibration

The Kinect sensor was calibrated using the toolbox from Herrera et al. [22]. This procedure generates
the intrinsic parameters for both the depth and RGB cameras together with the extrinsic parameters,
i.e the 3D pose between both sensors. In addition it estimates the mapping from depth disparity to
actual depth, including a correction for non linear distortions of the depth map.

Please refer to [22] to interpret the RGB-D data, in particular the disparity to depth transfor-
mation. We pre-processed the RGB stream to provide a video with corrected non-linear distortions.
The provided camera poses are given with respect to the WCS.

3.3 3D screen calibration

We provide the calibration between the world coordinate system (3D) and the 2D screen coordinates,
such that it is possible to refer a point from one system to the other. The mapping of a point p ∈ R3,
defined in the 3D world coordinate system, to the screen coordinates s ∈ R2 is defined in Eq. 2.

s =

[
kx 0 0
0 ky 0

]
(Rsp + ts) , (2)

where a 3D coordinate system S = {Rs, ts} has been defined at the coordinates (0, 0) of the
screen. The values kx and ky denote the pixels per meter1 constants along the x and y coordi-
nates respectively. Notice Eq. 2 assumes that p already lays in the screen plane by ignoring the
z component once it is referred to S. The inverse transformation is straightforward: a 3D point
[sx/kx, s

y/ky, 0]> is defined and transformed by S−1.
To infer the parameters of the transformation, i.e. Rs, ts, kx and ky we designed a mirror

technique: a mirror was located in front of the RGB-D camera, whose 3D plane was found by
leveraging on markers observable in the depth map. The mirror was positioned such that the screen
was visible by the RGB-D sensor.

We then displayed a colored discriminative target in the screen at coordinates s, and whose
reflection by the mirror was visible to the RGB-D sensor. The observed (virtual) target’s position
is found automatically from color likelihood estimates. Its 3D position is then retrieved from depth

1To meters, rather than millimeters, as mentioned in [21]
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data. This virtual 3D point is then transformed back to the world coordinate system based on the
mirror plane and the law of reflection, to find the true point p ∈ R3.

This process is used to collect a set of pairs {(s,p)}. Then we constructed a linear system of
equations from Eq. 2 such that the transformation parameters are obtained as the least squares
solution from an overdetermined linear system of equations.

Important notice: The parameter values in the screen calibration.txt file (see Section 4.1.1)

do not correspond to the parameters defined in Eq. 2. Let R̂s, t̂s, k̂x and k̂y be the parameters
provided in the file, then the parameters to be used in Eq. 2 are obtained as follows:

Rs = R̂>s R
>
W ; ts = −R̂>s t̂s − R̂>s R

>
W tW ; kx =

1

k̂x
; ky =

1

k̂y
(3)

3.4 RGB-D and HD camera synchrony and calibration

In addition to the RGB camera from the Kinect, an HD camera was used to record the scene. The
purpose of this is to be able to develop and evaluate algorithms using high resolution data.

In order to use HD data it is necessary to have synchronization with the RGB-D video stream. To
be able to achieve synchrony, we used a set of 5 LEDs which were activated in the order determined
by the binary Gray Code, such that only one LED turns on or off at each transition. These LEDs
were within the field of view of both cameras, and the goal was to post-process the data by aligning
the code observed in both cameras. Retrieving the observed code was done by using an Hidden
Markov Model (HMM), with transition probabilities according to the Gray Code, and emission
probabilities according to noisy visual observations.

Stereo calibration between the two cameras is also desired, as for example, to use the HD
video with depth data. To this end we used the standard stereo calibration procedure using a
chessboard pattern for cross features. The output from this method was the HD camera pose
PHD = {RHD, tHD}, provided w.r.t. the WCS, and the intrinsic parameters IHD from the pin-
hole model. In this manner, a point pH ∈ R3 defined in the HD camera coordinate system is
transformed as pW = RHDp

H + tHD, where pW is the point referred to the WCS.

3.5 Head pose and eyes tracking

For each participant we created a 3D mesh corresponding to his/hers specific facial shape. This is
done by fitting a 3D Morphable Model [23] to depth data using the method described in [24].

Provided the facial template, we tracked the 3D head pose using the Iterative Closest Points
(ICP) algorithm. The initialization for ICP corresponds to the estimate from the previous frame,
while the overall initialization is obtained from a frontal face detector [25]. The result is the estimated
head pose for each frame, given as pt = {Rt, tt} of a 3D rotation and translation (w.r.t. the WCS).

From the 3DMM an approximate location of the eyeballs is predefined and denoted as õ. Notice
õ is different for each person. In this manner, the 3D eyeball location at time t is given by:

ôt = Rtõ + tt (4)

3.6 Floating target tracking

For the recording sessions using a ball as a visual target, we provide the 3D center of the ball at
every time step t, denoted as bt ∈ R3 and defined w.r.t. the WCS.

This value was computed as follows: the possible locations are first reduced by depth thresholding;
then, the 2D point with the maximum color likelihood is selected as the location of the ball target,
where the color distribution of the target was learned from labeling the ball location in one or
two images. If the likelihood, within the region of the predefined size of the ball is smaller than
a threshold, then the candidate is discarded. Once found, a template 3D mesh, with the size and
shape of the target, is rigidly aligned to depth data using ICP. The center of the registered template,
i.e. bt, is used as the gazed visual target 3D position.
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(a)

(b)

(c)

(d)

(e)

Figure 5: Examples of the processed data with head pose, eyes and floating target tracking. For
each example we show, from left to right, the Kinect RGB frame, the HD frame (a 640×480 cropped
region) and the depth frame encoded as an RGB image (as described in Section 4.1.1): a): frame 443
for session 1 A FT M; b): frame 827 for session “13 B FT S”; c): frame 26 for session 3 A DS S;
d): frame 174 for session 15 A CS M; and e): frame 58 for session 8 A CS M.

8



4 Organization and files

In this section we describe the content of each of the folders as can be retrieved from the distributed
database www.idiap.ch/dataset/eyediap.

4.1 “Data” folder

This folder contains the 94 recording sessions. Each subfolder is named according to its description,
as summarized in Subsection 2.2.5 and each contain a set of files which are described in the following
section.

4.1.1 Files per session

In this section we describe the files associated to each session and their interpretation:

• rgb vga.mov: The 640 × 480 RGB video captured by the Microsoft Kinect device. It has
been encoded using MPEG-4. The compression parameters were set to high-quality to reduce
to a minimum the information loss.

• depth.mov: The 640×480 depth video captured by the Microsoft Kinect device (as captured
using the OpenKinect library 2). The Microsoft Kinect provides a depth map where depth
values are given as 11 bits integers. Notice the depth is indeed encoded as disparity values.
To transform to actual depth (in meters) it is necessary to use the depth camera calibration
parameters (see other file descriptions below).

We encoded the depth map as an RGB image as follows: the 11bits for a given depth value were
divided into two bytes, the first 8 less significant bits (LSB) were assigned to the B channel of
the RGB image, while the remaining 3 MSB (most significant bits) are taken as a byte, shifted
left by 5 bits and then assigned to the G channel. The depth map value is recovered from the
corresponding RGB image as follows:

unsigned short depth = ((unsigned short) G )<< 3 +(unsigned short)B; ,

when using C notation. The provided video was encoded using Zlib to achieve lossless depth
compression.

• rgb hd.mov: The 1920×1080 video captured by a high-resolution camera, originally at 25fps.
Using the led-based synchronization (see Section 3.4) we generated the provided video which
is fully synchronized with the Kinect RGB data (rgb vga.mov) at 30fps.

• head pose.txt: The frame-by-frame head pose tracking states. Obtained from the method
described in Section 3.5.

• eyes tracking.txt: The frame-by-frame eyes tracking states. The eyeballs 3D location was
derived directly from the head pose track as shown in Eq. 4 whereas their 2D location (with
respect to each camera) was obtained by projecting the 3D point into all cameras using the
camera calibration parameters.

Note: the point õ was defined as the approximate 3D eyeball center with respect to the head
coordinate system. As õ does not lie in the eyeball surface, the 2D projections seem shifted
from the (2D) eyes center for not frontal head poses.

• ball tracking.txt: The ball tracking states (if relevant for the given session). The 3D po-
sition was obtained using the method described in Section 3.6, while the corresponding 2D
position was obtained by projecting the 3D point into all cameras using the camera calibration
parameters.

2http://openkinect.org/
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• screen coordinates.txt: The frame-by-frame screen target coordinates (if relevant for the
given session). The 2D coordinates correspond to the screen target location as shown to the
participant at the given time instant. The corresponding 3D position was derived from the
screen-camera calibration (see Section 3.3). Important notice: the screen target 3D coor-
dinates provided in this file are actually given with respect to the RGB camera coordinate
system. To transform these values to the world coordinate system please apply the transfor-
mation defined in Eq. 1, i.e. pW = RWpfile + tW .

• calibration rgb vga.txt: The calibration parameters for the Kinect’s RGB camera. These
are defined according to the pin-hole camera model in addition to the extrinsic camera param-
eters (camera 3D pose with respect to the world coordinate system).

• calibration rgb hd.txt: The calibration parameters for the HD camera. These are inter-
preted in the same way as for the “rgb vga” camera.

• calibration depth.txt: The calibration parameters for the Kinect’s depth camera. These
parameters are to be interpreted in a similar way to the “rgb vga” camera, but it also includes
the mapping parameters between depth map values to actual depth measurements (in meters).
The depth mapping is described in [22].

For each tracking file3 (e.g. eyes tracking.txt, ball tracking.txt, . . . ) the meaning of each value
on a line of the file is defined in their respective “header” line at the beginning of the file (see also
Section 4.4.1). A row full of zeros (except for the frame index) means the tracking states are not
available for the given frame. All 3D parameters are referred to the world coordinate system.

Notice that we have drawn in each video frame its index value at the top-left corner of the frame.
This index should coincide with the frame index found in the tracking files and across the videos
when these are read simultaneously. This is intended for the user to verify the data being read is
correctly synchronized.

4.2 “Metadata” folder

This folder contains a set of parameters which are constant throughout the database. These are the
screen calibration parameters (see Section 3.3 in order to find the interpretation of the given values)
and the approximate eyeballs centers for the left (õleft) and right (õright) eye of each participant in
the database (there is one file per participant).

4.3 “Example” folder

This folder contains the 3D gaze tracking results for the method proposed in [24] using the training
and test sets described in [21]. These results are here provided as an example of usage of the
database. A given algorithm should generate a similar output if the goal is to predict the 3D gaze
direction, described as a pair of 3D rays describing the line of sight (LoS) of each eye.

The actual evaluation should consider a set not overlapping with the training set. For an example
of the evaluation, please refer to Section 4.4.2

4.4 “Scripts” folder

In this folders we provide two main scripts described as follows.

4.4.1 visualize session.py

This script is used to visualize the data of a given session. We assume python, with the numpy and
OpenCV packages are available. To execute it, please run:

>> python visualize_session.py session_id

3and indeed for most files.
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Where “session id” is an integer referring to the session index to visualize. By inspection of the
script, it can be observed how to interpret the diverse parameters’ files provided along with the raw
data. The images from Fig. 4 were obtained from the output of this script in the relevant sessions.

4.4.2 compute etra results.py

This script is used to recompute all results reported in [21]. The gaze tracking results are provided
with the database within the “Example” folder, as described in Section 4.3. To execute it, please
run:

>> python compute_etra_results.py

We provide this script as an example of how to interpret the output of a gaze tracker and to
evaluate its performance by comparisons to the ground truth data. In addition, this provides a clear
example on the separations between the training, test and evaluation sets.

Note: there is a slight difference between the output generated by this script and the results
shown in [21]. This is due to minor differences between the definition of the evaluation set used in
[21] and the exact -time- boundaries of the different sets. Nevertheless, notice the difference to the
reported results is minimal.

5 Benchmarks

In this section we describe different evaluation benchmarks for the comparison of gaze estimation
methods. We start by providing the framework used as evaluation protocol, including the perfor-
mance measures, and then list a set of benchmarks used to evaluate the accuracy of a gaze estimation
algorithm and its robustness to different variants such as head pose, ambient conditions, etc.

5.1 Evaluation protocol and measures

The goal of this section is to introduce notations to describe an experiment using the EYEDIAP
database. We here define what is understood as a gaze estimation algorithm, followed by the
definitions of train, test and evaluation sets, and finally define the different performance measures.

5.1.1 Gaze estimation algorithm

A gaze estimation algorithm is denoted as a function G which, provided a training set V and test
data T = {I1, I2, . . . , It, . . . , IT }, outputs a set of gaze estimates G = {g1,g2, . . . ,gt, . . . ,gT } with
one to one correspondence to the elements in T . This is shown in Eq. 5:

G = H(T |V) (5)

The index t usually represent consecutive frames, such as for algorithms that rely on temporal
information, but this is not assumed here. We thus consider methods estimating gaze from a single
image as well.

The output of the gaze estimation method depends on the application. Here we consider two
very common cases:

• 3D gaze ray: The output of the gaze estimation algorithm is a 3D ray, known as the 3D line-of-
sight (LoS). Therefore, it includes the two following elements: the origin of the gaze ray o ∈ R3

and the unitary vector v ∈ R3, such that g = {o,v}.
• Screen coordinates: The output of the gaze algorithm is measured in computer screen coordinates
g = {s}, such that s ∈ R2 (pixels), as in the case of screen based applications for HCI.

Note that provided the screen calibration information it is possible to infer screen coordinates
from the 3D gaze ray by first computing its intersection to the screen plane and then using Eq. 2 to
transform from the 3D intersection point to screen coordinates. Alternatively, from the gazed screen
coordinates and head pose, we can compute the equivalent 3D LoS. In addition, a given algorithm
may or not output the gaze estimation for each eye separately.
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5.1.2 Training data

The training data consist of pairs of data (images) and associated ground truth information such

that the training set is defined as V = {(Î, ĝ)t̂, t̂ = 1, . . . , N}. Here we consider different ways to
collect these samples:

• Temporal: the training data V is assumed to be temporal, and often corresponds to a section of
a recording session.

• Structured: the training data is collected in a structured manner in order to fulfill a specific
requirement of the gaze estimation algorithm. This can be, for instance, to obtain a predefined
number of points in a screen with specific ĝ values.

Notice that it is possible to build a structured training set from a temporal one assuming there is
sufficient data in the latter. For the rest of the discussion, it is therefore assumed a training set is
always provided as temporal. It is up to the user to decide how to use the given samples.

As ground truth data, we define the two types associated to the considered visual target:

• 3D visual target: In this case ĝ := p̂ where p̂ ∈ R3 corresponds to the 3D location of the gazed
point.

• Screen coordinates: In this case ĝ := ŝ where ŝ ∈ R2 corresponds to the 2D screen coordinates
the participant is gazing at. Notice the corresponding p̂ can be computed from ŝ as described in
Section 3.3.

5.1.3 Test data

The test data T here will be assumed to be, similarly to the training case, a temporal section of a
recording session. The corresponding range of frame indices within the recording session is [t0, t1].

5.1.4 Evaluation data

Given the test data, we define an evaluation set Ê that comprises the frames on which the performance
of an algorithm is computed. This allows to remove the few frames for which, either the data or the
ground truth is corrupted, as listed below:

• Blinking and distractions: these are samples which were manually labeled as outliers, because the
person is blinking or is not gazing the visual target.

• Extreme head poses: in such cases the visibility of the eyes is compromised, e.g. an eye is occluded
by the nose given a extreme yaw. These samples can be automatically removed from the evaluation
by thresholding the head pose euler angles.

• Train and test set intersection: in the few cases when the test set T video range overlaps the
range of the training set V, then the samples which were used to construct V have to be taken
out from T when defining Ê .

Interpolation based methods. Many methods, and especially appearance based approaches, are
capable of estimating gaze only within the convex hull of the training data gaze directions as these
methods are based on interpolation. In our dataset, such condition can not be always guaranteed in
the data collection, particularly for the floating target cases or for the screen target cases in which
there are large head pose variations.

To allow fair comparison for such methods, when defining the evaluation set, the user can also
discard test samples for which the ground truth is outside the convex hull of the gaze directions
of the training data. Even though in real conditions the gaze estimation algorithm does not have
access to the test data ground truth, we can assume the system has control on the methodology
used to collect the training data. Nevertheless, the users of the database need to report the used
evaluation set, such that objective comparisons can later be made against other methods.
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Note that comparing the performance of methods on both the convex hull and in the full range
will be interesting to distinguish algorithms which are capable of extrapolating gaze estimation
(typically, those that rely on a geometrical model) and those that can not.

Finally, note also that the interpolation issue might be true for other variables as well, such as
head pose, but here we only considered gaze directions.

5.1.5 Performance measures

In this section we define a set of performance measures to compare different algorithms. For an
index t in the evaluation set Ê , with estimated gaze direction (ot,vt) or screen coordinates st, we
considered the following error measures:

• 3D distance error εdt:
This error is defined for the 3D gaze estimation tasks. It conveys how close the estimated 3D
gaze ray passes by the visual target 3D position p̂t, as provided by Eq. 6.

εdt = min
v
‖(ot + vvt)− p̂t‖2 , (6)

where the gaze ray has been defined in parametric form using v ∈ [0,∞[ and ‖.‖2 defines the
euclidean norm in the 3D space, or the vector’s magnitude.

• Angular error ε◦t:
This is a normalization alternative to εdt, where we measure the error in terms of directional error
expressed in degrees:

ε◦t = arcsin

(
εdt

‖p̂t − ôt‖2

)
, (7)

where we used the provided eye location ôt for the purpose of standard comparisons. Alternatively,
the angular gaze estimation error can be computed also as:

ε◦t = arccos (vt · v̂t) , (8)

where v̂t denotes the ground truth 3D gaze vector, a unitary vector pointing from ôt to p̂t

• Screen pixel error εst: This error is defined for the gazed screen pixel coordinates prediction task
and it is given in Eq. 9.

εst = ‖st − ŝt‖2 (9)

Notice that, provided the screen-camera calibration (cf. Section 3.3), it is possible to compute an
angular error from screen coordinates predictions by using as gaze ray origin the provided eye
location ôt (cf. Section 3.5).

Using the above errors, we can then compute statistics (usually the mean) on the evaluation
set Ê . The default ones are the mean distance error εd = 1

|Ê|

∑
t∈Ê ε

d
t, the mean angular error

ε◦ = 1
|Ê|

∑
t∈Ê ε

◦
t, and the mean screen pixel error εs = 1

|Ê|

∑
t∈Ê ε

s
t.

Sensitivity: in addition to the prediction accuracy, we can also report additional performance
measure, like the sensitivity which can be used to compare two experiments for which the obtained
corresponding errors are ε◦1 for the baseline conditions, and ε◦2 for a more challenging condition.
This measure is defined as:

R(ε◦2|ε◦1) = min

(
0,
ε◦2 − ε◦1

ε◦1

)
, (10)

where it is expected that the second experiment is more difficult than the first one (and thus normally
ε◦2 > ε◦1). R is thus intended to measure the robustness of an algorithm. Ideally R → 0.
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5.2 Predefined benchmarks

In order to allow comparisons between algorithms and their merit under different experimental
conditions, we have defined a set of protocols that differ mainly in the data used from our database
to define the train, test and evaluation sets4.

Notice this dataset has two main types of visual targets: 3D floating target (FT) and screen target
(CS or DS). Therefore, the evaluation protocols are defined independently of the visual target, which
once specified, lead to the definition of the actual recording sessions to be used.

5.2.1 Benchmark 1: Gaze estimation accuracy

In this protocol, we evaluate the accuracy of a gaze estimation algorithm H under minimal variation
of all parameters which are not gaze. Therefore, for a recording session Σ where the only variation
is in the gaze direction itself (e.g. 1 A DS S), we define the training set V as the first temporal half
of Σ and the test set T as the second temporal half of Σ, such that V and T do not overlap.

The goal then consist on obtaining the mean gaze angular error ε◦ from the defined sets V, T
and Ê , where Ê is a subset of samples from T , as discussed in Section 5.1.4. The relevant sessions
depend on the visual target type as follows:

• Screen target: Includes all recording sessions with static head pose (S) and the screen target
(either CS or DS). This makes 14 sessions in total (1 per participant), see Table 1.

• 3D floating target: Includes all sessions with static head pose (S) and the 3D floating target (FT).
Notice this case includes sessions from both ambient conditions A and B. This makes a total of
19 sessions.

The process of training, testing and evaluation is repeated for all relevant recording sessions and
the mean angular error ε◦ averaged among all sessions is reported.

This is the methodology used in [21] for which the algorithm was evaluated using the floating
target (FT) recording sessions and using the Kinect data only.

5.2.2 Benchmark 2: Head pose invariance

In this case the objective is to measure how much does the gaze estimation accuracy decays when
the participant perform changes in head pose. Two experiments are conducted per participant k,
where the relevant recording sessions are defined from the desired visual target:

• Experiment 1: In this experiment, an evaluation of the gaze estimation accuracy is conducted for
a static (S) head pose, such that the obtained mean angular error is ε◦S . We denote the used
recording session as ΣS . This step follow closely the procedure defined in Protocol 1.

• Experiment 2: In this case, we evaluate the H in the presence of head pose variations (M) obtain-
ing a mean angular error of ε◦M . Notice that, for a recording session ΣS used for “Experiment
1”, there is an equivalent recording session ΣM with the same configuration (participant, ambi-
ent conditions and visual target) except that it includes the case of head pose variations (e.g.
ΣS =“1 A DS S” and ΣM =“1 A DS M”). Then, for this experiment, let the training set V be
the same used for Experiment 1, whereas the test set T is ΣM . From the obtained ε◦M we can
then compute the sensitivity as R(ε◦M |ε◦S).

The errors ε◦S and ε◦M are computed, together with the R(ε◦M |ε◦S) value for every pair (S and M)
of relevant recording sessions (the user can decide to evaluate on only the floating visual target, the
screen targets or both). As final result, the values ε◦S , ε◦M and R(ε◦M |ε◦S) are averaged among all
experimental pair.

4Researchers are free to define their own evaluation protocol using the provided dataset, but we strongly encourage
the use of the benchmarks defined here.
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5.2.3 Benchmark 3: Person independence

In this benchmark the goal is to evaluate how well does a method H generalize to unseen users.
The set of relevant sessions are the same as for Benchmark 1 (Gaze estimation accuracy) but we
discard the sessions from ambient conditions B (to avoid training and evaluating on the same user).
Notice also that we can do a separate experiment per type of visual target (CS, DS or FT). Then
two experiments will be conducted for a participant k as follows:

• Experiment 1: This follow exactly the methodology defined for Benchmark 1. The output is the
gaze estimation error ε◦k obtained when there is a person specific training and the evaluation is
done within the same recording session Σk (the session for user k). Notice that, as in Benchmark
1, the sets Vk and Tk are disjoint.

• Experiment 2: This experiment follow a leave-one-person-out scheme. Therefore, for user k, we
define the training set from the sets from all other users as V = ∪j 6=kVj . Notice Vj corresponding
to the training data from session Σj , where all other parameters (head pose, ambient conditions
and visual target) are the same for session Σk, except that it is the session corresponding to the
participant j. The test set is the one specific to user k, i.e. the second half from session Σk.
The resulting mean angular error is ε◦\k. From this we can compute the robustness of the method
as R(ε◦\k|ε◦k).

Both experiments are conducted for all participants, the values ε◦k, ε◦\k and R(ε◦\k|ε◦k) are
computed and their average are reported.

5.2.4 Benchmark 4: Ambient conditions invariance

Finally, in this case the goal is to study the generalization of a gaze estimation algorithm H to
different ambient conditions. To this end, four experiments are conducted for participants 12, 13
and 14 for which recording sessions under different set-up and illumination conditions exist. Notice
only the floating target data is available for this task. For each participant k, the experiments are:

• Experiment 1: let V be the first half of session k-A-FT-S and T be the second half of session
k-A-FT-S. The obtained mean angular gaze estimation error is ε◦A.

• Experiment 2: the first half of session k-A-FT-S is again used as training set V, but now the test
condition is changed by using the second half of session k-B-FT-S as test set T . The obtained
mean angular error is ε◦B|A.

• Experiment 3: we conduct similar experiments, but now in the reverse order. That is, the first
half of session k-B-FT-S is assigned to the training set V, and the second half of session k-B-FT-S
is assigned to the test set T . The obtained mean angular error is ε◦B .

• Experiment 4: the first half of session k-B-FT-S is assigned to V and the A-condition data is
used for testing, i.e. the second temporal half of session k-A-FT-S is used as test data T . The
obtained mean angular error is ε◦A|B .

For each participant ε◦A, ε◦B|A, ε◦B and ε◦A|B are computed, together with ε◦ = (ε◦A + ε◦B)/2

and R = (R(ε◦B|A|ε◦A) +R(ε◦A|B |ε◦B))/2. As final result the average of ε◦ and R, among the 3
participants, is reported.

6 Conclusion

In this document we have presented an extended description of the EYEDIAP database, originally
described in our paper [21]. This dataset was designed to provide a common framework for the
training and evaluation of gaze estimation algorithms from remote RGB and RGB-D cameras.

The database description presented in this document includes the data collection methodology,
the set-up and the sessions that were recorded. The recorded sessions were designed such that we
systematically include and isolate most variables which affect gaze estimation algorithms.
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The processing of the data has also been described to give a better understanding of the meta-data
which is provided along with the raw data. In addition, we have also described the files composing
the database to make easier their interpretation.

Finally, we have described in detail a set of bechmarks which we recommend to use when evalu-
ating the performance of a gaze estimation algorithm such that, through standarization, we enable
a direct comparison between diverse methods.

We believe this database is of high value to researchers as it will help to advance the development
of gaze estimation technologies under less constrained conditions.
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