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Feature Mapping of Multiple Beamformed Sources
for Robust Overlapping Speech Recognition Using

a Microphone Array
Weifeng Li, Longbiao Wang, Yicong Zhou, John Dines, Mathew Magimai.-Doss, Hervé Bourlard, and Qingmin

Liao

Abstract—This paper introduces a non-linear vector-based
feature mapping approach to extract robust features for au-
tomatic speech recognition (ASR) of overlapping speech using
a microphone array. We explore different configurations and
additional sources of information to improve the effectiveness
of the feature mapping. Firstly, we investigate the full-vector
based mapping of different sources in a log mel-filterbank
energy (log MFBE) domain, and demonstrate that re-training
the acoustic model using the generated training data can help
improve the recognition performance. Then we investigate the
feature mapping between different domains. Finally in order
to improve the qualities of the mapping inputs we propose a
non-linear mapping of the features from multiple beamformed
sources, which are directed at the target and interfering speakers
respectively. We demonstrate the effectiveness of the proposed
approach through extensive evaluations on the MONC corpus,
which includes non-overlapping single speaker and overlapping
multi-speaker conditions.

Index Terms—microphone array, beamforming, speech recog-
nition, speech separation, neural network

I. INTRODUCTION

Speech overlap occurs frequently in natural conversations.
For example, in a study on overlap in telephone conversations
and multiparty meetings, it was found that 30-50% of all
speech spurts include one or more frames of simultaneous
speech by another talker [1]; In another study of 26 dif-
ferent meetings from the NIST meeting speech recognition
evaluations, 12% of all foreground speaking time was over-
lapped by speech from one or more speakers [2]. Because
of the detrimental effects of overlap, automatic recognition of
speech in the presence of multiple simultaneous speakers - the
so-called ‘cocktail party’ condition - remains a challenging
problem (e.g. [1] [3], etc.). In such circumstances, headset
microphones positioned next to the speakers’ mouths have, to
date, provided the best recognition performance, however they
have a number of disadvantages in terms of cost and ease of
use. The alternative is to capture the speech from one or more
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distant microphones located in the far field, however, such “re-
mote microphone recordings” generally result in significantly
reduced ASR performance.

Recent research has focused on techniques to efficiently
integrate inputs from multiple distant microphones with the
goal of improving the ASR performance. The most funda-
mental and important multi-channel method is the microphone
array beamformer method, which consists of enhancing signals
emanating from a particular location by combining the individ-
ual microphone signals. The simplest technique is the delay-
and-sum (DS) beamformer, which compensates for delays to
microphone inputs so that the target signal from a particular
direction synchronizes, while noises from different directions
do not. Other more sophisticated beamforming methods, such
as the superdirective beamformer [4] and Generalized Sidelobe
Canceller (GSC) [5], optimize the beamformer to produce a
spatial pattern with a dominant response for the location of
interest. The main limitation of these schemes is the issue of
signal cancellation, which is more serious in the presence of
overlapping speech.

It is important to note that the motivation behind micro-
phone array techniques such as beamforming described above
is to enhance or separate the speech signals, and as such they
are not designed directly in the context of ASR. Particularly
during periods of speaker overlap, improving the signal-to-
noise ratio (SNR) of the signals captured through distant mi-
crophones may not necessarily be the best means of extracting
features for robust ASR on distant microphone data [2], in
which the target and interfering speech signals are mixed . This
provides ample motivation for the investigation of other distant
microphone processing techniques that specifically target the
improvements of ASR performance.

In this paper we introduce a novel feature mapping ap-
proach from multiple-microphone inputs specifically for the
recognition of overlapping speech. In our feature mapping
frameworks, the features of clean target speech are estimated
(or approximated) by using the multiple distant speech sources.
This is implemented implicitly and simultaneously by the
following two phases: 1) mapping multiple mixed sources
into one target source; and 2) mapping the distant sources
into a clean target source. These two phases are explored
by employing different configurations of additional sources
of information in the context of automatic speech recognition
of overlapping speech based on a microphone array. More
specifically, we firstly introduce full-vector based mapping
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in the log mel-filterbank energy (log MFBE) domain. Since
the speech energies of different speakers may lie in different
filterbanks, it is possible to separate the target and interfering
speeches in overlapping speech scenarios. Integrating the
statistcal distribution of clean speech with the properties of the
de-correlations of Mel-frequency ceptral coefficients (MFCC),
we then propose the mapping of the exacted features between
different domains. Finally we propose a nonlinear mapping of
features from the target and interfering distant sound sources to
the clean target features, which leads to a non-linear processing
(fusion) of the target speech and interfering speech. In this
configuration two or three designed beamformers are directed
at the target and interfering speakers, and a frequency domain
binary mask post-filter is followed for obtaining the target and
interfering speech more accurately. Experiments on the multi-
channel numbers corpus (MONC) [6] show that our method
yields a significant improvement in the ASR performance
in overlapping speech scenarios, and can even avoid the
adaptation steps which are commonly used in multi-condition
ASR systems. We also demonstrate that the better quality of
the estimated target and interfering speech as the inputs are
helpful when using our non-linear feature mapping approach.

The paper is organized as follows. In Section II, we briefly
describe related work. In Section III we present our proposed
neural network based mapping approach and theoretically
prove that minimizing the mean squared error (MMSE) of
the static feature vectors also results in MMSE in their delta
(acceleration) coefficients. In Section IV, we describe the
experimental setup. From Section V to Section VII, we present
the experimental studies using different mapping configura-
tions, on a full-vector-wise mapping in the same log mel-
filterbank energy (log MFBE) domain, on mapping from log
MFBEs to MFCCs, and on the mapping from multiple sound
sources. In Section IX, we summarize our main conclusions.

II. RELATED WORK

In [7] a superdirective beamformer and further post-filtering
were proposed to suppress interfering speech. However, in
the case of overlapping speech (with coherent noise), the
diffuse noise model used in the superdirective beamformers
is inaccurate and may consequently introduce artifacts into
the reconstructed signal. In [8] Kumatani et al. proposed
an adaptive beamforming approach with a minimum mutual
information criterion technique for the separation of overlap-
ping speech. In their beamforming framework, one sub-band-
domain beamformer in the GSC configuration was constructed
for each source, and the active weight vectors of both GSCs
were then jointly optimized to obtain two output signals with
minimum mutual information (MMI), which is widely em-
ployed in blind source separation (BSS) [9] and independent
component analysis (ICA) [10]. However these methods are
basically linear methods, and to some degree their performance
depends on the specified probability density functions (pdfs) of
the Fast Fourier Transform (FFT) components of clean speech.

In [11], a likelihood of maximizing beamforming
(LIMABEAM) was proposed to generate a sequence of
features rather than a waveform. In this work a filter-and-sum

beamformer structure is adopted, the beamformer is optimized
by maximizing the likelihood of the correct hypothesis which
comes from the speech recognition system. Their studies
are directly applicable in the context of improving the
performance of their automatic speech systems. Although
some ASR improvement was shown on the condition of
additive noise and reverberation, the algorithms result in a
linear feature mapping approach which cannot recover the
clean features very well.

While the beamforming methods result in a linear transfor-
mation, neural network (NN) [12] based mappings lead to a
non-linear solution, and feature based mapping using neural
networks has received considerable interest for robust ASR
[13][14][15][16][17]. The idea of the feature mapping method
is to obtain ‘enhanced’ or ‘clean’ features from the ‘noisy’
features extracted from the distant microphone recordings. The
studies in [13][14] concentrated solely on the mapping of
the original distant features to clean features. In [15][16][17],
a microphone array is used and non-linear feature mapping
of a DS enhanced speech signal to a clean speech signal is
performed in the mel-frequency cepstral coefficient (MFCC)
domain. In their mapping framework, a multi-layer perceptron
(MLP) was trained for each MFCC component. We distinguish
our approach by exploiting redundant or irrelevant information
in a full-vector based mapping, using additional sources of
information to improve the effectiveness of the mapping.

Recently deep learning based speech recognition
[18][19][20] has received great interest. From the perspective
of feature learning, the ideas and essences of our method and
deep neural nets (DNN) for converting multiple noisy speech
features to clean speech features are the same. Therefore the
feature mapping studies in this paper can be viewed to be
among deep learning based feature learning frameworks.

This paper is based on and extends our previous works
[21][22][23]. In this paper we systematically explain the con-
cept of our non-linear feature mapping approach and reformu-
late mathematically extracting multiple noisy feature vectors
into one clean feature vector. More precisely, we modified
the diagrams inside several figures to illustrate the different
mapping frameworks more elaborately; we also perform the
investigations and comparisons of the statistical distribution
of log MFBEs and MFCCs of the clean speech, the generated
training data, and the estimated test data; and several experi-
ments are also added (e.g., vector-based mapping using array
sources and DS beamformer source; using linear transform
based mapping when using the feature vectors extracted from
the center microphone speech and a DS beamformer, the
exploration of the improvement of ASR performance in more
serious overlapping speech scenario (with two interfering
speakers) by using three beamformers, which are directed at
the target speaker and the two interfering speech, etc.).

III. FEATURE MAPPING APPROACH

Assume that we are given samples of feature vectors extract-
ed from M ‘noisy’ distant microphone recordings at frame n,
denoted by column-vectors: d1(n),d2(n), · · · ,dM (n). If we
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Fig. 1. Schematic representation of a network parametrized by Θ that should
transform observations d(n) into estimated clean speech ĉ(n).

concatenate them into a longer vector we have

d(n) = [dT
1 (n),d

T
2 (n), · · · ,dT

M (n)]T . (1)

Furthermore we consider a process that approximate the fea-
ture vector of clean speech c(n). In our mapping approach we
take input features extracted from ‘noisy’ distant microphone
recordings (either directly or after microphone array beam-
forming) and map these to ‘clean’ recordings (i.e., estimate the
features of clean speech). This process may be implemented
by a linear or non-linear transformation with the parameter set
Θ (see Figure 1). In the linear case, the feature vector of clean
speech c(n) can be obtained by

ĉ(n) = Wd(n), (2)

where the parameter set Θ = {W} is obtained by minimizing
the mean squared error:

E =
1

L

L∑
l=1

||c(l)− ĉ(l)||2,

=
1

L

L∑
l=1

||c(l)−Wd(n)||2 (3)

over the training examples. Here, L denotes the number of
training examples (frames). In terms of matrix notation, Eq.
(3) can be written as [24][25]

E =
1

L
||C−WD||2, (4)

where C = [c(1), c(2), · · · , c(L)]T and D =
[d(1),d(2), · · · ,d(L)]T consist of training examples.
The optimal W can be solved as

Ŵ = (DTD)−1DTC. (5)

In the non-linear case, we employ a multilayer perceptron
(MLP) [12] with one hidden layer for implementing non-linear
mapping. Formally, at n-th frame the i-th component of the
feature vector of clean speech c(n) can be estimated using the
MLP:

ĉ(n) = Wsig((Vd(n)) , (6)

where V and W are weight matrices of the input-layer and
output-layer, respectively. sig(·) is the sigmoidal activation
function and has the form:

sig(a) =
1

1 + e−a
. (7)

Fig. 2. A multilayer perceptron (MLP) network with one hidden layer, where
V and W are weight matrices of input-layer and output-layer, respectively.

Fig. 2 shows such a multiple-output multilayer perceptron
(MLP) network. By minimizing Eq. (3) the optimal parameters
Θ = {V,W} can be obtained through the error back-
propagation algorithm [12] [26].

Note that clean speech is required for finding the optimal
parameters in the neural network training, while in the test
phase clean speech is no longer required, i.e., it is predicted
from the input feature vectors from the enhanced target speech
and the interfering speech.

With the assumption that the distribution of the target data
is Gaussian-distributed, minimizing the mean square error in
Eq. (3) is the result of the principle of maximum likelihood
[26]. From the perspective of blind source separation (BSS)
and independent component analysis (ICA), the principle of
maximum likelihood, which is highly related to the minimiza-
tion of mutual information between clean sources, can also be
employed for estimating the clean sources [27]. Their methods,
however, lead to a linear transformation, and the probability
densities of the sources must be estimated correctly, while
our mapping method can be highly non-linear and does not
require the information concerning the probability densities of
the sources.

On the other hand, delta and acceleration feature vectors
have been proved to be efficient in improving ASR per-
formance [28][29], and thus they are usually used in the
recognizer. The delta feature vector (coefficients) at frame n
are computed using the neighbor feature vectors from n−K
to n+K frames in the following regression formula [30]:

∆c(n) =

∑K
k=1 k[c(n+ k)− c(n− k)]

2
∑

k k
2

, (8)

where c(n+k) and c(n−K) denote the corresponding static
feature vectors at frame (n + k) and (n − K), respectively.
We next theoretically prove that minimizing the mean squared
error (MMSE) of the static feature vectors also results in
MMSE for their delta coefficients (likewise for their accelera-
tion coefficients), and thus we do not need to perform feature



4

Fig. 3. The configuration of speech data recordings.

mapping for the delta and acceleration coefficients:

min
∑

n ||∆c(n)−∆ĉ(n)]2

=min
∑

n ||
∑

k k{[c(n+k)−ĉ(n+k)]+[c(n−k)−ĉ(n−k)]}||2
(2

∑
k k2)2

≈min
∑

n

∑
k k2{||c(n+k)−ĉ(n+k)||2+||c(n−k)−ĉ(n−k)||2}

(2
∑

k k2)2

≈min
∑

n 2
∑

k k2{||c(n+k)−ĉ(n+k)||2}
(2

∑
k k2)2

=min 2
∑

k k2·
∑

n{||c(n+k)−ĉ(n+k)||2}
(2

∑
k k2)2

=min E
2
∑

k k2 ,

where E denotes the cost function defined in Eq. (3). Here
we assume the estimated errors, [c(n + k) − ĉ(n + k)] and
[c(n−K)− ĉ(n−K)], are uncorrelated. Therefore our feature
mapping of the static feature vectors leads to the minimization
optimization of their delta and acceleration coefficients, which
helps to improve the ASR performance.

IV. EXPERIMENTAL DATA AND SETUP

The Multichannel Overlapping Numbers Corpus (MONC)
[6] was used to perform speech recognition experiments. This
database comprises a task for continuous digit recognition
in the presence of overlapping speech. The configuration of
speech data recordings in the MONC [6] is shown in Fig.
3. The database was collected in a moderately reverberan-
t, 8.2m×3.6m×2.4m rectangular room (reverberation time
RT60 ≈ 0.5s). Three loudspeakers (L1, L2, L3) were placed
at 90 spacing around the circumference of a 1.2m diameter
circular table at an elevation of 35cm. The placement of
the loudspeakers simulated the presence of a desired speaker
(L1) and two competing speakers (L2 and L3) in a realistic
meeting room configuration. An 8-element, equally spaced,
circular array of 20 cm diameter was placed in the middle
of the table, and an additional microphone was placed at the
center of the array. All subsequent discussion will refer to the
recording scenarios as S1 (no overlapping speech), S12 (with
1 competing speaker L2), S13 (with 1 competing speaker L3),

Fig. 4. Diagram of the feature mapping based speech recognition. {d(l)} and
{c(l)} denote the training sets of the feature vectors extracted from distant
microphone recordings and from clean speech, respectively. d(n) and ĉ(n)
denote the feature vectors extracted from distant microphone recordings and
the estimated feature vector of clean speech at n-th frame, respectively.

and S123 (with 2 competing speakers L2 and L3). The training
data are equivalent to condition S1 of the development and
evaluation sets.

The speech recognition experiments were carried out using
whole-word HMMs. The word models had 16 emitting states,
and each was modeled by a GMM of 20 components. The ‘sil’
and ‘sp’ models had three and one emitting state, respectively,
with 36 Gaussian mixture components. The duration of the
feature analysis was 25 msec with a frame shift of 10 msec.
A 23-channel log-MFB analysis was applied and was trans-
formed into 12 mel-frequency cepstral coefficients (MFCCs).
Thus, the feature vector comprises 12 MFCCs and log-energy
with corresponding delta and acceleration coefficients. HTK
[30] was used for each feature extraction of the front-ends
and training the acoustic model. In addition, maximum a
posteriori (MAP) [31][32] adaptation was performed on these
models using the development set for each scenario (thus, each
adapted system comprised a set of four models, one adapted
to each of the recording scenarios).

The corpus is divided into training data (6,049 utterances)
and per-condition data sets for development/adaptation (2,026
utterances) and testing (2,061 utterances). In the feature map-
ping methods, the MLP is trained from data drawn from
the development data set which consists of 2,000 utterances
(500 utterances of each recording scenario in the develop-
ment/adaptation set). The total number of training examples
(frames) is 371,543. A diagram of the model training and
feature estimation is given in Fig.4. The size of the MLPs
across the different ASR experiments were kept the same in
this paper. Therefore the total number of parameters in the
MLP was set up experimentally to be equal to 10% of the
training frames [21].
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V. FEATURE VECTOR MAPPING IN THE LOG
MEL-FILTERBANK ENERGY DOMAIN

We first estimated the log mel-filterbank energy (MFBE)
vectors of clean speech by mapping those of distant speech1

. The use of MMSE in the log spectral domain is motivated
by the fact that the log spectral measure is more related to
the subjective quality of speech [33] and that some better
results have also been reported with log distortion measures
[34]2. On the other hand, in overlapping speech scenarios
the speech energies of different speakers may lie in different
filterbanks, which is advantageous to separate the target and
interfering speeches through our feature learning methods. In
[15][16][35], component-independent mapping is used, where
an MLP corresponds to each component of a feature vector.
Taking into consideration the log mel-filterbank energies are
correlated, we propose to perform a full-vector based mapping
via a universal MLP with the outputs comprising 23 log MFBE
components and a log energy. We confirmed the improvement
of speech recognition accuracy [21]. We performed two stan-
dard ASR experiments as our baselines:

1) center: Using the MFCCs extracted from the center
microphone speech signal.

2) DS: Using the MFCCs extracted from the delay-and-sum
(DS) beamformer enhanced speech signal.

Using the full-vector based mapping with MLP, we per-
formed the following ASR experiments:

1) MA: MFCCs extracted using log MFBEs estimated by
mapping MLP that takes log MFBEs extracted from all
the 8-channel array speech as input, as shown in Fig. 4.

2) MDS: MFCCs extracted using log MFBEs estimated by
mapping MLP that takes log MFBEs extracted from DS-
enhanced speech as input.

3) MDSC: MFCCs extracted using log MFBEs estimated
by mapping MLP that takes log MFBEs of both DS-
enhanced speech and center microphone speech as inputs.

A diagram of the feature mapping based speech recognition
using delay-and-sum beamformer and center speech with re-
training the HMMs is shown in Fig. 5, in which Eq. (6) can
be reformulated as

ĉ(n) = f(d(n), s(n))

= Wsig
(
V

[
d(n)
s(n)

])
, (9)

where d(n) and s(n) denote the feature vectors extracted from
the distant center microphone speech and the delay-and-sum
beamformer at n-th frame, respectively. sig(·) is the sigmoidal
activation function. V and W are weight matrices of input-
layer and output-layer, respectively. We also performed the
mapping for the training data as well (and then re-training
the acoustic model) to further reduce the mismatch between
training and testing conditions. We refer to it as “+RT”.

1The estimated log MFBEs are then transformed into MFCCs for recogni-
tion.

2In [34]. Porter and Boll found that for speech recognition, minimizing the
mean squared errors in the log |DFT | is superior to using all other DFT
functions and to spectral magnitude subtraction.

Fig. 5. Diagram of the feature mapping based speech recognition using
delay-and-sum beamformer and center speech with re-training the HMMs.
{d(l)}, {s(l)}, and {c(l)} denotes the training sets of the feature vectors
extracted from center microphone speech, delay-and-sum beamformer, and
clean speech, respectively. d(n) and s(n) denote the feature vectors extracted
from center microphone speech, delay-and-sum beamformer at n-th frame,
respectively. ĉ(n) denotes the estimated feature vector of clean speech at
n-th frame.

TABLE I
RECOGNITION ACCURACIES (AS PERCENTAGES) OF DIFFERENT SYSTEMS

FOR VECTOR-BASED MAPPING STUDIES. UPPER HALF OF THE TABLE
REPRESENTS ACCURACIES FOR NO ADAPTATION CASE AND LOWER HALF
OF THE TABLE REPRESENTS ACCURACIES FOR ADAPTATION CASE. THE

BEST SYSTEM BASED UPON AVERAGE ACCURACY ACROSS ALL THE
CONDITIONS IS IN BOLDFACE FONTS.

S1 S12 S13 S123 Average
center 78.0 34.5 40.8 24.3 44.4
DS 73.8 46.3 54.7 39.8 53.7
MA 85.2 71.1 73.5 59.7 72.4
MDS 87.4 72.2 76.1 61.2 74.2
MDSC 88.0 76.1 79.4 64.8 77.1
MDSC+RT 88.6 78.9 83.8 72.5 80.9
MDSC+RT (linear) 86.5 73.2 79.0 66.7 76.4
center 89.0 38.7 46.9 27.6 50.6
DS 90.4 61.9 70.2 52.8 68.8
MA 85.2 72.4 76.7 61.9 74.1
MDS 89.1 72.8 77.1 63.0 75.6
MDSC 90.2 76.6 80.1 66.2 78.3
MDSC+RT 89.7 81.9 84.6 75.8 83.0
MDSC+RT (linear) 88.6 76.5 81.2 69.4 78.9

Table I shows the recognition results in terms of recognition
accuracies. The upper and lower halves of this table depict
the recognition results without and with the adaptation of the
acoustic models. Some of the major observations are:

• ASR performance drops when going from the single
non overlap speaker condition S1 to the overlap speaker
conditions S13, S123, and S123 with the three speaker
overlap condition has the worst performance.

• “DS” is better than “center”, and model level adaptation
improves performance, which has also been observed
previously in the literature [36].

• Irrespective of the method, the mapping approach always
yields significant improvement in recognition accuracies
for all conditions when compared with “center” and

3In the S12 condition the speakers are closer than the S13 condition which
can explain why the S12 condition has a lower performance than the S13
condition.
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Fig. 6. Probability density functions (pdf) of the first and second order log
MFBEs (upper half) and MFCCs (lower half) of the original clean training
data (bold solid line), generated training data (dashed line), and estimated test
data in S12 recording scenario (thin solid line).

“DS” (except for the S1 condition after adaptation), with
the improvements being significantly pronounced in the
overlap conditions.

• “MDS” performs better than “MA” suggesting that the
quality of the features for mapping is important. “MDSC”
performs better than “MDS” indicating that mapping the
features and combining them from different “versions” of
the speech signal at the input of the MLP is beneficial.

• For the MLP-based mapping methods, the feature adap-
tation for the training data and a subsequent re-training
the acoustic model contributes to the improvement of
the recognition performance in the overlapping speech
scenarios. Figure 6 shows the effect on the probability
density functions (pdf) by adapting the training data of
the acoustic model. It is observed that the mismatch of the
probability density functions (pdf) between the training
and test conditions is reduced by using the mapping-
generated training data, rather than the original clean
training data.

• Among the mapping methods “MDSC+RT” stands out as
the best, demonstrating the effectiveness of incorporating
combined features from different “versions” of speech
signal as the input of the MLP, and re-training the
acoustic model over the generated training data.

The last lines of the upper and lower halves of Table I
indicate the recognition performance using linear mapping
(i.e., Eq. (2)) rather than nonlinear mapping (i.e., Eq. (6)).
It can be seen that non-linear mapping performs significantly
better than linear mapping. Therefore non-linear mapping, and
re-training the acoustic model over the generated training data,
is adopted in the following studies.

VI. FEATURE MAPPING BETWEEN DIFFERENT DOMAINS

In the above section, we estimated the log mel-filterbank
energy (MFBE) vectors of clean speech by mapping those

TABLE II
RECOGNITION ACCURACIES (AS PERCENTAGES) OF THE MAPPING THE

LOG MFBES TO MFCCS. UPPER HALF OF THE TABLE REPRESENTS
ACCURACIES FOR NO ADAPTATION CASE AND LOWER HALF OF THE TABLE

REPRESENTS ACCURACIES FOR ADAPTATION CASE.

S1 S12 S13 S123 Average
log MFBEs → MFCCs 89.5 81.0 84.5 74.0 82.3
MFCCs → MFCCs 88.2 77.5 82.6 71.2 79.9
log MFBEs → MFCCs 89.9 81.9 85.0 76.0 83.2
MFCCs → MFCCs 89.7 80.4 84.1 74.0 82.1

of distant speech. In the log MFBE domain, in overlapping
speech scenarios the speech energies of different speakers may
lie in different filterbanks, and the features are redundant and
correlated, which are advantageous to separate the target and
interfering speeches through our feature learning methods. In
fact, the mapping need not to be performed between equivalent
domains. From Fig. 6 (bold solid lines) it can be seen that the
probability densities of the log MFBEs of the clean target are
bi-modal (possibly because of the low SNR segments), rather
than Gaussian. In this case, the maximum likelihood principle
does not lead to minimizing the mean square error (MMSE),
which we employed in Eq. (3). Therefore minimizing the mean
square error (MMSE) in Eq. (3) will not be optimal if we
perform the mapping in the log MFBE domain. Alternative
mapping may be performed in the cepstral domain, where
clean speech has an approximate Gaussian distribution (see
Fig. 6), and the features are de-correlated and more straightfor-
ward in the context of speech recognition. It is advantageous
to perform non-linear mapping of the features from the log
mel-filterbank energy (log MFBE) domain to the features in
the MFCC domain. We compared its ASR performance with
those using the equivalent mapping in the MFCCs domain.

Table II shows the recognition results in terms of recognition
accuracies compared to the equivalent mapping in the MFCCs
domain. Here the best configuration in Table I, i.e. the non-
linear mapping of the features vectors extracted from both the
DS beamformer and the center microphone speech, are used.
A re-training of the acoustic model over the generated training
data is also included. The upper and lower halves of this table
depict the recognition results without and with the adaptation
of acoustic models. Some of the major observations are:

• The mappings from log MFBEs to MFCCs perform better
than those from MFCCs, which confirms that the mixed
filterbank inputs retain more information (e.g., different
speech energy distributions over the filterbanks from the
target and interfering speakers). Meanwhile, one can have
the hypothesis that the smaller dynamic range of the log
MFBEs as shown in Fig. 6 is advantageous for regression
optimization [11].

• Additionally, compared with Table I, the mappings from
log MFBEs to MFCCs perform better than those from
log MFBEs to log MFBEs, which demonstrates that
minimizing the mean square error (MMSE) in MFCCs
domain is more advantageous than in the log MFBE
domain. On the other hand, the properties of the de-
correlations of MFCCs is helpful for speech recognition,
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Fig. 7. Diagram of the feature mapping based speech recognition using
two beamformers with their poster-filterings. Re-training the HMMs is also
included. {st(l)} and {si(l)} denotes the training sets of the feature vectors
extracted from the beamformers directed to target speaker and interfering
speaker, respectively. {c(l)} denotes the training sets of the feature vectors
extracted from clean speech. st(n) and si(n) denote the feature vectors
extracted from the beamformers directed to target speaker and interfering
speaker at n-th frame, respectively. ĉ(n) denotes the estimated feature vector
of clean speech at n-th frame.

but MFCCs are obtained by using a set of fixed discrete
Cosine transforms (DCT). From Table I, it is suggested
that our feature mapping methods can automatically de-
correlate the log MFBE features, but in a more flexible
way.

• The gains from model adaptation are marginal when we
perform the feature mapping between different domains.
This may be explained by the fact that the mapping meth-
ods evaluated are already very effective at suppressing the
influence of interfering speakers on the extracted features.

Therefore, the feature mapping from log MFBEs to MFCCs
is employed in the following studies.

VII. FEATURE MAPPING FROM MULTIPLE BEAMFORMED
SOURCES

A. Proposed method

In Section V, we found that augmenting the features to be
mapped from the DS beamformer together with the center
microphone could improve the mapping. The mapping method
could be viewed as a non-linear processing technique that
aims to approximate the clean speech through the fusion
of the estimated (or enhanced) target speech and interfering
speech4. If the qualities of the estimated target speech and
interfering speech are improved, then it is highly possible that
the clean speech can be approximated with greater precision.
We pursued this idea further by mapping both the estimated
target and interfering sound sources. The target and interfering
audio signals are obtained by directing the DS beamformer
in the directions of these sound sources. However, there still
remain considerable undesired signal components in the DS
outputs, thus, we further process them using a frequency-
domain binary masking post-filter [37] to eliminate unwanted

4The center microphone signal could be viewed as a mixture of the target
and interfering noise.

signal components. The frequency-domain masking post-filter
is formulated as follows:

• If bi(k) is the frequency-domain output of the i-th beam-
former for frequency bin k, the post-filtered output pi(k)
is obtained as:

pi(k) = hi(k)bi(k), i = 1, ..., I (10)

where the frequency response of the post-filter is estimat-
ed by:

hi(k) =

{
1 if i = argmaxi′ |bi′(k)|, i′ = 1, ..., I
0 otherwise (11)

and I is the number of beamformers.
In S15, S12, S13 scenarios, the two beamformers (i.e., I = 2)
are designed to correspond to the target and interfering speech.
In the S123 scenario, the three beamformers (i.e., I = 3)
are designed to be directed to the target speaker and the
other two interfering speakers6. Therefore, in this section we
propose to separate the target and interfering speech using DS
beamforming followed by a frequency domain binary-masking
based postfilter, and then perform our feature mapping method
between different domains. In our experiments, once the
beamformed speech signals were obtained, the 23-order log
MFBEs were extracted and used as inputs in our mapping
method to approximate the MFCCs of clean speech. A diagram
of the feature mapping based speech recognition using two
beamformers7 with their subsequent poster-filtering is shown
in Fig. 7, in which the r-th component of the MFCC feature
vector of clean speech at frame n can be estimated by:

cr(n) = f(st(n), si(n))

=
P∑

p=1

(
wp,r · sig

(
wT

p,tst(n) + +wT
p,isi(n)

))
,(12)

where st(n) and si(n) denote the log MFBE feature vectors
extracted from the beamformers directed at the target and
interfering speakers, respectively. wp,t and wp,i indicate their
corresponding weights from the input layer to the p-th hidden
neuron. wp,r indicate the weights from the p-th hidden neuron
to the r-th output.

B. Properties of the proposed method

We can now define the following properties of the proposed
method.

1) From Eq. (12) the proposed non-linear feature mapping
can be viewed as a generalized spectral subtraction in
the feature domain8, and the weights (or gains) are

5In the S1 scenario (only one active speaker), the secondary beamformer is
directed to L3 as shown in Fig. 3, and thus the output of another beamformer
is noise-like.

6Note that in this scenario the designation of the beamformers is different
from our previous work [22], in which only two beamformers are used for the
S123 scenario: one beamformer is directed at the target speech (L1 in Fig. 3)
and the other directed at the middle position of the two interfering speakers
(L2 and L3 in Fig. 3).

7three beamforms for the S123 scenario.
8i.e., the interfering components embedded in the beamformer directed to

target speech may be subtracted by another beamformer directed to interfering
speech.
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TABLE III
RECOGNITION ACCURACIES (AS PERCENTAGES) OF DIFFERENT METHODS.

UPPER HALF OF THE TABLE REPRESENTS ACCURACIES FOR NO
ADAPTATION CASE AND LOWER HALF OF THE TABLE REPRESENTS

ACCURACIES FOR ADAPTATION CASE. THE BEST SYSTEM BASED UPON
AVERAGE ACCURACY ACROSS ALL THE CONDITIONS IS SHOWN IN

BOLDFACE FONTS. THE RECOGNITION ACCURACIES SHOWN INSIDE THE
PARENTHESIS DENOTE THE MAPPING FROM THE TWO BEAMFORMED

SPEECH, WHICH IS USED IN [22].

S1 S12 S13 S123 Average
DSmask 89.8 81.7 82.4 69.3 80.8
MmDS 90.7 86.9 88.3 84.2 (83.8) 87.6 (87.4)
MmDSmask 90.4 88.5 89.2 85.1 (84.6) 88.3 (88.2)
DSmask 90.1 83.0 85.3 74.2 83.2
MmDS 90.9 87.5 88.8 85.0 (84.7) 88.0 (88.0)
MmDSmask 90.6 88.7 89.3 85.3 (85.1) 88.5 (88.4)

optimized using a minimum mean square error (MMSE)
or maximum likelihood criterion [25][26].

2) The weights (or gains) are obtained by training the MLP
universally on the collections of different overlapping
scenarios (or number of sources), and in the test phase
they can automatically adapt to different scenarios.

3) The proposed method is established on the estimation of
the target and interfering speech, which will be helpful in
estimating the features of clean speech more accurately.

4) Generally speaking, we can universally employ two
beamformers, directed at the target speaker and the other
direction respectively. Unlike some blind source separa-
tion methods [9] (e.g., independent component analysis
(ICA) [10]) the number of sources need not be prior
knowledge.

C. Experimental results

We performed the following ASR experiments:
1) DSmask: MFCCs extracted from the speech enhanced by

the DS and subsequent masking post-filter.
2) MmDS: MFCCs estimated by the mapping of the two or

three DS-enhanced speech sources;
3) MmDSmask: MFCCs estimated by the mapping of the

two or three DS+masking enhanced speech sources.
Table III shows the recognition performance of the different
experiments described above. In the S123 scenario, we also
compared the ASR performance of the mapping from the three
beamformed speech sources with that of the mapping from
the two beamformed speech sources, shown in parenthesis in
Table III. We can draw following inferences from the results:

• The frequency-domain masking post-filter is very effec-
tive at improving the quality of the separated speech
(verified by informal listening). In the three speech-
overlapping scenarios, the ASR performance is greatly
improved by the frequency-domain masking post-filter.

• The mapping of the multiple DS-enhanced speech (“M-
mDS”) sources yields significant improvement of the
ASR performance compared with DS (especially without
model adaptation), indicating that the interfering speech
provides important information for mapping. Compared
with Table II, the recognition accuracies are significantly
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Fig. 8. Effect of the mapping method on the first and second MFCC
trajectories in S12 recording scenario. bold solid line: MFCC trajectories of
the clean speech; dash-dot line: MFCC trajectories of beamformed speech.
thin solid line: the mapped MFCC trajectories.

improved. This suggests that estimating the interfering
speech more accurately (using DS-enhanced interfering
speech instead of the center microphone signal) is very
helpful for the mapping method.

• The frequency-domain binary masking post-filter is also
helpful for the mapping method. Except for the S1
condition, “MmDSmask” yields the best recognition sys-
tem for overlap speech conditions. The well-estimated
MFCC trajectories, as shown in Fig. 8, also illustrate
the advantages of “MmDSmask”. However, compared
with “MmDS” the improvement of “MmDSmask” is not
significant, which can be explained by the hypothesis
that the MLP performs a similar role to the masking
post-filter, both being provided with essentially the same
information as the input (source and interfering speech)
though in a different representation (FFT versus MFCC).

• In the S123 scenario, the mapping from the three beam-
formed speech sources (respectively directed to each of
speakers) performs slightly better than that from the two
beamformed speech sources. This demonstrates that the
better qualities of the estimated interfering speech are
very helpful for improving the ASR performance using
the feature mapping method.

• Across the S1, S12, S13, and S123 scenarios, there is a
significantly reduced mismatch between the four record-
ings. Moreover, for the mapping methods, the gains from
model adaptation can be ignored. This may be explained
by the fact that the feature mappings of multiple beam-
formed sources are very effective at approximating the
target speech and suppressing the influence of interfering
speakers on the extracted features. This avoids the need
for adaptation to each scenario, which is required in the
conventional multi-condition speech recognition systems.

VIII. DISCUSSIONS

Some issues concerning the proposed feature mapping
method are worthy of investigating furthermore. In the follow-
ing experiments, the adaptation parts are omitted for saving the
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TABLE IV
RECOGNITION ACCURACIES (AS PERCENTAGES) OF FEATURE-SPACE

MAXIMUM LIKELIHOOD LINEAR REGRESSION (FMLLR) AND DENOISING
AUTOENCODER (DAE). FOR COMPARISON “DSMASK” AND

“MMDSMASK” ARE CITED FROM THE UPPER PART OF TABLE III. “MA” IS
CITED FROM THE UPPER PART OF TABLE I.

S1 S12 S13 S123 Average
DSmask* 89.8 81.7 82.4 69.3 80.8
MmDSmask* 90.4 88.5 89.2 85.1 (84.6) 88.3
MmDSmask (linear) 86.2 83.4 84.7 72.3 81.7
DSmask+fMLLR 89.9 82.1 85.3 75.2 83.1
MA* 85.2 71.1 73.5 59.7 72.4
DAE 85.5 72.0 74.1 61.2 73.2

space.
The proposed feature mapping method are based on MLP

and are inherently non-linear. Some conventional feature trans-
forms like feature-space maximum likelihood linear regression
(fMLLR) [38] have been proven to be able to improve noise
robustness of speech recognition. On the other hand, more
recently deep neural networks (DNN) are employed to denoise
the noisy speech [39][40]. For comparisons we performed
the experiments using the supervised fMLLR and DNN. The
same 2,000 utterances from the development data set are
used for training. In the fMLLR case the adaptation features
are based on MFCCs obtained from “DSmask” in Section
VII. In the DNN case a denoising autoencoder (DAE) with
three hidden layers (500 neurons per layer) similar to [39]
is trained over the 2000-utterance noisy-clean speech pairs9.
After pretraining in a layer-by-layer manner, all the layers are
stacked to form a denoising autoencoder for fine tuning. Note
that our proposed method in Section VII are the non-linear
mappings of two (or three) beamformed sources, while fMLLR
applies a linear adaptation on a single beamformed source
only. DAE is a denoising neural network with the inputs of
eight original noisy sources. As shown in Table IV, fMLLR
performs better than “DSmask” and “MmDSmask (linear)”10

in the upper part of Table III, but not as well as the proposed
“MmDSmask”. Although compared with “MA” in the upper
of Table I, DAE provides slightly better performance but with
a higher computation cost, it performs significantly worse than
“MmDSmask”. These demonstrate the effectiveness of the
proposed non-linear mapping of multiple beamformed sources.

Simple delay-and-sum (DS) beamformers are used in the
experiments aforementioned. In [41][42], it is shown that a
super-directive (SD) beamformer with a subsequent frequency-
domain binary masking post-filter in Eqs. (10) and (11) can
consistently yield super performance in meeting scenarios.
We therefore incorporated it in our proposed method, de-
noted by “MmSDmask” in Table V. Like in Section VII
two super-directive beamfomers directed to the target speech
and interferers are used as the inputs of MLP. Table V
shows the recognition performance with this setup. Indeed,
super-directive beamformer with a subsequent binary mask-

9The inputs of the DAE are the log MFBEs of eight noisy channels, and
the outputs are the MFCCs of clean speech.

10i.e., linear mapping (using Eq. (2)) the features from multiple DS-
beamformed sources (with a binary masking post-filter).

TABLE V
RECOGNITION ACCURACIES (AS PERCENTAGES) OF SUPER-DIRECTIVE

BEAMFORMER WITH A SUBSEQUENT BINARY MASKING POST-FILTER
(SDMASK) AND A COMBINATION OF SDMASK WITH FEATURE-SPACE

MAXIMUM LIKELIHOOD LINEAR REGRESSION (FMLLR) AND OUR MLP
FEATURE MAPPING (MMSDMASK).

S1 S12 S13 S123 Average
SDmask 90.4 82.2 82.4 73.8 82.2
SDmask+fMLLR 90.5 84.1 86.3 79.4 85.1
MmSDmask 90.6 88.7 89.5 84.9 88.4

TABLE VI
RECOGNITION ACCURACIES (AS PERCENTAGES) OF TRAINING MLP ON

THE S1 AND S12 CONDITIONS BUT TESTING ON THE S13 AND S123
CONDITIONS. “DSMASK” AND “MMDSMASK” ARE CITED FROM THE

UPPER PART OF TABLE III FOR COMPARISON.

S1 S12 S13 S123 Average
DSmask* 89.8 81.7 82.4 69.3 80.8
MmDSmask* 90.4 88.5 89.2 85.1 (84.6) 88.3
MmDSmaskS 90.5 88.9 87.1 65.2 82.9
SDmaskS+fMLLR 90.6 84.8 85.0 61.2 80.4
MmSDmaskS 90.7 89.3 87.1 65.7 83.2

ing post-filter yields better performance than delay-and-sum
beamfomer with a same post-filter. A feature-space maximum
likelihood linear regression (fMLLR) can also help improve
the performance. However like “MmDSmask” vs “MmDS” in
the upper part of Table III, the gains of “MmSDmask” from
“MmDSmask” are quite marginal. This demonstrates that the
proposed mapping method is not dependent on the qualities
of multiple beamformed sources.

Generalization to unseen conditions is worth investigating
for supervised learning algorithms, and thus we design the
following experiments to testify MLP’s generalization abilities.
An MLP with two directed delay-and-sum (DS) beamformers
followed by a binary masking post-filter is trained over 1,000
(500 each from S1 and S12 scenarios) utterances which are
from the development data set. The test conditions consist
of all the four scenarios (S1, S1S2, S1S3, and S123). As
shown in Table VI, in average this setup (denoted by “MmDS-
maskS”) performs better than “DSmask”. Compared to the
original “MmDSmask”, “MmDSmaskS” provides marginally
better performance for S1 and S12 scenarios (matched con-
ditions), which are used for training MLP. As for the unseen
(or mismatched) S13 scenario, “MmDSmaskS” performs s-
lightly worse than “MmDSmask” but performs significantly
worse for the unseen (or mismatched) S123 scenario. These
tendencies also occur when using the super-directive (SD)
beamforming with a subsequent binary masking post-filter
(“SDmaskS+fMLLR” and “MmSDmaskS” in Table VI). This
may be explained because the inputs of MLP for the S13
scenario are similar to those of the S12 scenario while the
inputs of MLP for the S123 scenario differ far from those for
the S12 scenario, in which the trained MLP weights are not
capable to recover the clean features.

The data used for the experiments aforementioned were
recorded in the same room, and thus they have the same
acoustic characteristics. In order to testify whether the pro-
posed method can work in a different acoustic condition,
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Fig. 9. The configuration of speech data recorded in Nagaoka University of
Technology, Japan.

200 utterances are recorded using a circular microphone
array (20cm diameter) as same as MONC database [6] but
in a 7.2m×5.0m×3m rectangular room (reverberation time
RT60 ≈ 0.85s) in Nagaoka University of Technology, Japan,
as shown in Fig. 9. 200 different clean utterances are displayed
through three loudspeakers in Fig. 9. A multi-channel record-
ing device ”Tokyo Electron device TD-BD-16ADUSB” was
used for recording. In this experimental setup, MLP weights
are trained on MONC database [6] while the test data are
from this new environment (denoted by “MmDSmask2” in
Table VII). “DS2” and “DSmask2” denote DS beamformer
and with a binary masking post-filter respectively, which
are applied to the newly recorded data with their acoustic
models trained over MONC database [6]. The original “DS”,
“DSmask”, “SDmask+fMLLR”, and “MmDSmask” in MONC
database [6] are cited for comparison. Note that for “D-
S”, “DSmask”, “SDmask+fMLLR”, and “MmDSmask” their
trainings and testings are performed under matched conditions,
while “for DS2”, “DSmask2”, “SDmask2+fMLLR2”, and
“MmDSmask2” their trainings and testings are performed
under mismatched conditions. As shown in Table VII, for all
the methods the recognition results in this new acoustic envi-
ronment are significantly worse than those in MONC database
(under matched conditions). The reasons may be that the re-
verberation time in the new environment is remarkably longer
than that in the MONC environment, and the speech qualities
recorded by multi-channel recording device ”Tokyo Electron
device TD-BD-16ADUSB” are not as high as MONC data.
“SDmask2+fMLLR2” and “MmDSmask2” still outperform
“DS2” and “DSmask2”, however its recognition accuracies
are far lower than those of the original “SDmask+fMLLR”
and “MmDSmask”. This may be explained by the fact that
the inputs of MLP in the new environments are different from
those used for training MLP, and the originally trained MLP
weights are no longer feasible in the new environment. To
address this problem, we will investigate training an MLP over
the speech recorded from various acoustic environments in the
future.

TABLE VII
RECOGNITION ACCURACIES (AS PERCENTAGES) OF NEWLY RECORDED

DATA. FOR ALL THE METHODS, THEIR ACOUSTIC MODELS ARE TRAINED
OVER MONC DATABASE [6]. FOR “SDMASK2+FMLLR2” AND

“MMDSMASK2” THE MLP WEIGHTS ARE TRAINED ON MONC DATABASE
[6]. FOR COMPARISON “DS” IS CITED FROM THE UPPER PART OF TABLE I.

“DSMASK” AND “MMDSMASK” ARE CITED FROM THE UPPER PART OF
TABLE III. “SDMASK+FMLLR” IS CITED FROM TABLE V. NOTE THAT

FOR “DS”, “DSMASK”, “SDMASK+FMLLR”, AND “MMDSMASK” THEIR
TRAININGS AND TESTINGS ARE PERFORMED UNDER MATCHED

CONDITIONS, WHILE “FOR DS2”, “DSMASK2”, “SDMASK2+FMLLR2”,
AND “MMDSMASK2” THEIR TRAININGS AND TESTINGS ARE PERFORMED

UNDER MISMATCHED CONDITIONS.

S1 S12 S13 S123 Average
DS* 73.8 46.3 54.7 39.8 53.7
DSmask* 89.8 81.7 82.4 69.3 80.8
SDmask+fMLLR* 90.5 84.1 86.3 79.4 85.1
MmDSmask* 90.4 88.5 89.2 85.1 (84.6) 88.3
DS2 69.6 29.8 36.6 24.3 39.9
DSmask2 75.5 39.2 42.7 37.5 49.0
SDmask2+fMLLR2 75.8 42.5 45.9 42.4 51.7
MmDSmask2 72.4 50.3 51.2 47.1 55.3

IX. CONCLUSIONS AND FUTURE WORK

We have presented our approach to improving the recog-
nition performance of overlapping speech using a non-linear
feature mapping method. We first employed the full-vector
based mapping in log mel-filterbank energy (log MFBE)
domain and improved recognition accuracy by re-training the
acoustic model over the generated training data. We then
improved the recognition accuracy by exploring the mapping
of the extracted features between different domains. Finally
the best recognition performance was achieved by using a
microphone array to extract the features from the directions of
the target and interfering sound sources, which was followed
by mapping these features to those of clean speech. The pro-
posed approach achieved considerable improvements in ASR
performance for overlapping multi-speaker conditions, and
was also effective for the single non-overlapping condition. We
discovered that our proposed approach resulted in a non-linear
processing (fusion) of the target and interfering speech, and
the improved qualities of the estimated target and interfering
speech were very helpful in improving the ASR performance
using our proposed non-linear feature mapping method. We
also demonstrated that the well estimated feature vectors (i.e.,
MFCCs), obtained via our final proposed method, could avoid
the need for adaptation to a particular recording scenario.

There are several areas where further investigation is need-
ed. In the MONC corpus, the clean speech is available,
however in real applications actual clean speech is not readily
available, and instead close-talking microphones (CTM) are
usually employed. It is worth investigation the recognition
performance of the our proposed mapping method using
CTM speech. We plan to extend this work to more realistic
environments (e.g., overlapping speech encountered in meeting
scenarios), and detect speaker overlap and non-overlap regions
in multi-party meetings and train/adapt the MLP directly using
close-talking microphone speech as target speech.
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