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Abstract

In this paper, we discuss a fast implementation of the Infor-

mation Bottleneck (IB) approach based speaker diarization sys-

tem. The IB system has low real time factors (RTF) compared

to other conventional approaches to speaker diarization. The IB

diarization system has three modules: (1) a posterior probability

estimation module, (2) a clustering module and (3) a realign-

ment module. In this paper, we propose techniques to further

improve RTFs of the first and the last module without affecting

the diarization performance. The techniques avoid the estima-

tion of redundant terms and reduce the complexity of the under-

lying models. Exhaustive evaluations on the NIST Rich Tran-

scription datasets show relative RTF reductions of 15% while

maintaining the performance. Particularly, the posterior extrac-

tion stage is optimized to obtain a relative RTF reduction of

56%. Optimization on the different realignment strategies are

shown to provide a relative RTF reduction of 67% and 58%.

Index Terms: speaker diarization, information bottleneck ap-

proach

1. Introduction

Speaker diarization systems address the problem of who spoke

when in a given audio recording. The problem is approached in

an unsupervised fashion using techniques such as HMM/GMM

(Hidden Markov Model/Gaussian Mixture Model) [1] and In-

formation Bottleneck approach based diarization systems [2].

The IB framework based speaker diarization system has been

shown to be a faster approach in terms of real time factors

(RTF) [3]. The RTF is defined as the ratio of the time taken

by the algorithm to the duration of the input. It indicates the

suitability of a system for real-time applications. In the context

of speaker diarization, in which the input audio is significantly

longer than those used in typical ASR systems or speaker verifi-

cation systems, obtaining systems that have faster than real-time

run-times with good performance (in terms of the error rate) is

beneficial. The output of diarization systems are also often used

as input to other speech analysis systems. In [4], the diarization

output is used as an input to the ASR system. Speaker linking

is yet another task in which the output of speaker diarization is

useful [5]. Such uses motivate the need for fast speaker diariza-

tion systems. Several attempts, including [6, 7], can be found in

the literature emphasizing the need for fast diarization systems

[1].

Thanks to the non-iterative nature of the IB based speaker

diarization systems, they are significantly faster than conven-

tional HMM/GMM based diarization systems while yielding

similar performance. As a result, the IB based speaker diariza-

tion systems have not been optimized so far. In this work, we

propose optimization techniques that significantly decrease the

run-time of IB based diarization systems.

More specifically, during posterior feature estimation, the

covariance of the Gaussians in a GMM are shared and cer-

tain computations can therefore be pre-computed and others

avoided, thereby yielding 10% relative RTF improvement. Fur-

thermore, two different methods can be applied for the realign-

ment: HMM/GMM based realignment and KL-HMM based re-

alignment. The run-time of both methods can be significantly

reduced. Our experiments show that the model complexity as

well as the number of iterations for the HMM/GMM realign-

ment can be reduced without noticeable effect on the diariza-

tion performance, resulting in a faster realignment. The KL-

HMM based realignment method involves computationally ex-

pensive logarithm computations. Careful algorithm analysis re-

veals that many logarithm computations are indeed redundant

and can be omitted, leading to a speed-up of 56% relative. Al-

together, these optimizations significantly improve the RTF of

the diarization system without compromising its diarization per-

formance.

The rest of the paper is organized as follows: Section 2

gives an overview of the IB-based approach to speaker diariza-

tion. The computational complexities of the modules involved

are discussed. In Section 3, an optimization to posterior com-

putation is proposed and its effects studied. In Section 4, obser-

vations on improving the run-time HMM/GMM system are dis-

cussed. In Section 5, an efficient optimization to the KL-HMM

algorithm is introduced. The combined results are reported in

Section 6.

2. Information Bottleneck Approach

The Information Bottleneck (IB) method performs diarization

by optimizing the clusters with respect to a set of relevance vari-

ables [2]. The optimization criterion is given below:

F = I(Y ;C)−
1

β
I(C;X) (1)

where X is the feature set, Y is the set of relevance vari-

ables and C is the set of clusters. The Lagrangian multiplier

β controls the trade-off between information preserved in the

clusters and the cluster size. A block diagram of the IB ap-

proach is given in Figure 1. The system comprises of many

stages: the feature extraction stage is typical to those available

in any speech analysis system. A voice activity detector (VAD)

segments the audio into speech and non-speech regions. The

speech segments are further split into shorter segments, if possi-

ble, of length 2.5s. The next three stages are exclusive to the IB

approach. In the posterior extraction module, Gaussian parame-

ters are estimated for every segment in the audio and combined



Figure 1: Block diagram representing of the information bottleneck based system

to form a mixture of Gaussians. The GMM thus estimated is

used to obtain a posterior vector for every speech frame in the

audio file. The posteriors within a segment are combined and

used as input to the clustering stage.

The agglomerative IB (aIB) algorithm is a clustering algo-

rithm that uses the IB principle on the input segments repre-

sented by the posteriors. The segments, which initially have a

maximum length of 2.5 seconds, are clustered together with re-

spect to the difference in Eq. 1. Two candidates are chosen by

the clustering algorithm if it results in the decrease in F . The

number of clusters at the end of the algorithm are chosen using

the Normalized Mutual Information (NMI) criterion, which is

a function of the Minimum Description Length (MDL) of the

clustering output. The result of the clustering is refined by the

realignment module.

The realignment module modifies the boundaries given by

the VAD. Two approaches to the realignment may be employed

- HMM/GMM approach and KL-HMM approach. The two ap-

proaches are compared in [8]. It is shown that KL-HMM is

much more beneficial when multiple features are used. More-

over, the KL-HMM approach is scalable with respect to the

number of features or feature dimensions. The computational

complexity of the algorithm is determined by the number of

segments produced by the VAD. Thus, it increases, in general,

only with the length of the input audio.

The HMM/GMM based realignment is also a suitable al-

ternative as a realignment module. The clusters provided by

the aIB algorithm are used as states in an ergodic HMM as

opposed to using uniform segmentation by the conventional

HMM/GMM based speaker diarization system. Moreover, in

the realignment step in the IB framework, there is no merging

of the states. However, GMM-estimation and Viterbi realign-

ment may be run multiple times. In the systems reported in

[9, 2], typically 70 mixture GMMs are used with 3 iterations

of GMM-estimation and realignment. This is computationally

more intensive than the KL-HMM method.

The RTFs of the IB based system using MFCC (Mel Fre-

quency Cepstral Co-efficients) ([10]) features are presented in

Table 1. The implementation of the baseline IB based system

presented here is described in [11]. The diarization systems

use 19-dimensional MFCC vectors extracted from beamformed

audio. The results are presented on the benchmark NIST RT

05, RT 06, RT 07 and RT 09 datasets. The run-times are com-

pared with the conventional HMM/GMM based diarization sys-

tem ([12]) to re-iterate the differences in RTFs. The experiments

are run on a machine with Intel(R) Core(TM) i7-3770K CPU @

3.50GHz, 16 GB RAM and 1 TB SATA HDD. All experiments

in this paper are conducted on the same machine. The RTFs

values (reported in a scale of 10−2) exclude the time taken to

extract feature vectors and speech/non-speech boundaries from

a VAD. All RTF values reported are averaged over 10 runs.

[13, 14].

Table 2 shows the time taken by each of the blocks specific

Table 1: Baseline Real Time Factors (RTFs) of HMM/GMM

and Information Bottleneck (IB) based system on the NIST RT

datasets. The IB system is observed to be faster than the

HMM/GMM system. RTFs are in the scale of 10−2.
System RTFs

RT05 RT06 RT 07 RT 09 Overall

HMM/GMM 7.9 9.4 9.2 8.9 8.8

IB (HMM/GMM) 12.5 18.4 19.0 19.9 17.2

IB (KL-HMM) 2.1 5.3 6.3 7.5 5.0

Table 2: Baseline Real Time Factors (RTFs) Information Bot-

tleneck (IB) based system on the NIST RT datasets for different

modules. RTFs are in the scale of 10−2.
Module RTFs

RT05 RT06 RT 07 RT 09 Overall

Posterior extraction 0.3 0.6 0.7 0.8 0.6

aIB clustering 1.3 3.7 4.6 5.6 3.6

Realignment strategies

KL-HMM 0.4 0.9 0.9 1.1 0.8

HMM/GMM 9.8 14.0 13.7 13.5 12.6

to the IB system in Figure 1. The clustering step takes a major

amount of the time in the system. This is due to the quadratic

nature of the initialization step in the clustering algorithm and

the cubic number of comparisons performed before each merge

[15].

3. Posterior Computation

As described in the earlier section, the posterior computation

procedure involves estimating Gaussian distribution parame-

ters for each speech segment and computing posterior vector

with respect to the Gaussians for every feature vector extracted

from the audio file. Let nseg be the number of segments in

the audio file. Then, nseg Gaussian mean and co-variance

matrix parameters are estimated. Let the set of parameters

be θj = {πiµj ,Σ} for j = 1, 2, . . . , nseg, where πj is

the weight, µj is the mean vector and Σ is the diagonal co-

variance matrix of the ith segment (and mixture). The audio

file can be represented as a sequence of feature vectors X =
{x1,x2, . . . ,xN}. If the feature dimension is D, then the diag-

onal entries of Σ can be represented as {σ2
1 , σ

2
2 , . . . , σ

2
D} and

µj = (µj,1, µj,2, . . . , µj,D)t and xi = (xi,1, xi,2, . . . , xi,D)t,
Notice that the covariance matrix is shared between the Gaus-

sians.

A posterior vector is computed from every feature vector.

The log probabilities are computed and normalized for every

feature vector. The log probability of a feature vector xi with

respect to the jth mixture is given as follows

ln p(xi|θj) = lnπjN
(

µj ,Σ
)

(2)



Table 3: Comparison of the number of floating-point additions

and multiplications to compute log posteriors in the baseline

and proposed posterior extraction algorithms
System Additions Multiplications

Baseline 2Nnseg(D + 1) 2NDnseg

Proposed Nnseg(D + 1) NDnseg

Table 4: Real Time Factors (RTFs) of baseline and proposed

posterior extraction procedures. RTFs are in the scale of 10−2.
System RTFs

RT05 RT06 RT 07 RT 09 Overall

Baseline 0.3 0.6 0.7 0.8 0.6

Proposed 0.2 0.5 0.6 0.7 0.5

which can be expanded to

ln p(xi|θj) = lnπj−
D

2
ln|Σ|−

1

2

(

xi − µj

)t
Σ

−1
(

xi − µj

)

(3)

where |Σ| is the determinant of the matrix Σ.

The log posterior for every feature vector is normalized by

subtracting the maximum log posterior value among all mix-

tures and computing their exponent. The values are then nor-

malized to sum to 1 for a feature vector.

The terms in the log posterior computation can be

segregated to mixture-dependent, feature-dependent and co-

dependent terms.

ln p(xi|θj) = Tj + Ti − Ti,j (4)

where
Tj = lnπj −

D

2
|Σ|+

1

2
||Σ−1

µ||22 (5)

Ti =
1

2
||Σ−1

x||22 (6)

Ti,j =
∑

d

xi,d µj,d σ
−2
d (7)

||.||2 signifies the L2 norm. Since posteriors are eventually nor-

malized, Ti can be ignored. Thus, the number of additions and

multiplications are significantly reduced. These are compared

in Table 3. The baseline, which is the direct implementation of

Eq. 3, requires 2N(D+1)nseg additions: for each of N feature

vectors nseg posteriors are required. For each of these posteri-

ors, D additions of (x − µ) and D additions of Mahalanobis

distances for each mixture are performed. And there are Nnseg

additions of the mixture-specific constant term Ti. There are

2ND multiplications: for each of Nnseg posterior values, D

multiplications to compute the square of x − µ and D further

multiplications between the results and the precision σ−2 are

performed. In the optimized approach, only a dot product needs

to be computed, which has for each of Nnseg posterior values,

D additions and D multiplications. Further Nnseg additions

are required to add Ti to the posteriors appropriately.

Table 4 presents the baseline and improved RTFs as a result

of the simplification. The RTF improves by approximately 10%
in relative terms without any changes to the output.

4. HMM/GMM realignment

In IB based systems, two types of realignment procedure can be

used. The HMM/GMM realignment procedure uses the cluster-

ing output from the aIB algorithm and represents each cluster

by one of the states of a HMM. In [9] and [11], each state is

modelled by a 70-mixture GMM (optimized for performance).

The procedure includes 3 iterations of GMM estimations and

Table 5: Comparison of Speaker Error Rates (SER) and

RTFs for different number of mixtures in HMM/GMM re-

alignment.RTFs are in the scale of 10−2.
System SER/RTF Overall

(No. of mixtures) RT05 RT06 RT 07 RT 09 RTF

70 (baseline) 19.7/7.0 17/9.0 11.7/8.8 21.2/8.6 8.2

32 19.6/2.3 17.1/3.1 12.0/3.0 21.1/3.0 2.9

16 19.6/1.2 17.8/1.7 13.1/1.6 21.4/1.6 1.5

8 19.8/0.7 18.2/0.9 14.7/0.9 22.1/0.9 0.8

Viterbi segmentation. It has been shown that the GMM/HMM

realignment procedure can be beneficial when using only one

feature (as opposed to using multiple features) [8].

Results presented in this section show that, when using the

HMM/GMM realignment approach, the number of mixtures of

the GMMs representing a state can be smaller than 70 mix-

tures. The number of speakers in meeting recordings do not

warrant 70 mixtures and the results suggest that the confusabil-

ity is not entirely avoided either. Thus, using fewer mixtures is

to reduce the run-time is proposed. Furthermore, it is often ob-

served that multiple iterations of estimation-and-segmentation

procedure propagate the error and thus can be avoided. These

observations are also corroborated in [16].

4.1. Number of iterations

First, the case for reducing the number of iterations is presented.

When the HMM-states are represented with 70 mixtures, the

increase in error rate is observed to be 0.2% per iteration across

all NIST RT datasets per iteration (varied from 1 to 3). As the

number of mixtures are reduced to 16, the error rate increases

by 0.3% per iteration across the same dataset. Thus, keeping

the number of iterations to a minimum is beneficial.

4.2. Number of mixtures

The average number of speakers participating in the meetings

considered is 5. Also, when the goal is to reduce the runtime of

the system while still maintaining the diarization performance,

studying the effect of varying the number of mixtures of the

GMM can be useful. Experiments are conducted on NIST RT

datasets to reduce the number of mixtures while maintaining

the performance of the system. Table 5 discusses these re-

sults. Only speaker error rate (SER) is reported as miss and

false alarm speech are the same across the systems being com-

pared. It can be seen that even the number of mixtures used

is only 16, there is mostly negligible increase in error rate (a

worst case of 1%). Thus, it is certainly beneficial to reduce the

number of mixtures when using the HMM/GMM realignment

procedure. The corresponding RTFs when using different num-

ber of mixtures is also given in the table. Significant reductions

can be observed.

5. KL-HMM realignment

The KL-HMM realignment method, introduced in [8], is ob-

served to be particularly useful when using multiple features,

for instance when combining MFCC and TDOA features. The

realignment method reuses the posteriors produced in the first

stage of the diarization process. Each cluster is represented

by the average of the posteriors of the features in that cluster.

The audio is now segmented through Viterbi decoding with re-

spect to the KL-divergence between the posterior of the feature

vectors and the mean posterior of the clusters. Let zn be the



Table 6: Real Time Factors (RTFs) of baseline and proposed

KL-HMM procedures. RTFs are in the scale of 10−2.
System RTFs

RT05 RT06 RT 07 RT 09 Overall

Baseline 0.4 0.9 0.9 1.1 0.8

Proposed 0.2 0.4 0.4 0.4 0.35

posterior vector for the nth feature vector in the audio. Let

y1,y2, . . . ,yC be the set of mean posteriors for C clusters ob-

tained at the output of aIB clustering. The KL-divergence mea-

sure between zn and yc is given by

KL(zn,yc) = −

nseg
∑

l=1

zn,l log
zn,l

yc,l
(8)

Viterbi decoding is applied on the measures obtained in the

above equation.

A direct implementation of the above strategy involves mul-

tiple calls to logarithmic function. For N feature vectors and

nseg segments, Nnseg calls to the log function are made even

if log yc,l is pre-computed to avoid floating point division. The

speed of this method is therefore dependent on the number of

segments produced by the VAD module. Therefore, an opti-

mization of the KL-divergence computation is proposed that

avoids almost all calls to the log function without any change

to the end-result thereby giving a tremendous speed-up of the

realignment process. This in turn results in an overall speed-up

of the entire diarization process.

Proposed optimization: In Equation 8, the KL-divergence

measure can be further simplified by observing that the term

zn,l log zn,l is a constant across all clusters. The output of the

Viterbi decoding process will not change when this constant re-

moved from the measure. Thus, it suffices to reduce the measure

to

K̂L(zn,yc) =

C
∑

l=1

zn,l log yc,l (9)

In the above simplification, the NC calls to logarithms on

the posteriors are entirely avoided (ignoring the pre-computing

of yc∀c). This simplification is applicable to the system that

uses KL-HMM as its component. For instance, it can be used

in KL-HMM based ASR systems as well [17, 18].

Table 6 compares the change in the RTFs between the base-

line (direct implementation) and proposed approach. A signifi-

cant improvement in the RTFs are observed across all datasets

and the averaged RTF improves by 56%. There is no change in

SER. Thus, the improvement is extremely beneficial.

An important observation is that the run-time of the KL-

HMM algorithm will not change when multiple features are

used by the system. This is because the posteriors are com-

puted at the initial stage of the diarization process. Therefore,

when using multiple features the KL-HMM is much more suit-

able for fast speaker diarization compared to the HMM/GMM

based realignment both in terms of speed and accuracy.

6. Results

The proposed optimizations are combined and the overall im-

provements to the system are presented in Table 7. The over-

all RTF and SER across all datasets are reported. The overall

SER refers to the error rate across all the 34 files in the NIST

RT 05 to 09 datasets. The KL-HMM based IB system shows

an improvement of approximately 14% in RTF with no dete-

rioration in performance. The optimizations proposed for the

Table 7: Average RTFs and SERs of all the approaches pre-

sented in the paper. RTFs are in the scale of 10−2. The systems

are identified by the realignment method used.
System Average RTF/SER

MFCC MFCC + TDOA

Baseline

KL-HMM 5.0/17.4 5.3/8.4

HMM-GMM 17.0/17.2 17.3/8.4

Proposed

KL-HMM realignment 4.3/17.4 4.5/8.4

HMM/GMM (16 mixtures) 5.6/17.8 5.8/8.9

HMM/GMM (32 mixtures) 7.0/17.4 7.3/8.8

HMM/GMM based IB system provides a relative improvement

of approximately 67% in the case where 16 mixture GMMs are

used to represent each state. The performance drops by 0.6%

in absolute terms. In the case of 32 mixture GMMs, the RTF

improves by approximately 58% in relative terms with a deteri-

oration in performance by only 0.2% (absolute).

The scalability of the system is tested with the inclusion of

TDOA based features. The TDOA features have been shown to

be adding sufficient complementary information [9]. A weight

of 0.8 on MFCC and 0.2 on TDOA are utilized while combining

the posteriors before aIB clustering. In the case of HMM/GMM

realignment, the states of the HMM for the TDOA features are

represented by 3 mixture GMMs. The results of the experi-

ments are included in Table 7 alongside the MFCC results. For

the KL-HMM system, a relative improvement of approximately

15% is observed for the RTF, which is close to the improvement

observed in the case of MFCC-based system. This shows that

the optimization is scalable. The IB system using HMM/GMM

realignment with fewer mixtures (16 and 32) of GMMs are also

observed to be scalable when using multiple features. The re-

sults, however, show that there are sufficient advantages to use

the KL-HMM over the HMM/GMM for realignment even af-

ter applying the multiple optimizations proposed. The IB sys-

tem with KL-HMM realignment is faster by 23% relative when

compared to using the HMM/GMM realignment with only 16

mixtures.

7. Summary

Techniques to improve the run-time of the IB based speaker di-

arization system are presented. Optimizations to the posterior

extraction stage exploit the redundancy in the computation of

log posteriors results in the RTF relatively improving by ap-

proximately 10%. The HMM/GMM system’s run-time is op-

timized by significantly reducing the number of mixtures of

the GMM and avoiding re-iterations of the decoding process.

Improvements of 58% and 67% are observed for RTFs in the

cases of 32-mixture and 16-mixture GMMs. The KL-HMM

based segmentation algorithm is optimized by reducing the re-

dundancy in the computation of the KL-divergence measure.

This is shown to improve the RTF of the algorithm relatively by

56%.
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