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Abstract

State-of-the-art automatic speech recognition systems model the relation-
ship between acoustic speech signal and phone classes in two stages, namely,
extraction of spectral-based features based on prior knowledge followed by
training of acoustic model, typically an artificial neural network (ANN). In
our recent work, it was shown that Convolutional Neural Networks (CNNs)
can model phone classes from raw acoustic speech signal, reaching perfor-
mance on par with other existing feature-based approaches. This paper
extends the CNN-based approach to large vocabulary speech recognition
task. More precisely, we compare the CNN-based approach against the
conventional ANN-based approach on Wall Street Journal corpus. Our
studies show that the CNN-based approach achieves better performance
than the conventional ANN-based approach with as many parameters. We
also show that the features learned from raw speech by the CNN-based
approach could generalize across different databases.

1 Introduction

State-of-the-art Automatic speech recognition (ASR) systems typically divide the task into
several sub-tasks, which are optimized in an independent manner [1]. In a first step, the data
is transformed into features, usually composed of a dimensionality reduction phase and an
information selection phase, based on the task-specific knowledge of the phenomena. These
two phases have been carefully hand-crafted, leading to state-of-the-art features such as mel
frequency cepstral coefficients (MFCCs) or perceptual linear prediction cepstral features
(PLPs). In a second step, the likelihood of subword units such as, phonemes is estimated
using generative models or discriminative models. In a final step, dynamic programming
techniques are used to recognize the word sequence given the lexical and syntactical con-
straints.

Recent advances in machine learning have made possible systems that can be trained in
an end-to-end manner, i.e. systems where every step is learned simultaneously, taking into
account all the other steps and the final task of the whole system. It is typically referred
to as deep learning, mainly because such architectures are usually composed of many layers
(supposed to provide an increasing level of abstraction), compared to classical “shallow”
systems. As opposed to “divide and conquer” approaches presented previously (where each
step is independently optimized) deep learning approaches are often claimed to lead to
more optimal systems, as they alleviate the need of finding the right features by instead
training a stack of features in a end-to-end manner, for a given task of interest. While there
is a good success record of such approaches in the computer vision [2] or text processing
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Figure 1: Convolutional Neural Network. Several stages of convolution/pooling/tanh might
be considered. Our network included 3 stages. The classification stage can have multiple
hidden layers.

fields [3], deep learning approaches for speech recognition still rely on spectral-based features
such as MFCC [4]. Some systems have proposed to learn features from “intermediate”
representation of speech, like mel filter bank energies and their temporal derivatives.

In our recent study [5], it was shown that it is possible to estimate phoneme class condi-
tional probabilities by using raw speech signal as input to convolutional neural networks [6]
(CNNs). On TIMIT phoneme recognition task, we showed that the system is able to learn
features from the raw speech signal, and yield performance similar or better than conven-
tional ANN, more specifically multilayer perceptron (MLP), based system that takes cepstral
features as input.

The goal of the present paper is to ascertain two aspects of the CNN-based system: its
scalability to large vocabulary speech recognition and the invariance of the features learned
from raw speech across domains. For the first aspect, we compare the CNN-based approach
against the conventional ANN-based approach with different architectures on Wall Street
Journal corpus. Our studies show that the CNN-based approach yields better performance
than ANN-based approach with as many parameters. For the second aspect, we propose a
cross-domain experiment, where the features learned on one database are used in another
one. We show that these features could generalize given enough training data.

The remainder of the paper is organized as follows. Section 2 presents a brief survey of
related literature. Section 3 presents the architecture of the proposed system. Section 4
presents the experimental setup and Section 5 presents the results. Section 6 presents the
discussion and concludes the paper.

2 Relevant literature

Hybrid HMM/ANN approach was originally developed with ANNs that have single hidden
layer and classify context-independent phonemes given cepstral feature as input. More
recently, ANNs with deep learning architectures, more precisely, deep belief network or
deep neural networks (DNNs) [7, 8], which can yield better system than a single hidden
layer MLP have been proposed to address various aspects of acoustic modeling. More
specifically, use of context-dependent phonemes [9, 10]; use of spectral features as opposed
to cepstral features [4, 11]; CNN-based system with mel filter bank energies as input [12,
13]; combination of different features [14]; CNN based phoneme recognition system with
raw speech signal input trained in end-to-end manner [15]; multichannel processing using
CNNs [16], to name a few.

Features learning from raw speech using neural networks-based systems has been investi-
gated in [17]. In this approach, the learned features are post-processed by adding their
temporal derivatives and used as input for another neural network. In comparison to that
in our approach the features are learned jointly with the acoustic model. A recent study
investigated acoustic modeling with raw speech as input to a DNN [18]. The study showed
that raw speech based system is outperformed by spectral feature based system.



3 Convolutional Neural Networks

3.1 Architecture

Our network (see Figure 1) is given a sequence of raw input signal, split into frames, and
outputs a score for each classes, for each frame. The network architecture is composed of
several filter extraction stages, followed by a classification stage. A filter extraction stage
involves a convolutional layer, followed by a temporal pooling layer and an non-linearity
(tanh()). Our optimal architecture included three stages of filter extraction. Processed
signal coming out of these stages are fed to a classification stage, which in our case is a
multi-layer perceptron, which can have multiple hidden layers. It outputs the conditional
probabilities p(i|z) for each class ¢, for each frame z.

3.2 Convolutional layer

While “classical” linear layers in standard MLPs accept a fixed-size input vector, a convolu-
tion layer is assumed to be fed with a sequence of T vectors/frames: X = {z! 22 ... 2T}
A convolutional layer applies the same linear transformation over each successive (or inter-
spaced by dW frames) windows of kW frames. For example, the transformation at frame ¢

is formally written as:
pt—(kW=1)/2

M : : (1)
Pt W =1)/2
where M is a d,u: X d;, matrix of parameters. In other words, d,,: filters (rows of the

matrix M) are applied to the input sequence.

3.3 Max-pooling layer

These kind of layers perform local temporal max operations over an input sequence. More
formally, the transformation at frame ¢ is written as:

max z? vd (2)
t— (kW —1)/2<s<t+(kW—1)/2

with « being the input and d the dimension. These layers increase the robustness of the

network to slight temporal distortions in the input.

3.4 Network training

The network parameters 6 are learned by maximizing the log-likelihood L, given by:

L(0) = Zlog(p(inlxnﬁ)) (3)

for each input x and label 7, over the whole training set, with respect to the parameters
of each layer of the network. Defining the logsumexp operation as: logsumexp;(z;) =
log (>, €*), the likelihood can be expressed as:

L =log(p(ilx)) = fi(x) — logsumexp(f;(z)) (4)

J

where f;(x) described the network score of input « and class i. Maximizing this likelihood
is performed using the stochastic gradient ascent algorithm [20].

4 Experimental Setup

In this section, we present the two studies, the databases, the baselines and the hyper-
parameters of the networks.



4.1 Study 1: Large vocabulary speech recognition

We evaluate the scalability of the proposed system on a large vocabulary speech recognition
task on the WSJ corpus. The CNN-based system is used to perform the feature learning
and acoustic modeling steps, by computing the posterior probabilities of context-dependent
phonemes from raw speech.

The decoder is a HMM. The scaled likelihoods are estimated by dividing the posterior
probability by the prior probability of each class, estimated by counting on the training set.
The hyper parameters such as, language scaling factor and the word insertion penalty are
determined on the validation set.

4.2 Study 2: Feature invariance

The filter stage of the CNN-based system can be seen as a feature extractor or matching
filters [5]. In order to ascertain the invariance capability of these filters, we propose a cross-
domain experiment, where the filter stage is first trained on one domain, then it is fixed
and used as feature extractor on another domain. More precisely, we propose the following
procedure, as illustrated in Figure 2:

1. The whole network is trained on one database.

2. The weights of every convolutional layer are fixed, and only the classification stage,
as presented in Figure 1, is trained on a second database.

For the experiments, in addition to the WSJ corpus, we use the TIMIT corpus. We present
two studies. First, a word recognition study on WSJ with the features learned on TIMIT
corpus and a second study on TIMIT phoneme recognition task with the features learned on
WSJ corpus. The network has the same hyper-parameters in both cases. For the phoneme
recognition study, the decoder is a standard HMM decoder, with constrained duration of 3
states, and considering all phoneme equally probable.
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Figure 2: Illustration of the cross-domain experiment. The filter stage is trained on domain
1, then used as feature extractor on domain 2.

4.3 Databases

The SI-284 set of the Wall Street Journal (WSJ) corpus [21] is formed by combining data
from WSJO and WSJ1 databases, sampled at 16 kHz. The set contains 36416 sequences,
representing around 80 hours of speech. Ten percent of the set was taken as validation set.
The Nov’92 set was selected as test set. It contains 330 sequences from 10 speakers. The
dictionary was based on the CMU phoneme set, 40 context-independent phonemes. 2776
tied-states were used in the experiment. They were derived by clustering context-dependent



phones in HMM/GMM framework using decision tree state tying. The dictionary and
the bigram language model provided by the corpus were used. The vocabulary contains
5000 words. The HMM/GMM system yields a performance of 5.1% word error rate. It is
comparable to the performance reported in literature [22].

The TIMIT acoustic-phonetic corpus consists of 3,696 training utterances (sampled at
16kHz) from 462 speakers, excluding the SA sentences. The cross-validation set consists
of 400 utterances from 50 speakers. The core test set was used to report the results. It
contains 192 utterances from 24 speakers, excluding the validation set. The 61 hand labeled
phonetic symbols are mapped to 39 phonemes with an additional garbage class, as presented
in [23].

4.4 Features

Raw features are simply composed of a window of the temporal speech signal. The window
is normalized such that it has zero mean and unit variance. We also performed several
baseline experiments, with MFCC as input features. They were computed (with HTK [24])
using a 25 ms Hamming window on the speech signal, with a shift of 10 ms. The signal
is represented using 13th-order coefficients along with their first and second derivatives,
computed on a 9 frames context.

4.5 Baseline systems

We compare our approach with the standard HMM/ANN system using cepstral features.
We train ANNs with two different architectures. More precisely, MLP with single hidden
layer referred to as ANN-1] and MLP with three hidden layers, referred to as ANN-3I. The
input to the MLPs are MFCC with several frames of preceding and following context. The
number of context frame was tuned on the validation set. We do not pre-train the network.

4.6 Networks hyper-parameters

The hyper-parameters of the network are: the input window size, corresponding to the con-
text taken along with each example, the kernel width kW and shift dW of the convolutions,
the number of filters d,,;, the width of the hidden layer and the pooling width. They were
tuned by early-stopping on the validation set. Ranges which were considered for the grid
search are reported in Table 1. It is worth mentioning that, for the first layer of convolution,
the best performance was found with a kernel width (kW7) of 50 samples, corresponding to
3 ms of speech, and a shift of 10 samples.

We train two architectures: the first one is composed of 3 convolutional layers and 1 hidden
layer and is referred to as CNN-11. The second one is composed of 3 convolutional layers and
3 hidden layers and is referred to as CNN-3l. The best performance was found with: 310
ms of context, 5 frames kernel width, 80, 60 and 60 filters, 500 hidden units and 2 pooling
width. The second architecture has the same hyper-parameters, with 1000 hidden units for
the three hidden layers. For the baselines, the ANN-1[ uses 1000 nodes for the hidden layer
and 9 frames as context. The ANN-3I system uses 1000 nodes for each hidden layer and 9
frames as context. For the cross-domain study, the classifier stage has one hidden layer of
500 units for each case. The experiments were implemented using the torch7 toolbox [25].

Table 1: Network hyper-parameters

Parameters | Units | Range
Input window size ms 100-700
Kernel width of the first conv. (kW;) | samples 10-90
Kernel width of the others conv. frames 1-11
Number of filters per kernel (dyyz) filters 20-100
Max-pooling kernel width frames 2-6
Number of hidden units in the classifier units 200-1500




5 Results

5.1 Large vocabulary speech recognition

The results for the LVCSR study, expressed in terms of Word Error Rate (WER) for the
baseline systems and the proposed system, are presented in Table 2, along with the number
of parameters of the network. As it can be observed, the CNN-1I based system outperforms
the ANN-1] based baseline system, and the CNN-3I based system also outperform the
ANN-3I based system. with as many parameters. Furthermore, the CNN-1[ based system
performance is comparable to the ANN-3I based system. These results indicate that CNNs
result in simpler features which can be classified easily when compared to MFCC features.

Table 2: Word Error Rate on the Nov’'92 testset

Features | System | #Params. | WER
MFCC ANN-11 3.1M 70%
MFCC | ANN-3I 5.6M 6.4 %
RAW CNN-1] 3.1M 6.7 %
RAW CNN-3I 5.6M 5.6 %

5.2 Features invariance

The results for the cross-domain study are presented in Table 3, using features learned on
the same corpus, on the other corpus. On the TIMIT corpus, the features trained on WSJ
yield similar performance with the features trained on TIMIT. On the WSJ corpus, the
features trained on TIMIT yield lower performance. These results suggest that there is
some level of dependency on the data used for training the CNN. More specifically, the low
performance on WSJ corpus could be explained by the fact that TIMIT is small corpus with
few amount of variability.

We compared the filters learned on WSJ corpus with the filters learned on TIMIT corpus.
This was done by computing the magnitude of Fourier transform of the filters of the first
convolution layer, learned on TIMIT and on WSJ, normalizing it and finding the closest
filter using symmetric Kullback-Lieber divergence as metric. Figure 3 presents normalized
frequency responses of a few filters learned on WSJ (on the left column) and the closest
filters learned on TIMIT (on the right column). It can be observed that the peaks are
around the same frequency between the two corpora, although there is a difference in the
spectral balance, specially see Figure 3(b). These differences in the spectral balance could
possibly be related to the variability in the data across domains and explain performance
differences. This needs further investigation and is part of our future work.

Table 3: Cross-domain results. The TIMIT results are given in PER, and the WSJ results
are given in WER.

Test domain || Features | Error Rate
TIMIT Learned on TIMIT 32.3%
Learned in WSJ 32.4 %
WSJ Learned on WSJ 6.7 %
Learned on TIMIT 10.1 %

6 Conclusion

In this paper, we investigated the scalability of an ASR approach based on CNN, which
takes as input the raw speech signal, to large vocabulary task. Our studies on WSJ corpus
showed that the CNN-based system is able to achieve better performance than the ANN-
based system, which takes standard cepstral features as input. These findings are inline
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Figure 3: Ezxamples of three close pairs of filters learned. The left column is on WSJ, the
right on TIMIT.

with the phoneme recognition studies reported on TIMIT corpus in [5]. In comparison
to [18], where poor ASR performance was achieved with raw speech signal as input to DNN,
our LVCSR study indicates that CNNs have an edge over DNNs in modeling raw speech
signal. We also studied the generalization capability of the features learned by the CNN.
The cross-domain experiment indicated that the features learned on large amount of data

could generalize across domains.



Our future work will focus on studying the language independence of the CNN-based ap-
proach, as the standard cepstral feature extraction process does not have any such depen-
dency.
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