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Abstract

We describe a continuous-pitch parametric vocoder suitable for speech coding and statistical text to
speech synthesis. The spectral model is based on linear prediction. We show that glottal modelling
techniques from recent literature can be cherry-picked to produce an excitation signal with properties
known to be useful in the above application areas. We further show that the continuous pitch paradigm
can be extended to glottal modelling. The resulting vocoder yields synthetic speech that is generally
better than without glottal modelling; it has been used in a parametric speech coding application, and
is freely available.
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1 Introduction

Parametric vocoding is of interest for both statistical text to speech (TTS) synthesis [1], and for (very) low
bit rate (VLBR) speech coding [2]. Previous work at Idiap [3, 4] has informally identified the vocoder to
be the bottleneck in the creation of innovative TTS synthesis applications such as cross-lingual adaptation.
The goal of the present work is to create a “reasonable” vocoder to support research in statistical TTS and
VLBR speech coding. Reasonable is taken to mean good quality, if not quite state of the art; robust, and
freely available.

Speech coding for the purpose of, say, telephone communication, requires as close to exact reproduc-
tion of a specific speech signal as possible. It typically achieves this by encoding sample speech frames
directly. By contrast, parametric vocoders assume a model for all aspects of a speech signal, and encode
the parameters of the model. Of course, if the model is somehow good, the reproduced speech signal will
be very close to the original. However, in general, the parametric vocoder is only able to produce a signal
with the same statistical properties as the input signal. In TTS and VLBR coding applications, this caveat
about statistical properties is not a restriction.

The source-filter model is an intuitive and common parametric model of speech that can be used in a
vocoder. Such a model distinguishes a source or excitation, and a filter. The excitation is representative
of the vibration of the vocal folds and other non-harmonic sounds; the filter then represents the system
defined by the vocal tract. Typical models for the vocal tract include the linear prediction (LP) approach
of, e.g., Atal and Hanauer [5] and the STRAIGHT method of Kawahara et al. [6].

Generally speaking, vocal tract models are well understood; models for excitation, however, are less
mature. A typical excitation model is to use pitch and (binary) voicing estimates to switch between im-
pulses spaced at the pitch period, and white noise. Such an approach has a characteristic “buzzy” quality,
normally attributed to over-harmonisation and/or errors in voicing decisions, and possible mismatches
between the glottal impulses of speaker and model. Various techniques have been introduced to miti-
gate the buzzy quality. These typically involve reducing the periodicity at higher frequencies, often by
randomising the phase [7].

The pitch extraction required for this and other types of excitation model has to deal with the occa-
sional lack of voicing. Typically, a voicing estimate is produced, allowing the pitch to only be estimated
during voiced segments. Continuous pitch estimates utilising interpolation are also possible [8, 9, 10].
Garner et al. [9] in particular showed that such an estimate can lead to a source-filter vocoder with no
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voicing estimate, relying instead upon a continuous harmonic to noise ratio (HNR) available from the
pitch estimation.

A highly regarded vocal model is the harmonic plus noise model (HNM) of Stylianou [11]. HNM
involves identifying and removing each harmonic of the signal, leaving a noise component that can be
modelled using LP. It has been applied in concatenative TTS [12]. Although it is trickier to apply in statis-
tical TTS, owing to the harmonics being modelled individually, Erro et al. [13] report an implementation.
In a comparison by Hu et al. [14], the HNM based techniques were more favourably evaluated than the
source-filter models. One possible reason for this is the concept of the maximum voiced frequency em-
ployed in HNM. In short, harmonics are not modelled above a certain frequency (around 4 kHz); it is
these (missing) harmonics that are believed to lead to the buzzy quality.

More recent excitation models have sought to understand the glottis more thoroughly. Much of this
work is based on the LF model of Fant, Liljencrants and Lin [15]. The LF model is defined in terms of
time domain parameters; Vincent et al. [16] and Cabral et al. [17] have attempted parameter extraction
for TTS, and the model is still widely used [18]. Whether or not the LF model is accurate, it brings to
light two or three important concepts (at least from the point of view of the present paper): One is the
existence of a glottal formant; the other is the suppression of high frequency harmonics (cf. HNM).

Another key observation from the LF model is that the glottal opening phase can be modelled using
a negatively damped second order system, i.e., two poles in the unstable part of the s-plane. This is a
maximum phase filter. It follows that techniques distinguishing minimum and maximum phase can be
used to infer information about the glottis. The LF model was cast as a linear filter model by Doval et
al. [19], who coined the term CALM (causal anticausal linear model). Measures of the glottal formant
follow directly [20, 21].

Recent, more general, work considers the whole maximum phase response via the complex cepstrum
of, e.g., Oppenheim and Schafer [22]. Drugman et al. [23] compare the complex cepstrum with the zeros
of the z-transform (ZZT) method, finding both give similar results with the complex cepstrum being faster.
Maia et al. [24] subsequently use the maximum phase cepstrum to infer the impulse response of a filter
that can be used as the glottal excitation.

Given the techniques introduced and built upon in the above literature, we aim to show that a rela-
tively simple excitation model, which is close to the human voice production process, can be constructed
based on the following three insights:

1. The complex cepstrum can be used in conjunction with LP analysis to infer parameters of a CALM-
based glottal model.

2. CALM model parameters can be interpolated to infer a continuous CALM glottal model.

3. A CALM glottal model combined with a simple noise model via the continuous HNR has properties
similar to HNM systems.

The resulting model is demonstrated qualitatively; a quantitative evaluation remains a subject for future
research.

2 The glottal model

2.1 Derivation from LF

The LF model (figure 1) is derived for the most part from fitting curves to inverse-filtered waveforms.
The curves are observed to fit well, and authors have shown that synthetic speech based on the fit is
well received [16, 17]. However, automatic parameter extraction is difficult. For the present model we
invert this situation, defining a model where parameter extraction is straight-forward, but making no
quantitative claim about the resulting waveform. Rather, qualitatively it results in a waveform that has
similar features.

LF models a glottal flow derivative; i.e., the signal that is observed by the encoder, and should be
reproduced by a decoder. Notice [15] that the opening phase of the LF model corresponds to a maximum
phase conjugate pole pair in the s-plane; the closing phase corresponds to a single real minimum phase
pole. It follows that a similar digital model can be defined, where the opening phase corresponds to a
maximum phase pair in the z-plane, and the closing phase corresponds to a minimum phase real pole.
This the basis of the CALM model [19].

The CALM model is essentially a model of the glottal flow. To yield a derivative, a zero can be added
at z = 1. However, this has the effect of cancelling out the high frequency roll-off of the real pole. To
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Figure 1: Time domain LF model. Opening phase to the left of tc, closing phase to the right. ta is
normally an offset from tc.

counter this effect, we use a double real pole. The minimum phase part of the resulting filter can then
be thought of either as single pole plus a high-pass filter, or as a second order critically damped system
(double real pole) plus the lip radiation (single zero). The second interpretation is more appealing from
a physical point of view. The resulting system is illustrated in figure 2.

<

=

Figure 2: Proposed z-domain glottal model. The pole inside the unit circle is doubled.

2.2 Glottal parameter estimation

Given that the opening phase of the above CALM model is maximum phase, it may be hypothesised that
its parameters can be discerned from (complex) cepstral analysis. This is a stronger hypothesis than that
of Maia et al. [24] in that it assumes a particular model; nevertheless, it is in the same spirit.

An algorithm follows in the spirit of the work of Drugman et al. [23]. Speech frames are calculated
with a period suitable for vocoding (5 to 10 ms), but with a size suitable for glottal period identification
(25 ms). For each frame, LP analysis (auto-regression) is performed to determine spectral shape. To
identify glottal closures, the (windowed) LP residual is calculated, and the largest peak is chosen as the
exemplar glottal closure. Because of the windowing, this peak is normally close to the centre of the
frame. The authors note that more advanced glottal closure detectors are available.

The glottal period is estimated using the (continuous) pitch estimation of Garner et al. [9], allowing
a frame of two glottal periods around the exemplar to be taken. This shorter frame is windowed using
a Nuttall window, which is in the spirit of that recommended [23]. The complex cepstrum is then
calculated.

Given the complex cepstrum, the positive (minimum phase) half is set to zero, and the zero’th coeffi-
cient divided by two. The inverse DFT then yields the maximum phase spectrum. Squaring (periodogram)
and again applying inverse DFT yields the autocorrelation, from which a second order LP analysis can be
calculated. The two conjugate poles of this analysis then correspond to minimum phase versions of the
maximum phase pair in the above model.

Figure 3 shows a scatter plot of the extracted poles for an example (female) utterance. Notice that
two quite broad clusters are evident, illustrating that a glottal formant appears to be consistently ex-
tracted. Noisy (complex) and/or failed (real) poles are also present. 180◦ corresponds to 1000 Hz; the
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Figure 3: Extraction of glottal formant. The unit circle is the innermost one; all poles are shown as
maximum phase. 180◦ corresponds to 1000 Hz.

periodogram was truncated to 1000 Hz before calculating the autocorrelation. This is to maximise the
chance of calculating poles based on voiced segments.

2.3 On phase

The LP analysis always yields the minimum phase solution. In principle, however, the two resulting
poles should be maximum phase. In CALM [19], the maximum phase is simulated by applying the filter
time reversed. In the present implementation, the filter is applied forwards in a minimum phase sense.
We note that in preliminary experiments we were unable to perceive any difference between the two
implementations.

2.4 Interpolation

In pitch estimation, the segments that are unvoiced must be handled appropriately. In the case of contin-
uous pitch, these segments are somehow interpolated. Where the vocoder is required to be continuous,
the same caveat applies to the estimate of the maximum phase poles. The algorithm above will readily
produce estimates for these poles; the difficulty is that below some HNR they will be very noisy; this is
visible in figure 3. Although for very low HNR this should not matter since the noise is dominant in the
reconstruction, it is intuitively of concern for the transition periods between low and high HNR; it also
relies on robust HNR estimation.

A solution, the one used in the present implementation, is to use a Kalman smoothed estimate of
the maximum phase poles. This is the same algorithm used to smooth and interpolate the pitch in
the estimator of Garner et al. [9]. In summary, a function of the HNR is taken as a frame-dependent
variance on a harmonic measurement; a Kalman smoother is then able to give reasonable estimates of the
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Figure 4: Interpolation of glottal formant. The plots are, respectively, spectrogram, angle and (minimum
phase) magnitude. Blue is the raw measurement from LP; the Kalman smoothed, plus and minus one
standard deviation are, respectively, red, green and cyan.

measurements where the variance is small (high HNR) and interpolate where the variance is large (low
HNR). The pole with a positive argument from the LP is smoothed in polar coordinates. The dynamical
system for an observation pt is defined as

p (ρt | ρt−1) ∼ N(ρt−1,φ2), (1)

p (pt | ρt) ∼ N(ρt,σ2
t), (2)

where ρ is the state, “∼” is taken to mean “is distributed as” and N(µ,σ2) is the normal distribution with
mean µ and variance σ2.

In the case of the pole magnitude, ρm,t (overloading the notation slightly with subscript m being the
magnitude and subscript ω the angle),

σ2
m,t =

(
1 − r ′(τmax,t)

r ′(τmax,t)

)2

. (3)

The other parameters are ρm,0 = 0.5, σ2
m,0 = 1.0 and φ2

m = 0.1. r ′(τmax,t) is the autocorrelation from
the pitch tracker [9]. For the pole angle, ρω,t, these become

σ2
ω,t =

(
1 − r ′(τmax,t)

r ′(τmax,t)
× (ωθhi −ωθlo)

)2

, (4)

with ωθhi = 500Hz (converted to radians), ωθlo = 0, σ2
ω,0 = ω2

θhi and φ2
ω = (ρω,0/4)2. ρω,0 is set to

the mean pitch1. Although these parameters are grounded in intuition (how much one might expect a
frequency or magnitude to vary per frame in different HNR conditions), there is inevitably a heuristic

1We note that the value actually tends to be around twice the pitch.
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Male Female
Original EM1_ENG_0001_0 EF2_ENG_0001_0

Naive EM1_ENG_impulse EF2_ENG_impulse

Glottal EM1_ENG_cepgm EF2_ENG_cepgm

Table 1: Vocoded examples from the EMIME database. Sampling rate is 22 kHz with 24th order LP.
Frame rate 12 ms.

element. Note that only one pass is required as the doubling and halving errors associated with pitch
estimation do not appear to happen in pole smoothing.

The smoother operation is illustrated in figure 4; notice that the behaviour remains intuitive, with a
narrow distribution for voiced segments and a wider but smoothed one for unvoiced (noisy) segments.

The above algorithm addresses only the maximum phase pole pair. We find by experimentation that
placing the minimum phase double pole arbitrarily close to the unit circle (z = 0.99) is necessary to
suppress high frequency harmonics. However, it is still subjective and remains a matter for research; see
the discussion below.

2.5 Harmonic plus noise

In the vocoder of Garner et al. [9] (upon which we build), the excitation is a mixture of impulses and
noise, added in the ratio implied by the HNR from the pitch estimation. In the present implementation,
the impulses are modified by the interpretation of CALM described above. The question arises of how
to modify the noise. Certainly a zero to model lip radiation should be added. However, at the time of
writing, we have no means to discern other noise shape for excitation; we simply leave it to the LP vocal
tract model.

Algorithmically, the CALM and noise signals are simply added according to the HNR. A further LP
analysis is done on this signal, and it is inverse filtered. This yields a signal with a flat spectrum suitable
to excite the original LP filter modelling spectral shape.

2.6 Discussion

The fact that the excitation is actually a mixture of harmonics and noise raises some rather general
questions about the analysis procedure. Where the signal is purely noise, e.g., during fricatives, the
model may be expected to work. During purely harmonic segments, it should also work. However, it is
less clear whether, for instance, the high frequency roll-off will already have been modelled by the LP.
This is a generic issue for glottal analysis by inverse filtering in general.

There is a third case, where the harmonics and noise are mixed more or less equally. In this case, much
of the high frequency roll-off of the glottal filter is masked by the noise; it cannot be expected that the LP
analysis model it, as the LP cannot distinguish the two components. Rather, in this case, the glottal roll-
off can be expected to define a frequency at which the noise is (perceptually) higher than the harmonics.
This is entirely analogous to the maximum voiced frequency of the HNM model [11]. It follows that the
minimum phase double pole in the CALM inspired model should serve to define a perceptually maximum
voiced frequency. Although for the present paper we do not suggest anything other than a heuristic to
define the value of the pair, the maximum voiced frequency is one way to proceed [25].

Finally, note that whilst the noise is taken to be flat in the present model, that is unlikely to be true
in practise. The minimum phase pair is then taken to be compensating for this lack of noise modelling.
In this sense, its perceptually optimal value may not correspond to its actual value insofar as the glottal
model is correct.

3 Evaluation

In evaluating the vocoder at this stage in the research, we do not mean to claim superiority or otherwise
over other techniques. Rather, the purpose of the present paper is to demonstrate that the insights
described in the previous sections do indeed lead to a functioning vocoder. To this end, we present some
vocoded examples2, comparing with the naive impulse plus noise excitation.

2See http://www.idiap.ch/paper/2955/ for samples.
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Female
Original luke2-77-ryle

Naive luke2-impulse

Glottal luke2-cepgm

Table 2: Vocoded examples from an audio-book. Sampling rate is 48 kHz, again 24th order LP. Frame
rate 8 ms.

Female
Original hisson_005_00097

Naive hisson_005_impulse

Glottal hisson_005_cepgm

Table 3: Vocoded examples from an audio-book. Sampling rate is 16 kHz, again 24th order LP. Frame
rate 8 ms.

Table 1 lists examples from the EMIME database [26]; the same ones used before [9]. In each case,
the glottal modelled version sounds more acceptable than the naive version. However, the female voice
is noticeably better than the male.

Tables 2 and 3 list examples from audio books, and show the extremes of the current capability. The
first of these (luke2) represents the best quality that we have been able to achieve. The second (hisson)
represents one that does not work well as well as the naive excitation. This latter case emphasises that
the naive excitation is not necessarily too bad in the context of continuous pitch since the excitation is
always mixed.

In short, the examples demonstrate that the glottal model has the basic properties that would be
expected. However, the performance is dependent upon parameters such as sample rate and frame rate,
not to mention speaker. In this sense, it is still work in progress.

Finally, we note that the vocoder has been used in a VLBR coding application [27]. As well as produc-
ing acceptable voice quality, this application also confirms that the parameters of the vocoder are suitable
(in this case) as inputs and outputs of (deep) neural networks.

4 Conclusions and future directions

We have shown that a continuous pitch vocoder can be improved by continuous glottal excitation mod-
elling. In particular, the combination of complex cepstrum, LP, CALM and continuous pitch can reduce
the buzzy quality associated with more naive models. The glottal modelling and parameter extraction are
intuitive extensions of known techniques; the novelty is in the combination of technologies rather than
the individual technologies.

The work has been validated qualitatively, by demonstration. Good quantitative results will most likely
require analysis of the cases for which the techniques work less well. In particular, a better understanding
of the relationship between maximum voiced frequency and the minimum-phase double pole should lead
to an analytic means to set that parameter. Nevertheless, the framework has been used to improve a
VLBR coder [27].

Sophisticated glottal modelling techniques continue to appear. For instance, recent work by Raitio et
al. [28] suggests use of neural networks for excitation modelling. Given the interest in neural techniques
for TTS in general, such approaches may turn out to be state of the art. However, the present excitation
model should lend itself to applications where the parameters need to be adapted or warped.

An implementation of the vocoder is freely available in the SSP (Speech Signal Processing) package
on GitHub3.
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