
TROPER
HCRAESER

PAIDI

TWITTER SENTIMENT ANALYSIS (ALMOST)
FROM SCRATCH

Rémi Lebret Pedro H. O. Pinheiroa

Ronan Collobert

Idiap-RR-15-2016

MAY 2016

aIdiap

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

Twitter Sentiment Analysis (Almost) from Scratch

Rémi Lebret1,2 and Pedro O. Pinheiro1,2 and Ronan Collobert1
1Idiap Research Institute, Martigny, Switzrland

2École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
remi@lebret.ch, pedro@opinheiro.com, ronan@collobert.com

Abstract

A popular application in Natural Language Processing
(NLP) is the Sentiment Analysis, i.e., the task of ex-
tracting contextual polarity from a given text. The so-
cial network Twitter provides an immense amount of
text (called tweets) generated by users with a maximum
number of 140 characters. In this paper, we propose to
learn a tweet representation from publicly provided data
from tweets in order to infer sentiment from them. One
challenge of this task is the fact that tweets are gener-
ated from very different users, making the data very het-
erogeneous (different from regular data which is written
in proper English). Another challenge is, clearly, the
large scale of the problem. We propose a deep learn-
ing sentence representation (called tweet representa-
tion) from user generated data to infer sentiment from
tweets. This representation is learned from scratch (di-
rectly from the words in tweets) over a large unlabeled
corpus of tweets. We demonstrate that we achieve state-
of-the-art results for sentiment analysis on tweets.

Introduction
Twitter is an online social networking service that enables
users to send and read short 140-character messages called
“tweets”. Users post messages where they can express opin-
ions about different topics, which includes products or ser-
vices. These tweets are publicly visible by default, which
makes Twitter a gold mine for consumers, marketers or com-
panies. Consumers can analyze the opinions of Twitter users
about products or services before making a purchase. Mar-
keters can analyze customer satisfaction or research pub-
lic opinion of their company and products. Companies can
gather critical feedback about problems in newly released
products. Identifying and extracting this subjective informa-
tion has therefore become a key point. This explains why
sentiment analysis is an important current research area.

Previous research in sentiment analysis have focused on
classifying larger pieces of text, like reviews of products or
movies (Pang, Lee, and Vaithyanathan 2002). Twitter data
posses many unique properties that make sentiment analysis
application much more challenging than in other domains:
(i) Maximum length of a tweet is 140 characters. The dataset

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

considered has in average 14 words and 78 characters. (ii)
Twitter users post messages from many different media (e.g.
cellphone). The quantity of misspelling, slang and informal
language is much higher than in other types of data. (iii)
Twitter users post an infinitude of different subjects. This
differs from classical sentiment analysis approach, which
are usually focused on a specific domain (such as movie re-
views).

Successful methods for sentiment analysis are tradition-
ally based on bag-of-words. In this framework, each tweet is
represented as a set of words present in it (a sparse vector).
These words are transformed into numeric values, such as
their frequencies of occurrence or binary values (appearing
or not in the tweet). Some term weightings (e.g. the popu-
lar td-idf) have also been defined to reflect how important a
word is for describing a tweet. These are considered as fea-
tures for training a classifier. In order to enrich the model,
some other features might be included. It is thus common
to use part of speech or information coming from lexical
databases (such as WordNet). Naive Bayes, Maximum En-
tropy, and Support Vector Machine are often the classifiers
of choice.

In this paper, we propose instead a model based on convo-
lutional neural networks that is able to learn efficient tweet
representations for sentiment analysis. These tweet repre-
sentations are directly learned from the words contained
in tweets, without the use of any additional features. They
are continuous low-dimensional vectors, and used to predict
the sentiment polarity of tweets. We show that our model
beats the current state-of-the-art results for this task. Aside
from outperforming baseline approaches on sentiment anal-
ysis, this tweet representation framework can be applied in
many other NLP applications, such as information retrieval
or tweet classification.

Convolutional Neural Network for Tweet
Classificaton

Traditional NLP approaches extract a rich set of hand-
designed features from documents which are then fed to a
standard classification algorithm. The choice of features in
this scenario is a task-specific empirical process. In contrast,
we want to pre-process our features as little as possible. In
that respect, a multilayer neural network architecture seems

appropriate as it can be trained in an end-to-end fashion on
the task of interest (Collobert et al. 2011). Representations
of each word in a tweet are fed to a convolutional layer fol-
lowed by a max layer. A tweet representation is thus ob-
tained. A softmax classifier is then trained to infer whether
a tweet is positive or negative.

Notations

We consider a neural network fθ(·), with parameters θ. Any
feed-forward neural network with L layers, can be seen as a
composition of functions f lθ(·), corresponding to each layer
l:

fθ(·) = fLθ (f
L−1
θ (. . . f1θ (·) . . .)) . (1)

Given a matrix A we denote [A]i,j the coefficient at row
i and column j in the matrix. 〈A〉1i represents the ith col-
umn of matrix A. We also denote 〈A〉ksz

i the vector obtained
by concatenating the ksz column vectors around the ith col-
umn vector of matrix A. For a vector v, we denote [v]i the
scalar at index i in the vector. Finally, a sequence of ele-
ments {x1, x2, . . . , xT } is written [x]T1 . The ith element of
the sequence is [x]i.

Lookup-Table Layer

We consider a fixed-sized word dictionary D. Given a tweet
of T words w1, w2, . . . , wT , each word wt ∈ D is first em-
bedded into a dwrd-dimensional vector space, by applying a
lookup-table operation:

LTW (wt) =W

(
0, . . . , 1 , . . . , 0

at index wt

)
= 〈W 〉1wt ,

(2)
where the matrix W ∈ Rdwrd×|D| represents the words to
be learned in this lookup-table layer. 〈W 〉1wt ∈ Rdwrd is the
wtht column of W and dwrd is the word vector size. Given
any sequence of T words [w]T1 in D, the lookup table layer
applies the same operation for each word in the sequence,
producing the following output matrix:

LTW ([w]
T
1) =

(
〈W 〉1[w]1

〈W 〉1[w]2
. . . 〈W 〉1[w]T

)
. (3)

This matrix can then be fed to further neural network layers.

Convolutional Layer

Our convolutional network successively takes the complete
tweets and produces local features around each word of the
tweet. Considering a fixed size ksz (a hyper-parameter) win-
dow of words. Each word in the window is first passed
through the lookup table layer (3), producing a matrix of
word features of fixed size dwrd × ksz. This matrix can be
viewed as a dwrdksz-dimensional vector by concatenating
each column vector, which can be fed to further neural net-
work layers. More formally, the word feature window given

by the first network layer can be written as:

〈f1θ 〉
1

t = 〈LTW ([w]
T
1)〉

ksz

t
=



〈W 〉1[w]t−ksz/2

...
〈W 〉1[w]t

...
〈W 〉1[w]t+ksz/2


(4)

A matrix-vector operation is applied to each window of
successive windows in the tweet. The tth output column of
the convolution layer can be computed as:

〈f2θ 〉
1

t =W 2〈f1θ 〉
1

t + b2 ∀t , (5)

where W 2 ∈ Rnnfilter×dwrdksz and b ∈ Rnnfilter are the parame-
ters to be trained. The hyper-parameter nnfilter is the number
of filters of the convolution layer. The weight matrix W 2 is
the same across all windows in the tweet.

Max Layer
The size of the output will depend on the number of words in
the tweet fed to the network. Local feature vectors extracted
by the convolutional layer have to be combined to obtain a
global feature vector, with a fixed size independent of the
tweet length, in order to apply subsequent standard affine
layers. We used a max approach, which forces the network
to capture the most useful local features produced by the
convolutional layer, for the task at hand. Given a matrix f2θ
output by the convolutional layer, the Max layer outputs a
vector f3θ :

[f3θ]i = max
t

[f2θ]i,t 1 ≤ i ≤ nnfilter . (6)

In the case of sentiment analysis, the ith filter might capture
positive or negative sentiment. This fixed sized global fea-
ture vector can be seen as a tweet representation. It is then
used as input to a fully connected layer for classification.

Class Prediction
As any classical neural network, the architecture performs
several matrix-vector operations on its inputs, interleaved
with some non-linear transfer function. As transfer function,
we chose a (fast) “hard” version of the hyperbolic tangent:[

f lθ
]
i
= HardTanh(

[
f l−1θ

]
i
) , (7)

where

HardTanh(x) =

{ −1 if x < 1
x if −1 ≤ x < 1
1 if x > 1

(8)

Finally, the output size of the last layer L is equal to the
number of possible classes for the task of interest. Each out-
put can be then interpreted as a score of the corresponding
class (given the input of the network).

Training
The network is trained by maximizing a likelihood over the
training data, using stochastic gradient ascent. We note [fθ]y
the yth output of the network and θ all the trainable param-
eters. Using a training set T , we want to maximize the fol-
lowing log-likelihood with respect to θ:

θ 7→
∑

(x,y)∈T

log p(y|x, θ) (9)

where x corresponds to a training tweet and y represents the
corresponding class. The probability p(y|x, θ) is computed
from the outputs of the neural network by adding a softmax
operation over all the classes:

p(i|x, θ) = e[fθ]i∑
j e

[fθ]j
(10)

We can express the log-likelihood for one training example
(x, y) as follows:

log p(y|x, θ) = [fθ]y − log(
∑
j

e[fθ]j) (11)

Related Works
In 2009, Go, Bhayani, and Huang proposed a model to au-
tomatically extract sentiment from tweets. They consider
three different feature-based classic machine learning classi-
fiers to infer sentiment on tweets: (i) Naive Bayes (NB), (ii)
Max-Entropy (MaxEnt) and (iii) Support Vector Machine
(SVM). They report results for different set of features:
Unigram, Unigram+Bigram and Unigram+Part of Speech
(POS). NB classifiers attempt to build a probabilistic clas-
sifiers based on modeling the underlying word features in
different classes. Tweets are then classified based on the pos-
terior probability of the tweets belonging to the positive or
negative classes on the basis of the word presence in the
tweets. An important disadvantage of NB modeling is that it
has strong feature independence assumptions. Maximum en-
tropy is a general technique for estimating probability distri-
butions from data, which does not suffer from any indepen-
dence assumptions. This means that features like bigrams
and phrases can be added to MaxEnt without worrying about
features overlapping. Because these feature-based models
represent tweets in sparse high-dimensional vectors, SVM
is also appropriate for learning text classifiers (Joachims
1998). SVM classifiers attempt to partition the data space
with the use of linear or non-linear delineations between the
different classes. The key in such classifiers is to determine
the optimal boundaries between the different classes and use
them for the purposes of classification.

More recently, Poria et al. (2014) outperform these base-
lines methods by employing lexical resources to provide
polarity scores (from SenticNet) or emotion labels (from
WordNet-Affect) for words and concepts. Also in 2014,
Kalchbrenner, Grefenstette, and Blunsom have proposed a
dynamic convolutional neural network (DCNN) for mod-
elling sentences. While we propose to simply extract a
global feature vector with a max approach after one con-
volutional layer, they used multiple layers of convolution

followed by dynamic k-max pooling to induce a structured
feature graph over a given tweet. This approach is therefore
much more complex (deeper) than our proposed model.

Evaluation
In this section we describe the data used in our experiments,
the experimental results and a brief discussion of the results.

Experimental Setup
For our experiments, we consider the same dataset used
by Go, Bhayani, and Huang (2009). For the training data,
the tweets were extracted using the official Twitter Applica-
tion Programming Interface (API)1. The sentiment of Twit-
ter posts have been predicted using distant supervision. The
positive tweets were selected with a query for tweets con-
taining “:)”, “:-)”, “:)”, “:D”, “=)”. The negative ones with
a query for tweets containing “:(”, “:-(”, “: (”. The tweets
in the training set are from the time period between April 6,
2009 to June 25, 2009. The following filtering were applied
on the data: (i) Emoticons were removed from the tweets, (ii)
tweets containing both positive and negative emoticons were
removed and (iii) retweets were removed to avoid giving ex-
tra weight to a particular weight. Stripping out the emoti-
cons causes the classifier to learn from the other features
(the words in our case) present in the tweet. The final train-
ing data consists of a total of 1.6M tweets, half labeled as
positive and half labeled as negative. The test data is manu-
ally collected, using the web application. A set of 177 neg-
ative tweets and 182 positive tweets were manually marked.
Not all the test tweets has emoticons.

We also consider the particularity of Twitter language
model to reduce the dictionary size and make the data more
concise. This is achieved with the following data preprocess-
ing:

• Target: every word started with the character @ is re-
placed by the special token “TARGET”.

• Link: every URL (http://...) is replaced by the special to-
ken “URL”.

• Hashtag: every word started with the character # is re-
placed by the special token “HASHTAG”.

• Repeated Letters: every letter occurring more than two
times is replaced with two occurrences (e.g., ‘huuuuuuu-
ungry’ is replaced by ‘huungry’)

• Digit: all occurrences of sequences of numbers within a
word are replaced with the special token “NUMBER”.

Finally, all words are lowercased. The resulting tweets have
been tokenized using the CMU ARK Twitter NLP tools2

(Gimpel et al. 2011). This results in a 323,393 words dic-
tionary D.

It has been shown that the generalization performance
can be improved on several NLP tasks by using pre-trained
word representations (Turian, Ratinov, and Bengio 2010).
The lookup-table parameter W is thus initialized with some

1Available at http://apiwiki.twitter.com
2Available at http://www.ark.cs.cmu.edu/TweetNLP/

available pre-trained word representations3 (Lebret and Col-
lobert 2014). The hyper-parameters were chosen consider-
ing a validation set extracted from the training data. The op-
timal hyper-parameters used are:
• word vector size: dwrd = 50,
• word window size: ksz = 3,
• number of filters in the convolution: nfilter = 30,
• number of hidden units in the classifier: nhu = 50.

Results
Results reported in Table 1 show that our model significantly
outperforms the baseline models, and a model with a prior
knowledge on sentiments (EmoSenticSpace). It also slightly
outperforms a much deeper convolutional neural network
(DCNN), which indicates that there is no need for multi-
ple convolutional layers in sentiment analysis. The number
of filters used in our model is very low, nfilter = 30. This
means that tweets are represented in 30-dimensional con-
tinuous vectors after the max layer and before the softmax
classifier. Conversely, traditional bag-of-words based clas-
sifiers will represent tweets with as many features as there
are words in the dictionary. Considering that our dictionary
D contains 323,393 words, this is about ten thousand times
higher than our tweet representations.

Model Accuracy (%)
SVM 81.6
BINB 82.7
MAXENT 83.0
EMOSENTICSPACE 85.1
DCNN 87.4
OUR MODEL 88.3

Table 1: Accuracy on the Twitter sentiment analysis test set.
The three classical models are based on unigram and bi-
gram features; the results are reported from Go, Bhayani,
and Huang (2009).

At inference time, our model can output polarity scores
for every windows of ksz words in a given tweet by simply
removing the max layer. This is a valuable asset to detect
which parts of a tweet are positive or negative, as illustrated
in Figure 1. This also helps to understand why certain tweets
are misclassified. Some examples of misclassified tweets are
in Figure 1 where both sentiments have been detected.

Conclusion
In this paper, we introduce a model capable of learning
to classify Twitter messages into sentiment categories us-
ing distant supervised learning. Contrary to classical ap-
proaches, our model learns a low-dimensional continuous
representation for tweets. Moreover, the model is trained (al-
most) from scratch, using the raw tweets as training data.

3Available at http://lebret.ch/words/

Figure 1: Selection of tweets from the test set where sen-
timents are highlighted using our model outputs. The blue
color scale indicates negative sentiment, the red one indi-
cates positive sentiments.

The proposed approach outperforms baseline methods and
a more complex (deeper) model. Code and data will be re-
leased online at the time of the conference.

References
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural Language
Processing (Almost) from Scratch. Journal of Machine
Learning Research.
Gimpel, K.; Schneider, N.; O’Connor, B.; Das, D.; Mills, D.;
Eisenstein, J.; Heilman, M.; Yogatama, D.; Flanigan, J.; and
Smith, N. A. 2011. Part-of-Speech Tagging for Twitter: An-
notation, Features, and Experiments. In Proceedings of the
49nd Annual Meeting of the Association for Computational
Linguistics.
Go, A.; Bhayani, R.; and Huang, L. 2009. Twitter Sentiment
Classification using Distant Supervision. CS224N Project
Report.
Joachims, T. 1998. Text categorization with suport vec-
tor machines: Learning with many relevant features. In
Proceedings of the 10th European Conference on Machine
Learning.
Kalchbrenner, N.; Grefenstette, E.; and Blunsom, P. 2014.
A Convolutional Neural Network for Modelling Sentences.
Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics.
Lebret, R., and Collobert, R. 2014. Word Embeddings
through Hellinger PCA. In Proceedings of the 14th Confer-
ence of the European Chapter of the Association for Com-
putational Linguistics.
Pang, B.; Lee, L.; and Vaithyanathan, S. 2002. Thumbs Up?:
Sentiment Classification Using Machine Learning Tech-
niques. In Proceedings of the 40nd Annual Meeting of the
Association for Computational Linguistics.
Poria, S.; Gelbukh, A. F.; Cambria, E.; Hussain, A.; and
Huang, G.-B. 2014. EmoSenticSpace: A novel framework
for affective common-sense reasoning.
Turian, J.; Ratinov, L.; and Bengio, Y. 2010. Word represen-
tations: A simple and general method for semi-supervised
learning. In Proceedings of the 48nd Annual Meeting of the
Association for Computational Linguistics.

