IDIAP COMMUNICATION REPORT

%chlao

RESEARCH INSTITUTE

INTEGRATION OF REAL-TIME SPEECH
PROCESSING TECHNOLOGIES FOR ONLINE
GAMING

Dhananjay Ram Petr Motlicek Blaise Potard

|diap-Com-01-2016

FEBRUARY 2016

Centre du Parc, Rue Marconi 19, P.O. Box 592, CH - 1920 Martigny
T+41 2772177 11 F+4127 72177 12 info@idiap.ch www.idiap.ch

Integration of Real-Time Speech
Processing Technologies for Online
Gaming
Dhananjay Ram, Petr Motlicek, Blaise Potard

Idiap Research Institute, Martigny, Switzerland
email: {dram, motlicek, potard}@idiap.ch

April 1, 2015

Abstract

This work demonstrates an application of different real-time speech
technologies, exploited in an online gaming scenario. The game devel-
oped for this purpose is inspired by the famous television based quiz-
game show, “Who wants to be a millionaire”, in which multiple-choice
questions of increasing difficulty are asked to the participant. Text-
to-speech synthesis is used to read out the questions and the possible
answers to the user, while an automatic speech recognition engine is
exploited to get input from the player, in order to proceed through the
game. The speech data is recorded from the user with the help of a real-
time voice activity detector to select speech segments from the input
audio data. The developed Java application allows an automatic in-
sertion of new multiple-choice questions, of different complexity, which
could then be selected during the game.

1 Introduction

The work is a demonstration of two real-time speech technologies, namely
Automatic Speech Recognition (ASR) and Text-to-Speech Synthesis (TTS),
through the implementation of an online game. The game simulates the
famous television based quiz-game show called, “Who wants to be a mil-
lionaire”. This is a very simple quiz game in which users are presented with
questions, along with 4 possible choices, at each stage of the game. Among
the four options, only one answer is correct.

In our game, the question-answers are displayed, as well as pronounced
to the player using synthetic speech, to make the game more interactive.
After this, the player needs to speak out the answer in order to proceed
through the game. If the answer is correct, the player is allowed to move
to the next difficulty level of the game, otherwise, he/she loses. To help
players to proceed through the game, three types of assistance are normally
available in the TV game, namely, “Fifty Fifty”, “Call Friend” and “Help
of the Auditory”. Only the “Fifty Fifty” option is fully implemented in the
current version of the game.

The work presented in this report is a follow-up work on an earlier version
of this game. Readers are advised to consult the reports on earlier work [1, 2]
before proceeding further with this report. In the earlier version, the speech
input did not use voice activity detection, instead recordings audio segments
of fixed durations at fixed intervals of time: the player was required to wait
for a signal from the game to start speaking, and the game would only start
processing the player input after the whole segment (4s long) was recorded.
The player had to wait accordingly, even if the speech segment was very
short. In addition, the player had to wait further while the speech segment
was being recognised. In order to overcome these shortcomings, a real-
time voice activity detector working in online mode is now implemented,
so that the player can provide input speech any-time, and the subsequent
ASR engine will start processing the data with a very small delay after the
player starts speaking, with the aim of providing recognised input as soon
as possible after the player stops speaking.

Furthermore, in the earlier version of the game, an existing HTK [3]
based ASR system was exploited to perform Key-Word Spotting (KWS). In
this version of the game, a new KWS system based on the Kaldi [4] speech
recognition toolkit was devised.

The report is organized as follows. A brief revisit to the architecture of
the game is presented in the following section. This is followed by descrip-
tions of the client-side and server-side implementation of the game. Finally,
the work is concluded in the last section with a summary of contributions,
and directions for future work.

Speech

VAD :
Recognizer

. Application Speech
Client <:> Server SyntheSiS

QnA
Database

Figure 1: Block diagram of the game implementation

2 Architecture

The game follows a client-server architecture. The client implements a gam-
ing (graphical) interface for the player. The server-side can operate on a
different machine, or in the background on the same machine, and incorpo-
rate several services.

While playing the game, the client records input speech from the player
with the help of a voice activity detector (VAD) and transmits the recorded
data to the server-side for further processing. The client also interacts with
the server to obtain the multi-choice questions depending on the state of the
game. Finally, it receives synthesized speech generated by a TTS engine on
the server to read-out the question-answers to the player.

The most time-critical operation (ASR) is implemented through an ad-
hoc streaming interface developed in the context of the D-Box project: the
client streams audio data in which voice activity has been detected, and the
server returns ASR results at the end of the active segments. The two other
services (questions and TTS) are implemented as Web Services and written
in java.

3 The Client

This section describes the gaming interface and briefly introduces different
functions of the client. This is followed by a detailed discussion about the

VAD integrated into the game.

3.1 The Interface

In the earlier version of the game, there was a button implemented for
the player to indicate when the speech is being recorded from the micro-
phone. The color of the button (i.e., green/red) indicated the time period
to start/stop speaking. Speech data from the player was recorded for a con-
stant duration and processed afterward. This implementation was obviously
not well suited for the players, as it restricted them from providing input at
their convenience. The player was also forced to wait a significant time even
if the input speech he wanted to provide was of very short duration (due to
this fixed duration constraint).

In the new updated version of the game, real-time VAD is implemented,
which eliminate the need for this indicator button. This VAD can segment
the input audio data according to the speech/non-speech parts and filter out
the non-speech segments. In this way, only speech data is further processed
by the ASR component, and players are provided with a more responsive
and convenient way of interacting with the game. Furthermore, this VAD
uses a streaming interface, i.e. starts forwarding audio data to the ASR
server before the end of an active segment, which ensures a low latency for
the ASR processing.

The rest of the options have remained unchanged.

3.2 Functions

The functions of the client can be categorized into three parts, as discussed
below:

e The first part implements a http request to the question-answer database
to obtain a question of a specific difficulty, and its possible answers.
A reply from the server is used to display the question-answers to the
player.

e As a next step to proceed through the game, the client makes a request
to the TTS engine with the current question-answers. The engine
replies with an audio file containing generated speech corresponding
to the question-answers to be played-back to the player.

e As stated above, the new version of the client applies VAD for real-
time speech segmentation, and the active speech data is streamed to
the server side for online ASR. Overall, the introduction of VAD on
the client side allows the player to answer a question whenever he/she
wishes, while the online ASR and VAD streaming mode ensure that
the player receives a reaction from the game as soon as possible.

Who Wants to be a Millionaire?

| Play Game]
| Add a Question |
| Best Scores |
| Close |
Festival - kal_diphone v

Figure 2: Welcome screen of the game.

3.3 Voice Activity Detector

This section presents a detailed description of the VAD exploited on the
client side of the game application. It is inspired by a VAD implementation
presented in [5]. This is a very simple VAD which can be used in real-time
applications like this game. More specifically, this method proposed three
different features per frame to be used for VAD:

e The first feature is the widely used short-term energy (E). Energy is
the most common feature for speech/non-speech detection. Speech
frames are expected to contain significantly higher amount of energy
than non-speech frames. However, this feature loses its efficiency in
noisy conditions, especially in lower signal-to-noise ratio (SNR). To
reduce this sensitivity to noise, we compute the energy in the spec-
tral domain, only taking account the frequency bands strongly associ-
ated with human speech. Furthermore, two other features calculated

Who Wants to be a Millionaire?

YOUR HELPS:
B Fitty Fifty
B call Friend
B Help of the Auditory

% 300
$ 200

$ 100 | Accept the Answer |

Which of these is a type of hat?

Sausage Rall [Fork Pie J
Scotch Egg Potato Crisp

Figure 3: Main interface of the game.

in the frequency domain are also used to take a decision about the
speech /non-speech status of a given frame.

e The second feature is Spectral Flatness Measure (SFM). Spectral Flat-
ness is a measure of the noisiness of the spectrum and is a good feature
in Voiced/Unvoiced/Silence detection. Generally, speech frames are
less flat than non-speech frames. This feature is calculated using the
following equation:

G.M.
A.M.

where A.M. and G.M. are arithmetic and geometric means of speech
spectrum respectively.

e Besides these two features, the most dominant frequency (F') com-
ponent of the speech frame spectrum is used as the third feature in

order to discriminate between speech and non-speech frames. This
feature is simply computed by finding the frequency corresponding to
the maximum value of the spectrum magnitude. It is expected that
the maximum frequency present in a speech frame cannot go beyond a
certain pre-specified range, [minF, maxF|, corresponding to the typi-
cal frequency range of human speech. The frames having a maximum
frequency beyond this range are likely to be non-speech frames.

In the VAD implemented, these three features are applied in parallel to de-
tect the voice activity, and a frame will be considered as speech if at least
two of the features judge the frame as speech. The algorithm starts with
framing the audio signal (i.e., short-term analysis of speech signals). In this
implementation no windowing function or overlap is applied on the frames.
At the beginning of the processing, IV frames are used for thresholds initial-
ization. For each incoming speech frame, the three features are computed.
The audio frame is marked as a speech frame, if at least 2 of the feature
values fall over the pre-computed thresholds; otherwise it is marked as non-
speech. Finally, a certain number of successive speech frames indicates the
beginning of a speech segment and vice-versa. The steps to be followed are
provided in the algorithm 1:

3.3.1 Evaluation of the VAD

In order to evaluate the performance of the developed VAD, experiments are
performed on the speech data from the D-Box [6] project. The speech data
was collected in the form of a “Wizard of Oz” simulation of a quiz game,
where the player can ask any kind of question to the system, in order to guess
the name of a famous character. Two English native speakers (1 male and 1
female) were acting as Wizards simulating the system’s behaviour. 21 unique
subjects were playing the game. The participants were undergraduates of
age between 19 and 25, who are expected to be related to our ultimate target
audience, and are generally non-native English speakers. 338 dialogues were
collected for a total duration of 16 hours, comprising about 6.000 speaking
turns. The audio data is sampled at 16kHz, and stored in RIFF format. The
recorded data is manually segmented, and the speech segments are manually
transcribed. The database was recorded during 6 different sessions, and
these sessions were split into a train/dev/test sets, keeping only the players
data (the Wizard data is also available, but is not currently exploited). The
VAD is evaluated on the test data-set, which consists of recordings from two
different sessions (identified by the numbers 20 and 28), with two different
players (identified by the 2-letters codes pw and bp).

The performance of the developed VAD is compared with two other
existing implementations. The first one is a simple energy-based VAD ac-
cessible in Shout [7]. This VAD does not have an online implementation.

Algorithm 1 An algorithm to implement VAD

1:
2:

I~

10:
11:

12:
13:
14:

15:
16:
17:

18:
19:

20:
21:
22:
23:

24:

Set frame_size
Set one primary threshold for the first two features:

e Primary threshold for energy: PrimFE
e Primary threshold for SFM: PrimSFM

Set MinE =0 and MinSFM =0
for i from 1 to IV
Apply FFT on each frame
Compute frame energy, FE(i), over the frequency range
[minF, mazF).
Compute the value of spectral flatness measure, SFM (i)
If E(i) < MinE, then MinE = E(i)
If SEM (i) < MinSFM, then MinSFM = SFM (i)
end
Set decision threshold /range for E, SFM and F as follows:
e ThresE = PrimFE x log(MinE)
o ThresSFM = PrimSFM
e Range for F : [minF, maxF]

while a speech frame is available:

Apply FFT on each frame

Compute frame energy, FE(i), over the frequency range

[minF, mazF).

Compute the value of spectral flatness measure, SFM (i)

Find F(i) as the most dominant frequency component.

Set Count =0

o If (E(i)/MinE) > ThresE, then Count = Count + 1

o If (SFM(i)— MinSFM) > ThresSFM, then Count = Count+1

o If minF < F(i) < mazF, then Count = Count + 1

If Count > 1, mark the current frame as speech, else silence.
If current frame is silence, update MinE value as,

SilenceCount x MinE) + E(7)

o
Mink = SilenceCount + 1

ThresE = PrimE X log(MinE)

n1 successive speech frames — mark the frames as speech active.

ng successive silence frames — mark the frames as speech inactive.

if speech active and successive active frames > ng — start streaming
to ASR server.

if speech inactive and successive active frames < ns3 — drop segment.

The second one is developed by a DBOX partner company, Sikom, and im-
plemented in the project. This commercial VAD is a very simple state-based
VAD system (with three states: silence, speech active, speech pause), using
time-domain energy calculation for the voice activity decision. Compared
to Idiap VAD system, it is much more rudimentary: it uses a single decision
criterion, computes time-domain energy, and uses a fixed threshold for voice
/ unvoiced decision. It can however, like our VAD system and unlike Shout,
be run online.

Table 1: Comparison of performance of different VADs.

VAD method | Database | Missed speech(%) | False alarm speech(%)
s | B | S8 %
stom | Sty 1109 057
| E

The results are evaluated by comparing the segmentation from individual
VADs with manual segmentation information. The performance is indicated
using a standard detection measure, indicated by the probability of missed
event (i.e. a speech frame classified as non-speech) and False alarm event
(i.e. a non-speech frame classified as speech). The results are shown in
Table 1. Note that in this kind of applications, missed speech (i.e., number
of missed speech frame) is required to be as small as possible, whereas, a
greater amount of false alarm speech is not as damaging. These rates can
obviously be controlled by the thresholds presented in the VAD algorithms.
Since the segmented speech will be fed to the subsequent ASR engine, a
higher false alarm, which indicates that the recognizer will also process non-
speech data, will not largely degrade the recognition performance; however,
it might lead to increased latency for ASR results. On the other hand, higher
missed speech rate implies that the ASR engine will not receive all of the
speech data which may largely degrade the recognition performance.

To observe the effect of the different VADs on the performance of the
ASR engine, recognition experiments were performed on the DBOX data.
The segmentation information from each VAD is used to evaluate its effect on
recognition results. The results are shown in Table 2. Here, “Oracle VAD”
refers to using the information from the manual segmentation. Recognition
accuracies clearly indicate that the developed VAD from Idiap performs
significantly better than the other tested VADs, and the penalty for using
VAD is quite low.

10

Table 2: Speech recognition performance in terms of Word Error Rates
(WERsS) for different VAD algorithms applied.

VAD Method | WER (%)
Oracle VAD 25.6
Shout 38.8
Sikom 37.2
Idiap 32.0

4 The Server

The server side of the game is implemented using “apache-tomcat” [8]. It is
an open-source web server and servlet container. The server needs several
components, to perform different tasks. Therefore a servlet container was
needed to integrate the various components of the server. In this imple-
mentation, HT'TP [9] is used as the network protocol for communication
between the server and the client.

Various modules of the server are discussed in the following sections.

4.1 QnA Database

The QnA database is a multilingual database containing questions and pos-
sible answers in different languages, although the present system only use
the English questions set at the moment. The question-answers are accessed
dynamically from a database, which is implemented using HSQLDB [10], in-
stead of a SQL server. This saves the effort of installing an SQL server in the
machine where the server resides. Each question in the database contains
different fields such as questionID (an unique identifier for the question),
languagelID (an unique identifier for the language of the question), difficulty
level, etc.

The difficulty level indicates the current stage of the game: there are
normally 15 different levels, corresponding to 15 different amounts of money
to be won in the TV game. As the game progresses, the difficulty level is
increased by one step after each correct answer. When a query is made from
the client side, it consists of languagelD and difficulty level at the current
stage of the game. The query returns all available questions in the database
corresponding to the languagelD and difficulty level. One question is then
randomly selected from this set of questions and returned to the client. It
contains the question, its four possible answers, the correct answer, and the
questionlD.

11

4.2 TTS Server

The Text-to-Speech (TTS) server is the second main engine operating on the
server. A TTS interface is incorporated in the game to make it more user-
friendly: each question prompted to the user is pronounced by a synthetic
voice.

The server uses Festival [11] speech synthesis system to generate speech
corresponding to the input text in real-time. The Festival system is free, and
can operate as a general multi-lingual speech synthesis system. Currently,
the TTS engine integrated on the server supports speech synthesis in En-
glish, French, and German languages, but only the English one is currently
used.

There is a list of different synthesized voices to choose from. The list is
displayed with a drop-down button in the welcome screen of the game. The
player can try out and choose any voice at the beginning of a game. Other
languages could be added to the server with new language packages.

The game starts with a welcome message from the game to the player,
generated on the TTS server. The client, at every stage of the game, makes
a request to the TTS server with the required text to be synthesized. The
text can be a welcome message, a concluding message, or a question and
corresponding options, depending on the current state of the game. The
TTS server, upon receiving the text, generates an audio file corresponding
to the text using the voice selected by the player. Further, this audio file
is transmitted back to the client via an HTTP response. Then, the client
plays this audio file back to the player.

4.3 ASR Server

The third and most important module of the server is the Automatic Speech
Recognition (ASR) engine. In order to improve the performance compared
to the earlier version of the game, a Kaldi-based online speech recognizer
is exploited. More particularly, a Kaldi-based keyword spotting system is
implemented instead of a full-fledged speech recognizer. The reasons for this
are two-fold:

e First, at each stage of the game, there are only a limited set of options
(closed dictionary phrases) to be recognized. This also allows to return
a confidence about the detected key-word, by normalizing the key-word
with respect to a universal backgorund model (UBM).

e Second, the performance of a keyword spotting system can be much
higher than a conventional ASR.

The keyword spotting system is implemented by switching the language
model to apply at each stage of the game. These language models are
compatible with Kaldi, and are capable of matching a finite set of keywords.

12

cppiappeal 1

GAREMGE:GARBAGEH

<ppsaepea|

e peempil 1S

GAREAGE:GAREAGEY

Zppiempeil 1
<ppraepeal i ADD:A DOVEZS w10 <gprenpeil s
. <pprampea
sprsepsell I CLOSECLOSENDS |
<ppimeppeail 13 o =ppseampenill
FLAY:PLA Y015 P
cepixarpeal 13 ppiaempeil 1
5 SCOORES SCORESDDS 1
anpeepisl|

Figure 4: An Example Graph for a Keyword Spotting System

A script was written to generate these language models automatically
from a list of keywords. The most specific part of the script is an “awk”
script that generates a word-based FST in a text format.

As an input, the script is expected to be provided with a list of phrases,
and will provide as output a language model “graph” that can be used by
the kaldi speech recogniser. Note that partial matches of the phrases will
also be allowed.

All the phrases in the list will have the same weight; that weight is
normally spread equally among the words of the phrase. Identical sub-
phrases are grouped together in the FST. Individual words of the phrases
are separated by optional silences.

A “garbage/UBM” model with a much higher weight (i.e. a lower prob-
ability to be selected) is then added to the FST. In this model, all phones
are equi-probable and it can loop on itself, go back to the start node, or
can appear after any phrase. This enables the garbage model to represent
any other phrase which is not present in the graph. An example graph for
4 different keywords is shown in Figure 4.

Now, from the FST representation, the general scripts to generate graphs
in Kaldi are exploited. This FST will be used to generate the “grammar”
part of the decoding FST graph. On top of the grammar, a lexicon is auto-
matically generated from the list of unique words using phonetisaurus [12],
with models trained on CMUdict [13]. Up to 3 variants of the word pronun-
ciations are generated each time, along with their probabilities.

Finally, the graph is linked to the normal acoustic models used for En-
glish online decoding in DBOX. These acoustic models are trained [14] on

13

icsiami meeting data using the online2 recipes from the Kaldi speech recog-
nition toolkit.

5 Conclusion

This work implements a real-time voice activity detector and modifies the
gaming interface accordingly to make it more convenient for the end-user.
The new version integrates a Kaldi-based keyword spotting system to en-
hance the performance. In order to make the KWS faster, the language
models are generated offline for different questions and is used during the
recognition process accordingly. Thus, the work successfully implements dif-
ferent real-time speech technologies for online gaming. The game currently
supports only one language, English. Further work can be done on making
the game multilingual (e.g. include French, German etc.). For this, the
game interface should include an option to select the language by the user.
The database for questions-answers is already in multilingual format, and
the TTS server also supports several languages. But the keyword spotting
system needs acoustic and language models from other languages; and some
changes will be required in the recognizer to switch between recognizers
corresponding to different languages.

References

[1] H. Gasimov, A. Triastcyn, P. Motlicek, and H. Bourlard, “Who wants
to be a millionaire?” Idiap, Rue Marconi 19, Idiap-Com Idiap-Com-03-
2012, 7 2012.

[2] H. Gasimov, P. Motlicek, and H. Bourlard, “Who wants to be a million-
aire? (ii),” Idiap, Rue Marocni 19, Martigny, Switzerland, Idiap-Com
Idiap-Com-02-2013, 2 2013.

[3] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu,
G. Moore, J. Odell, D. Ollason, D. Povey et al., The HTK book. En-
tropic Cambridge Research Laboratory Cambridge, 1997, vol. 2.

[4] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlicek, Y. Qian, P. Schwarz, J. Silovsky, G. Stem-
mer, and K. Vesely, “The kaldi speech recognition toolkit,” in IEEE
2011 Workshop on Automatic Speech Recognition and Understand-
ing. 1EEE Signal Processing Society, Dec. 2011, iEEE Catalog No.:
CFP11SRW-USB.

[5] M. Moattar and M. Homayounpour, “A simple but efficient real-time
voice activity detection algorithm,” FUSIPCO. EURASIP, pp. 2549—
2553, 2009.

14

[6]

[11]

[12]

[13]

[14]

Dbox project. [Online]. Available: http://www.idiap.ch/project/
d-box/

Shout. [Online]. Available: http://shout-toolkit.sourceforge.net/index.
html

Apache tomcat. [Online]. Available: https://tomcat.apache.org/
tomcat-8.0-doc/

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee, “Hypertext transfer protocol-http/1.1,” 1999.

Hsqldb. [Online]. Available: http://hsqldb.org/web/hsqlDocsFrame.
html

Festival tts. [Online]. Available: http://www.cstr.ed.ac.uk/projects/
festival/

J. R. Novak, “Phonetisaurus: A wist-driven phoneticizer,”
http://code.google.com/p/phonetisaurus/.

ArpaBet, “CMU pronouncing dictionary,” http://www.speech.cs.cmu.
edu/cgi-bin/cmudict, Feb 2013.

P. Motlicek, D. Povey, and M. Karafidt, “Feature and score level com-
bination of subspace gaussinas in lvcsr task,” in Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International Conference on.
IEEE, 2013, pp. 7604-7608.

15

