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Abstract

State of the art query by example spoken term detection (QbE-STD) systems rely on representation

of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural

network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW).

Exploiting posterior probabilities as speech representation propounds diverse advantages in a classification

system. One key property of the posterior representations is that they admit a highly effective hashing

strategy that enables indexing the large archive in divisions for reducing the search complexity. Moreover,

posterior indexing leads to a compressed representation and enables pronunciation dewarping and partial

detection with no need for DTW. We exploit these characteristics of the posterior space in the context

of redundant hash addressing for query-by-example spoken term detection (QbE-STD). We evaluate the

QbE-STD system on AMI corpus and demonstrate that tremendous speedup and superior accuracy is

achieved compared to the state-of-the-art pattern matching and DTW solutions. The system has the

potential to enable massively large scale query detection.

Index Terms

Posterior probability structures, Posterior hashing, Pronunciation dewarping, Structural similarity

measure.

I. INTRODUCTION

Exemplar based speech processing offers high flexibility in speech applications, partly attributed to

the lack of complex statistical assumptions that facilitate exploiting “data deluge” with no prejudice on

expected answers. Deep neural network (DNN) based class-conditional posterior probabilities (hereafter

referred to as posteriors) have been found one of the best speech representations to enable exemplar based
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speech recognition [1] and spoken query detection [2, 3]. In theory, if infinite number of exemplars of

continuous probability density functions are provided, a simple nearest-neighbor rule leads to optimal

classification [4].

Nevertheless, exemplar-based speech processing faces two fundamental problems: (1) The growing

size of the databases prohibits efficient search, and (2) The duration variation in speech pronunciation

is effectively handled via dynamic time warping that is computationally expensive and sub-optimal due

to dependency on the local reference exemplar. This paper addresses these limitations to foster exemplar

based solutions for real time applications.

DNN posteriors live in union of low-dimensional structured sparse subspaces [5, 6]. Exploiting this

property enables a hierarchical speech classification and recognition framework based on structured

sparse modeling of posterior exemplars [5]. In addition, the low-dimensional subspaces can be modeled

through dictionary learning for sparse coding to enable unsupervised adaptation and enhanced acoustic

modeling for speech recognition [6, 7]. Sparse subspace modeling of the posterior exemplars are also

found promising for query-by-example spoken term detection (QbE-STD) [8].

Recently, we investigated a novel application of structured sparsity of posterior probabilities in devising

an effective hashing technique to reduce the search space of posterior exemplars [9]. Application of

hashing in exemplar search enables splitting the search space into disjoint buckets each indexed with

a unique hash key (posterior representative). The exhaustive search space is thus downsized to the

corresponding bucket sizes. In this context, the hash function ensures geometric locality preserving of

neighboring examples [10, 9]. In this paper, we propose a highly efficient QbE-STD system exploiting

posterior hashing. The framework is inspired from the idea of redundant hash addressing.

Redundant hash addressing (RHA) was initially proposed by Teuvo Kohonen as a fast method for

recognition and correction of garbled symbol strings. It is an associative method based on the use of

multiple (redundant) features extracted from the same input item [11]. The comparison of the input item

against the reference items is based on these features. Redundancy is exploited to increase error tolerance

and robustness. Kohonen applies this idea for word recognition. The segments of N consecutive letters

(N -grams) are considered. The RHA system consists of the N -gram table and word dictionaries. Multiple

features (N -grams) are extracted from the input string and each extracted N -gram associates the input

string with a word in the dictionary based on the number of matching N -grams [11].

To obtain the N -grams of symbols/letters for RHA, the acoustic feature vectors are first quantized and

mapped into a symbol space. To that end, the self organizing map (SOM) neural network is used as a

codebook to map the input feature vectors into the finite set of prototype vectors. When each prototype
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vector is provided with an index, feature vector sequence can be mapped into a symbolic index sequences.

Each feature vector is encoded by the index of its best matching unit. The node indices of the SOM are

thus the alphabet of the system [12]. In this paper, we propose that posterior hashing can be used to

define the codebook for RHA.

In the following Section II, we briefly explain the idea of posterior hashing. The new framework of

RHA for QbE-STD is explained in Sections III. We also exploit posterior hashing to develop an efficient

pattern matching method in Section IV. The experiments are conducted in Section V, and the conclusions

are drawn in Section VI.

II. HASHING STRUCTURED POSTERIOR PROBABILITIES

We consider the posterior vector consisting of Q class-conditional posterior probabilities estimated by

DNN from the input acoustic feature x, denoted as

z = [p(C1|x), . . . , p(Cq|x), . . . , p(CQ|x)]> (1)

where .> is the transpose operator. The posteriors can be defined at any linguistic level. The typical

phone and phonological posteriors are shown to be highly structured and living in low-dimensional

subspaces [13, 7]. Taking advantage of the underlying structured sparsity of posteriors, a hashing technique

is devised to divide the space into smaller size buckets of neighboring posteriors based on the following

hashing formula

H(z) =

⌊
2bz

⌋
2b

(2)

where b is the number of bits for quantization. The number of unique quantized posteriors is small

with respect to the sample size, and the quantized posteriors can be regarded as representatives of the

posterior space. The quantized posterior representatives can be used as hash keys for splitting the space

into geometric neighbors as disjoint buckets.

In theory, quantization of every component of posteriors in b bits leads to splitting the space in

maximum 2K disjoint regions where K = 2bQ. Accordingly, the size of training data in each bucket can

be reduced to an average N/2K . The analysis in [9] shows that the probability of negative examples in

a bucket is 1 − 2−Kb. Considering the typical value of Q for phonetic or phonological posteriors, this

hashing function leads to a very small probability of encapsulating negative examples or wrong positive

examples in the same bucket. In practice, the quantized posterior hashing is found to reduce the search

space drastically with no degradation in performance.
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Inspired from the idea of redundant hash addressing (RHA) for recognition of word sequences, we

revisit its implications and applicability for QbE-STD task. This application provides a unique case study

where the potential of posterior hashing is fully exploited to speed up the query search on large speech

archives. In the following section, we review the principles of RHA for query detection.

III. REDUNDANT HASH ADDRESSING

We adopt the basic word recognition RHA framework for query detection. The dictionary consists of

the query term. The speech utterances are represented in terms of posteriors estimated for short frames.

The posteriors are converted into codes exploiting quantized posterior hashing. To that end, the training

data is quantized and the unique binary codes form the codebook of the hash keys or symbols in a hash

space.

The dynamic of speech production is slower than the short frame sampling frequency. Therefore,

adjacent frames are likely to share similar codes. To obtain a duration-invariant representation, the

similar codes of adjacent frames are merged. This approach enables an efficient method to deal with the

duration variations in spoken utterances and queries.

Once the testing utterances and the spoken query are converted into this code space, N -grams are

formed by concatenating each code with N − 1 adjacent ones on its right. Then, the N -grams of the

utterance and the query are compared. If a matching code is occurred, it is labeled as 1 and 0 otherwise.

In this procedure, the N -grams capture the trajectory information and they are processed independently.

The number of detected N -grams is used as the score for query detection. Fig. 1 illustrates the RHA

framework for query detection.

Hash 
CodeBook 

N-Gram 
Matching 

Sequence 
 of Posteriors 

Query  
Detection Scores 

Fig. 1. Building blocks of the RHA based QbE-STD system: The sequence of posteriors is mapped to a sequence of symbols

each associated to a unique hash code. The N -grams of the query dictionary are matched against the N -grams of the spoken

utterance. The number of matching N -grams is used as the score for query detection.

Alternative solutions for detection tasks using posteriors rely on nearest neighbor approaches to pattern

matching [14]. Hence, we investigate this idea and exploit posterior hashing to develop an efficient pattern

matching framework in the following section.
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IV. STRUCTURAL PATTERN MATCHING

One key problem of speech pattern matching is handling the duration variation in speech production.

Posterior hashing can be used for segmentation of the similar codes in a pronunciation dewarping

mechanism.

A. Dewarping for Duration Invariance

The benefit of the redundant hash addressing principle is that the duration variation can be addressed at

the representation level rather than the recognition level through DTW. We exploit the duration invariant

representation enabled by hashing for segmentation of the speech utterance. To that end, blocks of

similar hash keys are identified. It is hypothesized that the posteriors encapsulated in a block represent

temporal duration of a discrete production process. This idea was previously found effective in duration

analysis of impaired speech production [15]. In this work, we use the blocking procedure to address the

duration variation in speech representation. The posteriors of a block are averaged to form an average

pronunciation. The crucial factor in the pattern matching system is the choice of similarity measure.

B. Structural Similarity Measure

The posterior space is highly structured and low-dimensional [13, 16]. To exploit this property, we

propose to use Spearman’s rank correlation to measure the similarity of posterior exemplars. The intuition

is that the exact value of the posteriors is less important compared to the structure of the high probability

components. The high probability components quantify the order of significance in structuring the speech

signal. The Spearman’s similarity measure is defined as

SSpearman(z1,z2) =

(rz1 − c) (rz2 − c)>√
(rz1 − c) (rz1 − c)>

√
(rz2 − c) (rz2 − c)>

.
(3)

where rz1
and rz2

are the coordinate-wise rank vectors of the posterior vectors z1 and z2, and c = Q+1
2 .

The Spearman similarity is computed using MATLAB pdist2 and the coordinate-wise rank vectors are

obtained using tiedrank.

The frame level similarity scores are then used for max-sum dynamic programming. The area under the

curve after applying the threshold is used as the score for query detection. This procedure is illustrated

in Fig. 2.
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Fig. 2. Building blocks of the structural pattern matching for QbE-STD: The sequence of posteriors is processed in blocks

according to the similar hash keys. The blocked posteriors are replaced with the average posterior to obtain a duration invariant

representation. Structural similarity of the posteriors is measured via Spearman’s similarity measure (3). The similarity scores

are integrated based on max-sum dynamic programming to obtain the query detection score.

V. EXPERIMENTAL EVALUATION

The experiments are conducted to evaluate the performance of the proposed methods in challenging

scenarios when just one query example is provided for QbE-STD, and the query and background are

conversational spontaneous speech with interfering speakers.

A. Benchmarking Setup

The AMI meeting corpus [17] is used for the experiments where the training, development and

evaluation sets are as [18]. Although the meeting language was English, many participants were non-

native speakers. Also, the headset recordings contain considerable amount of overlapping speech due to

interfering speakers. There are approximately 12 k words in the training, out of which 100 words are

randomly used for our detection experiments including very short words such as “ten” to long words

such as “requirements”. The 9 hours speech of the evaluation set is used for QbE-STD experiments. The

total number of utterances for query detection is 10179. The average number of positive examples for all

queries is 46 where the number of positive examples per query varies between 3 to 273 with a standard

deviation of 52. A single query example is chosen randomly from the training set for query detection

and it is used for all the systems.

To obtain posterior representation of the data, we consider phonological posteriors. We use the open-

source DNN based phonological vocoding platform [19] for estimation of the extended Sound Pattern of

English (eSPE) phonological posteriors. The motivation for using phonological posteriors is three-fold:

(1) Phonological posterior quantization and hashing is found to be effective is search space reduction for

accurate classification [9, 16, 13], (2) Sub-phonetic nature of phonological posteriors facilitates develop-

ment of flexible and low-resource speech detection and recognition solutions [20], and (3) Phonological

posterior are found robust for inter-domain posterior representation where the training and testing acoustic

conditions and languages are different [9, 16, 13].
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The ultimate goal of a large-scale QbE-STD system is to operate on non-native speech of multiple

languages across diverse domains of speech recordings. Hence, the training data of AMI is not used and

the DNN setup is trained on the Wall Street Journal (WSJ) continuous speech recognition corpora. The

details of DNN Setup for phonological posteriors is explained in [19].

The DTW based QbE-STD system presented in [21] is used as a highly competitive baseline sys-

tem [22]. The parameters of the system are optimized on the cross validation set.

B. QbE-STD Results

The QbE-STD evaluation results are illustrated in Fig. 3 where N = 2 is considered for N -grams

used in RHA. We can see that RHA is the best performing system. Previous studies show that posterior

classification is most accurate when Cosine similarity is used [23, 21]. However, we can see that pattern

matching using continuous posterior features is more effective when structural similarity is exploited.

The Spearman similarity yields up to 5% reduction in the miss-rate at most operating points.

We observed no degradation in pattern matching performance due to dewarping. This result was

expected due to the binary nature of phonological posteriors [13, 16]. Moreover, if the dewarped posteriors

are quantized into binary vectors and Jaccard similarity is used for binary pattern matching [16], similar

results as the Spearman similarity measure is achieved. This observation again confirms that the space

of phonological posteriors is highly structured and the structures bear more information than the exact

posterior values.

Each component of a phonological posterior indicates the probability of a phone attribute composing a

phonetic unit [19]. The permissible combinations are highly constrained due to articulatory mechanisms

governing speech production. Therefore, the probabilities constituting a posterior are confined to a small

number of components where the indices of high probabilities determine the unique structure of the vocal

machinery in speech production [16].

C. Search Reduction

Posterior hashing reduces the computational cost through (1) reducing the search space to a compressed

space of unique codes and (2) reducing the cost of similarity measure computation to a look-up table

associated to matching codes.

In the case of redundant hash addressing, the size of test data is reduced to 0.0037 of the initial number

of frames. The size of query exemplars is also reduced to 0.4 of the initial size. Hence, the search space

is reduce to 0.0015 or nearly 104-fold reduction. More concretely, the size of the AMI test set is 2500333
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Fig. 3. QbE-STD performance on AMI database using redundant hash addressing (RHA, Section III), pattern matching (PM,

Section IV) using the proposed Spearman structural similarity measure and the effective Cosine distance to measure posterior

similarity [21, 23], and the highly competitive baseline DTW [21, 22]. A single example is use per query for detection.

frames that is reduced to 9216 unique codes exploiting posterior hashing. It may be noted that the number

of unique codes obtained from phonological posteriors extracted for AMI corpus is only 0.0044 of the

total number of possible codes (2Q), where Q denotes the number of phonological classes that is 21 in

this study.

In the case of pattern matching, application of hashing reduces the search space of exemplars to 0.16

of the initial size. More concretely, the number of test frames is reduced by 0.4 and similarly, the number

of query frames is also reduced to an average 0.4 of the original size. Both RHA and pattern matching

can exploit binary pattern matching and it can be implemented efficiently through a look-up table of code

distances in an offline preparation.

In general, assuming N number of frames, the computational complexity of DTW is O(N2). The

proposed pattern matching has the complexity of O(N) where N is effectively reduced using the
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dewarping procedure. The computational complexity of the RHA is O(C) where C denotes the number

of unique binary codes. It may be noted that C depends on the pronunciation variations and it does

not grow with N due to the increasing number of similar pronunciations in growing size of the speech

archives.

VI. CONCLUSIONS

Speech representation in terms of posterior probabilities offers diverse benefits for speech classification

applications, in particular solutions relying on exemplar matching. Posterior representations are highly

structured and low-dimensional. We exploit this property in devising an effective hashing technique to

define data driven symbols or codes. Redundant hash addressing is applied on the posterior codes to enable

fast query search by detecting the matching codes. A fast query-by-example spoken term detection is

achieved where the search space is reduced by a factor of 104. The system is compared to the state-of-the

art pattern matching and dynamic time warping and outperforms these alternative slow solutions. The

unique codes encapsulate the structure of pronunciations and their number is expected to be confined

to a small number of permissible articulatory structures regardless of the growing size of the speech

databases. Hence, redundant hash addressing incorporating posterior hashing can lead to highly efficient

solutions for massively large scale query search. We plan to investigate language independent QbE-STD

development in future studies.
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