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Maya Codical Glyph Segmentation: A
Crowdsourcing Approach
Gulcan Can, Jean-Marc Odobez, Daniel Gatica-Perez

Abstract—This paper focuses on the curation of individual
Maya glyphs from three genuine codices by the help of the crowd.
More precisely, non-expert annotators are asked to segment
glyph-blocks into their constituent glyph entities (based on the
supervision provided by available variations of glyphs from
existing expert catalogs). Compared to object recognition in
natural images or medieval handwriting transcription tasks,
designing an engaging task and dealing with crowd behavior is
challenging in our case due to the inherently complex structure
of Maya writing and an incomplete understanding of the signs
and semantics in the existing catalogs. We elaborate on the
evolution of the crowdsourcing task design, and discuss the
choices for providing supervision during the task. We analyze
the variations of similarity scores, task difficulty scores, and
segmentation performance of the crowd. A unique dataset of
over 9K Maya glyphs from 276 categories individually segmented
from the three codices has been created and will be made publicly
available thanks to this process, along with baseline methods for
glyph classification using convolutional neural networks.

Index Terms—crowdsourcing, Maya glyph, segmentation

I. INTRODUCTION

Crowdsourcing is an active area in multimedia to generate
labels for images and videos [24], [4], [31], [34], [37].
Recently, several large-scale databases have been curated
via crowdsourcing and this allowed many advances in the
multimedia and computer vision fields. Tagging images, rec-
ognizing and marking object boundaries, describing scenes or
actions are several use-cases for image understanding tasks
that require large-scale collaboratively-collected datasets. Sim-
ilarly, advances in optical character recognition, handwriting
recognition, and historical document transcription are due
to the availability of large-scale datasets like MNIST [25],
IAM handwriting database [27] and IAM historical document
database [16], and many individual transcription projects, e.g.
the Transcriptorium project [18].

Transcription tasks from handwritten or printed documents
that come from different eras are studied commonly in the
digital humanities literature. The fundamental step for these
tasks is the generation of datasets that require digitization
of the documents, transcription, and correction of uncertain
situations and of human errors during transcription to finally
establish the ground truth for the data. Several projects in-
volved non-expert crowd workers in the different phases of this
process, such as scanning the documents, locating the regions
of interest, adding the digital entries of the data, verifying or
editing other contributors’ responses, etc.

In this paper, we describe the collaborative work of non-
experts to build a Maya codical glyph database by locating
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Fig. 1: Illustration of the segmentation of individual glyphs
out of a glyph-block.

the regions corresponding to individual glyphs within glyph-
blocks. The task is defined as marking the individual glyph
regions within glyph blocks given the set of variations of each
glyph sign contained in these blocks, which are obtained from
the existing Maya catalogs created by experts [39], [29]. This
task design was possible as the annotations of the glyphs and
the scanned images of the codices were previously produced
by experts.

A main challenge for obtaining a large-scale dataset via
crowdsourcing is finding and training a crowd for the specific
task. Many of the large-scale digitization/transcription projects
are voluntary, due to the lack of resources and vast amount of
documents. An alternative approach is to leverage crowdsourc-
ing platforms such as Amazon Mechanical Turk or Crowd-
flower. These two approaches differ in terms of motivation
and engagement of the annotators, the number of annotators
available and, in general, the amount of time needed to achieve
the annotation task. With paid crowdsourcing platforms, the
annotation period is generally shorter, as the crowd is gathered
by the platform, and the monetary motivation is the driving
force. Due to this, careful task design and annotator behavior
analysis are required.

From a task perspective, glyph segmentation (illustrated
in Fig. 1) is more challenging than labeling or segmenting
natural images. First of all, the crowd might have never been
exposed to any ancient writing system before, whereas humans
interact and learn about their surroundings from an early age
and have an intuition for object categories (even unseen ones)
based on the similarities to already known objects. Second,
the Maya language can be visually quite complex compared
to other ancient writings. For instance, Egyptian hieroglyphs
are usually in the form of well-separated glyphs. In Maya
writings, glyph boundaries are shared between neighbors, the
signs can exhibit many deformations, and some inner details
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are not always visible. Third, there are uncertainties about the
categories of some signs due to severe damage, incomplete
understanding of the changing shape of signs among different
eras and places, and unclear semantic relationships of non-
frequent signs.

The focus of this work is on producing individual glyph
shape data from the three original Maya Codices (Dresden,
Madrid, Paris) via online crowdsourcing. We present our
design of the crowdsourcing task, investigating the effects of
several features like the task definition, the use of different
classic catalogs (Thompson and Macri-Vail) as glyph pattern
models, and the relationship between the number of annota-
tors, the sample complexity, and the reliability of the generated
ground truth.

In summary, the contributions of this paper are five-fold:
1) design of a new crowd task;
2) assessment of the non-experts’ performance for glyph

recognition;
3) evaluation of closeness of the catalog samples to the

Codices signs;
4) construction of a new segmented 10K glyph dataset that

will be made publicly available. To our knowledge, this
will be the largest public database of glyphs.

5) baseline glyph classification task, using deep learning to
illustrate the challenges of the new dataset.

From our experiments, we observed that in spite of the glyph
complexity, two non-expert annotations are enough in the
majority of the cases to produce a consensual segmentation:
For around 85% of the glyph cases, two contributors agree on
the marked area more than 80%. We also observe that in the
later stages of the task, as the contributors get exposed to more
glyph data, the segmentation results improve. Additionally,
we show that the characteristics and the similarity of the
proposed glyph sign variants, and the level of the damage are
the confusing points for the contributors as expected.

The rest of the paper is organized in eight sections. Sec-
tion II briefly describes the Maya writing system. Section III
discusses the related work on crowdsourcing and its applica-
tions in multimedia, computer vision, and digital humanities.
Section IV describes the datasets used in our experiments. Sec-
tion V explains the design and evolution of our crowdsourcing
task. In Section VI, the details of the experimental procedure
are provided. In Section VII, the annotations are analyzed with
respect to key aspects in the pipeline. Section VIII presents the
baseline glyph classification results obtained on the produced
dataset. Finally, Section IX concludes the paper.

II. MAYA WRITING

The ancient Maya civilizations flourished from around 2000
BC to 1600 AD and left a great amount of cultural heritage
materials. These can be found in the shape of stone monument
inscriptions, folded codex pages, or ceramic items. The com-
mon ground of all these materials are the Mayan hieroglyphs,
in short glyphs, written on them. The Maya writing system is
visually complex, and new glyphs are discovered with almost
every new archaeological site study. This brings the necessity
of better digital preservation and storage systems as well as

Fig. 2: Selected Maya glyph samples from several categories
that illustrate the within-class variety (first two rows) and
between-class similarity (last row).

better visual and semantic analysis. Besides, the annotation of
some glyphs is still open to discussion between scholars due
to either visual differences or semantic analysis.

Some glyphs are damaged or have many variations due to
space limitations, artistic reasons, and the evolving nature of
language, i.e., differences with the era and place in which
glyphs were produced. Fig. 2 shows the variations of some
glyphs in the top two rows. On the other hand, the boxes in
the bottom row show inter-class visual differences that can be
quite subtle for some categories.

For experts to decipher a glyph as a specific sign, the sign
needs to have its “diagnostic part” visible or need to co-occur
with another known sign to complete the semantic meaning.
The expert knowledge about “diagnostic parts” and semantic
co-occurrence relations has accumulated over more than a
century of scholarly discussion and still continues with each
new monumental site finding.

One challenging part of our study is that there are only
three genuine codices today. Among these three codices, the
signs are generally consistent. However, since the codices
are from the post-classical era (950-1539 AD), the writing
may show both simplification and variation compared to the
examples found on monuments from earlier times. In terms
of preservation, the folded pages of glyphs also suffered from
the damage of time and external factors. Some codex pages
are found partially or completely deteriorated.

A typical codex page is composed of “t’ols”, which are
chapter-like units composed of icons, text, and calendric signs.
The text areas are composed of glyph-blocks structured as a
grid. In this paper, we focus only on decomposing the text
region, and more precisely, in segmenting individual glyphs
out of glyph-blocks. Note that in the three codices that we
study here, there is a maximum of six glyphs in a single
block. This point enables to envision to have this segmentation
task being achieved by non-experts with carefully-designed
support.

III. RELATED WORK

Crowdsourcing has found many applications in multimedia,
computer vision, and digital humanities. Below, we briefly list
several successful cases, before discussing the main challenges
related to the task design, and the annotation and annotator
reliability.
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Large-scale Crowdsourcing Tasks in Multimedia and Com-
puter Vision. Several widely-used benchmarks have been pro-
duced via crowdsourcing for recognition, detection, segmen-
tation, and attribute annotation tasks. We can list as example
Imagenet [35], Microsoft Common Objects in Context (MS
COCO) [26], SUN scene dataset [45], SUN attribute dataset
[33], or Caltech-USCD Birds-200 dataset (CUB-200-2011)
[43]. Thanks to these large-scale datasets collected by the
help of the crowd, more capable models were trained and
advancements became possible in multimedia and vision.

Crowd workers motivated by monetary rewards (as in
the case of commercial crowdsourcing platforms) as well
as volunteers (in the name of citizen science) were able to
generate adequate quality of content for generic object, scene,
and action recognition. There has been further crowd content
generation studies in sketch recognition [14] and even in
specialized areas such as biomedical imaging [20], [21], [23]
and astronomy (Galaxy Zoo and Zooniverse projects [17]).

Apart from content generation, crowdsourcing is also used
for preprocessing of data, validation of results, and providing
help for automatic algorithms. For semantic segmentation, ob-
ject localization and co-segmentation, the work in [9] showed
how crowd interaction helps to speed up segmentations out of
bounding boxes of objects. In [11], crowdsourcing helps with
clustering of the data.
Task Design. There have been studies discussing the cost-
effective design of crowdsourcing tasks, and the different
criteria needed to optimize cost or informativeness of the
results [41], [13]. Gottlieb et. al. discuss the key elements
in designing crowdtasks for satisfactory outcomes even for
relatively difficult tasks [19]. They emphasize the importance
of clear instructions, feedback mechanisms, and verification
by qualified annotators.

The typical crowdsourcing tasks follow an ”annotation-
correction-verification” scheme. However, it may be challeng-
ing to apply this scheme to segmentation tasks [6]. Especially,
in our case, the annotators may not be familiar with the
hieroglyphic signs or their perception of the shapes may differ
substantially, as the crowd has not been exposed to such visual
data as often as everyday life objects in natural images. In
order to guarantee satisfactory outcomes, the verification step
may require an expert.
Crowdsourcing in Digital Humanities. Crowdsourcing is also
adopted in Digital Humanities studies for several purposes.
Digitization and transcription of historical documents with the
help of the crowd is a widely-studied task. A well-known
application of this task is the “re-captcha” paradigm that
utilizes automated document analysis methods while keeping
human intelligence in the loop [42]. Several decades of the
New York Times’ archives have been digitized in this way.
In similar large-scale transcription tasks [10], [8], and in
archaeological research on a participatory web environment
[5], crowdsourcing enabled to bring valuable historical sources
to the digital era for better preservation of cultural heritage as
well as for further analysis.

In a preliminary work [7], we investigated the perception
of glyph shape by non-experts, e.g. whether they see closed
contours as a separate glyph, or how they combine visual

(a) (b)

(c) (d) (e)

Fig. 3: The top row shows a cropped glyph-block (B1 from
fifth page and second t’ol of the Dresden codex) and its
cleaned image. The bottom row shows the individual glyphs
in the block. These are produced by experts.

components, assessing it in a controlled setting. The crowd-
workers were asked to localize glyphs with bounding boxes
in 50 glyph-blocks collected from monuments. Two scenarios
were considered, either by providing the number of glyphs
within a block or not. Using Amazon Mechanical Turk as
platform, block-based and worker-based objective analyses
were performed to assess the difficulty of glyph-block content
and the performance of workers. The results suggested that a
crowdsourced approach could be feasible for glyph-blocks of
moderate degrees of complexity. In this paper, we significantly
go beyond our first attempt, by designing an entirely new task
that exploit catalog information, visual examples, and glyph
variants that guide non-experts to produce arbitrary shape
segmentations, and use it to segment over 10,000 individual
glyphs.

IV. DATASETS

The data in our work are the glyph-blocks from three Maya
Codices. To provide supervision to non-experts in our task,
we utilize the glyph signs from the Thompson and Macri-Vail
catalogs. The details of these datasets are given below.

A. Maya Codex Glyphs

Our sources are high-resolution images scanned from the
three existing genuine Codices (Dresden [3], Madrid [1],
and Paris [2]), cropped to smaller units (pages, t’ols, and
glyph-blocks), and annotated with metadata by our epigrapher
partners. The metadata of each glyph-block contains the name
of the codex, page number, t’ol number, reading order, and
relative location of the blocks in the t’ol (row and column
order, i.e., A1, B2, etc.). The metadata of each glyph within
each glyph-block contains its reading position in the block, its
sign code from various catalogs (Thompson [39], Macri-Vail
[29], Evrenov [15], and Zimmermann [47]), its phonetic value,
and its damage level. The latter ranges from 0 (undecipherable)
to 4 (high quality), and indicates how identifiable the glyph
is according to the expert. This is not decided only based on
visual degradation, but also based on the semantics and co-
occurrence with neighboring glyphs.
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TABLE I: The number of elements in the three codices.

# pages # blocks # glyphs
# glyphs with
annotation and
source image

DRE 72 2924 6932 6439
MAD 100 3254 7429 6910
PAR 18 774 1620 1373
ALL 190 6952 15981 14722

Table I summarizes the number of elements available from
the three Codices. Some pages of these Codices are highly-
damaged. Even though there are, respectively, 76, 112, and
22 (in total, 210) pages in our database, we only list the
number of pages that have at least one recognizable glyph
in Table I. Similarly, we have the records of 7047 glyph-
blocks in total, however only 6952 of them have at least one
recognizable glyph. In total, 14722 glyphs have known catalog
annotations with cropped glyph-block images. Note that the
experts have not provided the individual glyph images for all
these glyphs, as the segmentation of Codices into glyph-blocks
and individual glyphs with high quality is quite demanding
in terms of time and effort. The experts upscale and apply
some preprocessing (i.e. unsharpening, and binarization) to
block images with commercial tools, which requires manual
handling of each block or glyph element. Furthermore, de-
ciding annotations of glyphs for several catalogs, assigning
identifiability ranking, and providing spellings are quite time-
consuming. As the experts’ focus is on decipherment, only a
very small proportion of individual glyph segmentations has
been previously produced by experts [22] (see Fig. 3). At
the large scale, the experts provided only the cropped block
images (as in Fig. 3a) without binarization. Therefore, we
designed a crowdsourcing task for segmenting the individual
glyphs out of the blocks.

B. Catalog Signs

The documentation of Maya writing started during the
Spanish conquest of Yucatan in the XV Ith century. Bishop
Diego de Landa’s incomplete alphabet, in his book titled
“Relación de las cosas de Yucatán” [12], [40], was created
by asking two locals how to write Spanish characters in Maya
language [44]. Later on, for several centuries, few attempts
were made to understand Mayan writings. Evrenov’s [15] and
Thompson’s [39] sign catalogs became important sources, sug-
gesting syllabic readings rather than character correspondences
of the signs. For historical reasons, Thompson’s taxonomy
(main and affix syllabic signs) became more influential than
Evrenov’s, for several decades. With the advancement of the
understanding of the semantics of the signs, more modern
catalogs emerged [28], [29].

The Thompson catalog has three main categories: affix,
main, and portrait signs. Macri-Vail taxonomy has 13 main cat-
egories [29]. Six of them, i.e. animals, birds, body parts, hands,
human faces, and supernatural faces, are grouped semantically
(see Fig. 4b). There is a main category for numericals signs
that are composed of dots and bars (Fig. 4e). The rest are

(a)

(b)

(c) (d) (e)

Fig. 4: (a) Examples for affix, main, and portrait Thompson
categories. Last two rows illustrates examples for main Macri-
Vail categories: (b) semantic (animals, body parts, and faces);
(c) square (symmetric, asymmetric, and with irregular shapes);
(d) elongated (with 1, 2, and 3 components); and (e) numeric
categories.

(a) AMB

(b) T534 (c) T140 (d) T178

Fig. 5: (a) Variants of AMB category in Macri-Vail catalog;
(b-d) occurrences of these variants in 3 different categories in
the Thompson catalog.

grouped based on visual elements (square signs divided based
on symmetry, e.g. Fig. 4c, and elongated signs divided based
on the number of components, e.g. Fig. 4d).

Since Thompson’s catalog was highly adopted for a long
time and Macri-Vail’s catalog has a modern taxonomy with
a focus on Codices signs, we use these two resources. The
fundamental difference between them is the emphasis given
to visual appearance and to semantics. Thompson is known to
categorize the glyphs with respect to similarity based on hand-
prepared graphic cards. Macri-Vail consider co-occurrences of
the signs and modern knowledge of the semantics and usage
of some signs rather than visual cues only. This leads to a
higher visual within-class dissimilarity of Macri-Vail signs.
For instance, the variants in the AMB category (Fig. 5a) are
spread over three Thompson categories (T534 main sign, T140
and T178 affix signs, see Fig. 5b-5d).

The individual glyph variants that we used in our work were
obtained through manual segmentation of high-quality scanned
pages of these two catalogs by our team members. As some of
the numeric signs were missing in these catalogs, we manually
generated them by combination of dots and lines from existing
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Fig. 6: An articulated hand sign (T670) from Thompson
catalog and an instance of it from Paris codex.

number signs.
Utilizing these variants in a crowdsourcing task has not been

previously attempted. Gathering crowd-generated assessments
of the similarity of glyph variants to codex glyph samples
is quite valuable in terms of eliminating one-man errors and
providing finer-grained class information.

V. CROWDSOURCING TASK

Automatic glyph recognition starts with obtaining seg-
mented, cleaned, and binarized glyph data. However, this
is a tedious process consuming time for epigraphers. We
have investigated whether the first part of this preprocessing
task (glyph segmentation) can be crowdsourced. In our work,
non-experts were asked to segment individual glyphs from
the original glyph-block sources. Our experimental design
evolved over three stages (preliminary, small, large). In the
preliminary stage, we segmented few glyphs (27 from 10
blocks) with two different task designs. This stage helped to
finalize the task design. The small stage consists of segmenting
glyphs that have grountruth. This stage helped to judge which
catalog was more helpful to non-experts in our task. As the
large stage, we conducted the segmentation task for over 10K
glyphs.

In our early experiments (preliminary- and small-scale), we
utilized a subset of these glyphs (from 322 blocks) which have
ground truth masks produced by experts [22]. We randomly
picked 10 blocks for preliminary experiments for finalizing
task design (see Section V-C). Overall, we have collected
segmentations for 10949 glyphs (823 in the small-scale and
10126 in the large-scale job). These glyphs come from 4894
blocks and are distributed over 287 Macri-Vail categories.

In this section, we explain the process that led to the design
of the final task. First, we describe the requirements, and
present the platform used for experiments. We then discuss
the early experience on the task design. We finally describe
the definite version of the task.

A. Requirements

Given the annotations in the glyph-blocks (provided by
epigraphy experts), and the example sign variants (taken from
the catalogs), we expect the crowd to segment each individual
sign in a block. As Maya glyphs can be found in articulated
forms, i.e. hand signs (see Fig. 6), cropping glyph regions
via bounding box may end up with inclusion of some parts
from the neighbor glyphs. Therefore, for better localization,
we designed the segmentation process to be done as a free-
polygon rather than a bounding box.

To guide the process, we show the contributors the different
variants of the sign to be segmented. As validation informa-
tion, we would like to know the sign variant that the annotator

chose as template to segment each glyph, and how similar the
person found the chosen variant to the marked region. This
can be used to verify the expert annotations and detect any
outliers, where none of the provided sign variants match the
block content. To account for this, we propose a ”None” option
along with the existing sign variants.

Another point to analyze is the perception of damage by
the non-experts. Even though experts have provided a damage
score for each glyph, this score shows how decipherable the
glyph is, and so it is affected by the glyph co-occurrence and
semantics. Non-expert perception of damage depends solely
on visual appearance of the glyphs. This helps to obtain a
damage score that is not affected by prior expert knowledge.
It can also be used as a hint to assess the task difficulty.

The difficulty of our task is not uniform across the different
glyph categories. According to the visual similarity to the
variants and the damage ratio of the glyph, the task can be
ambiguous and hard. To assess this, we ask the workers to
provide a score for the task difficulty.

B. Platform
Terminology. We utilized the Crowdflower (CF) platform for
our experiments. In the CF terminology, a job refers to the
whole annotation process. An annotation unit is called task. A
page is a set of unit tasks that a contributor needs to complete
to get paid. Nt denotes the number of tasks in a page. The
number of judgments per task Nj corresponds to the number
of workers to annotate a single task. Workers in CF are called
contributors. There are three levels of contributors. The level
of a contributor is based on the expertise and performance in
previous tasks.

To set up a job, a job owner must first define the set of data
to be annotated. Then, s/he designs the task by specifying the
queries that the contributors are asked to complete. The queries
in the task can vary from simple text input to performing
image annotations. After the task design is finalized, the job
owner can curate test questions (TQ) to enable quiz mode in
the job to ensure the quality of the results. Test questions
are prepared by the job owner by listing acceptable answers
for each query in the task. In the case where the contributor
gives an answer out of the acceptable answers, the contributor
fails the test question. For the image annotation query, the job
owner provides a ground truth polygon over the image and sets
a minimum acceptable intersection-over-union (IU) threshold.
IU measure between segment S and ground truth G is defined
as follows:

IU =
|S ∩G|
|S ∪G|

(1)

If a contributor marks a region that overlaps with the ground
truth region below the IU threshold, the contributor fails the
test question, and cannot take on more tasks in the job. To
activate the quiz mode, the job owner has to provide a certain
percentage of the actual data as test questions. Contributors
have to pass one page of the task in quiz mode before being
admitted to the work mode, in which they work on the actual
set of questions (AQ) and get paid. There is also a test
question on each page in work mode. This check is effective
to eliminate random responses.
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The platform also provides other quality control checks. Job
owners can set the minimum time to be spent on the task, the
minimum accuracy that a contributor needs to achieve, and the
maximum number of tasks that can be annotated by a single
contributor.

After creating the answers for the test questions and fixing
the job settings, the job owner launches the job, and can
monitor the progress of the crowd workers.
Channels. CF has its own subscribers and is referred to as the
Crowdflower-elite (CF-elite) channel. Apart from that, workers
from other crowdsourcing platforms (also called channels)
can also link their accounts and work on available CF jobs.
This allows crowd diversity in the platform. These external
platforms can be large-scale with global subscribers such as
ClixSense, or can be medium- or small-scale with a focused
crowd in particular countries. The choice of platforms is given
to the job owner.
Platform limitations. One reason for utilizing CF is the
unavailability of Amazon Mechanical Turk out of USA due
to current regulations. Another reason is the readily available
image annotation tool. Unfortunately, this tool does not sup-
port any validation checks. This was an important issue in our
task design: The lack of controls on the number of polygons
drawn in the pane or the minimum/maximum areas in pixels
can be spam-prone if results are not monitored.

C. Design Experiences

We conducted 4 preliminary experiments before deciding
the final task design and settings. The different settings are
given in Table II, and discussed below.
Block-based design vs. glyph-based design. In the first two ex-
periments, the initial design (shown in Fig. 7) aimed to collect
all glyph segmentations of a glyph-block in the same task (one
glyph after another in separate drawing panels). This initial
design was confusing. Some workers marked all the glyph
regions in the first drawing pane, instead of drawing them
separately. Another source of confusion was the order of the
glyphs. Learning from this, we simplified the task as individual
glyph drawing. As a result, the average f-measure between the
convex hull of a crowd-generated segmentation and the ground
truth improved by more than 10% (see Table II), when moving
from multi glyph annotations (75.2% and 79.5%) to the single
glyph case (89.7% and 92%). More specifically, the f-measure
of segment S and ground truth G is defined based on precision
p and recall r as follows:

f = 2 ∗ p ∗ r
p+ r

as p =
|S ∩G|
|S|

and r =
|S ∩G|
|G|

(2)

Number of glyph variants. We limited the number of glyph
variants of each individual glyph shown to the contributors
to keep them focused on the segmentation task. At first, we
experimented with a maximum of three variants chosen a priori
by visual clustering (12% of the signs in the Thompson catalog
had more than 3 variants). After empirically verifying that in-
creasing the number of provided variants did not hinder worker
performance overall and gave them more visual cues about the

possible variations, we choose to provide a maximum of six
variants (if available).
Design of feedback part. In the initial design, we asked
contributors about damage level as well as wrong or missing
annotations. This part was often omitted by the workers. From
this experience, we only kept the most direct rating factors
(damage, task difficulty). We also included a text box for
optional comments. Received comments included points about
rotations of the glyph variants, uncertainty about the damage
rating, confusion about the variant choice when several vari-
ants shared similarities with the target glyph. Based on these
comments, we improved the instructions.
Crowd expertise, number of tasks per page, and payment.
In the first experiment, we allowed contributors with medium-
and high-level of expertise and set the payment per page as
$0.15. We hypothesized that 10 tasks per page were too many
considering the payment. We observed that only medium-level
contributors took the job and only 60.9% of the glyph segmen-
tations were saved with an average f-measure of 75.2%. In the
second experiment, we decreased Nt to 2, set the payment per
page to $0.30, and only allowed expert contributors (level-3).
This resulted in 79.9% saved segmentation with average f-
measure of 79.5%. Considering that there are three glyphs in
glyph-blocks in average, we set the payment as $0.10 for the
last two glyph-based experiments to maintain payment/time
ratio. Together with the simplified design and introduction
of test questions, this payment and level of expertise setting
brought the saved segmentation ratio very close to 100%
(97.3% for the third experiment and 100% for the fourth one)
with an average f-measure of around 90%.
Number of judgments. In the first experiment, we started
with 10 judgment per task (Nj = 10). Based on the first
experiment, we decided to collect less number of judgments
with higher quality. Therefore, we decreased Nj to 5 in the
next experiments, and improved the level of expertise and
payment settings as explained above.
Crowdflower-elite channel vs. other channels. We experi-
mented with the crowd from different channels (CF-elite chan-
nel compared to other channels) in the last two experiments.
However, with the simplified individual glyph-based design,
and with the level-3 contributors, we did not experience a
significant difference in the segmentation scores from these
separate channels (89.7% vs. 92%, see Table II).

D. Final Task

1) Overview: Based on the outcome of the preliminary
experiments, we designed the final task as follows. It com-
prised two parts. In the first one, based on the shown variants,
contributors were asked to segment (draw a tight free-hand
polygon around) a similar region in the glyph-block. In the
second part, contributors were asked to indicate which variant
they used as template to do the segmentation, and rate how
similar it was to the segmented region, how damaged the glyph
region is, and how easy it was to complete the task. These
ratings are designed on a scale of 5.

2) Training: We provided a detailed description of the
tasks, a how-to Youtube video, and positive/negative example
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TABLE II: Preliminary phase segmentation results using variants of Thompson catalog.

Exp. Catalog
Variants

Block-based
or

glyph-based?

# Judgments
per task

(Nj)

# Tasks
in a page

(Nt)

Payment
per page

($)

Min level of
contributors

Allowed
Channels

Average
f-measure

(%)
1 T Block-based 10 10 0.15 Medium All 75.2
2 T Block-based 5 2 0.30 High All 79.5
3 T Glyph-based 5 2 0.10 High All except CF-elite 89.7
4 T Glyph-based 5 2 0.10 High CF-elite 92.0

Fig. 7: Initial block-based task design (illustrating only the
first glyph in the block for sake of brevity).

segmentation images, example of damage levels, and explained
that segmentation quality would be checked.

3) Drawing: We used the image annotation instance tool in
Crowdflower for free polygon drawing over the glyph-block
images. This tool allows correction, and multiple polygons,
which is useful for glyph repetition cases.

Fig. 8: Final task design.

4) Evaluation: We selected the quiz mode for the jobs:
we provided tasks with known answers (ground truth poly-
gons) and a quality threshold on intersection-over-union (IU)
measure (see Section V-B) to filter out spammers and ensure
quality.

VI. EXPERIMENTAL PROTOCOL

Given the decisions made on the interface during the pre-
liminary stage, we first conduct the small-scale stage over the
glyphs which have ground truth, and then we run the large-
scale stage. This section explains the settings of these two
stages briefly.

A. Small-scale stage

In this stage, we run two experiments whose parameters are
summarized in Table III. For the 823 individual glyphs (322
blocks) that have expert ground truth masks, we set up the task
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TABLE III: Experimental settings for the small-scale and
large-scale stages.

Exp. Cat.
Var.

# Judg.
per
task
(Nj)

# Tasks
per

page
(Nt)

Pay.
per

page
($)

# pages IU
th.

S-1 T 5 2 0.10 338 0.7
S-2 MV 5 2 0.10 344 0.7
L-1 MV 2 4 0.16 1670 0.7
L-2 MV 2 4 0.16 1732 0.8

with 1) Thompson (T), and 2) Macri-Vail (MV) references of
the glyphs. In other words, in the task design, we display the
glyph variants either from the Thompson or the Macri-Vail
catalog.

In both cases, the number of judgments Nj is set to 5. The
minimum acceptable IU score is set to 0.7. The minimum
time to be spent on a page is set as 30 seconds. The maximum
number of judgments by a single contributor is set as 12. As a
result, a single contributor annotated 5 glyphs from the actual
target set and also answered 7 test questions.

B. Large-scale stage

In this stage, we define the job for all annotated glyphs
for which no expert segmentation is available. To reduce the
annotation cost and having confirmed that in general most
of the glyphs had a high segmentation consensus (see small-
scale stage analysis in Section VII-A), we decided to collect
only two judgments per glyph, and collect more only if
disagreement was detected. In order to reduce the latter, we
decided to exclude the following glyphs from the annotation:

• too damaged glyphs according to the damage scores from
the expert and visual post-inspection of a team member,

• repetition cases (multiple instances of the same glyph in
the block),

• infix cases (two separate glyphs merged by modern
decipherment for semantic reasons).

As a result, we obtained 10126 glyphs (out of 14722 glyphs
from the available segmented glyph-block images).

For this stage, we only relied on the Macri-Vail catalog
which is a more modern resource in epigraphy.

We set the minimum IU threshold to 0.7 for the first
half of the glyphs (5K glyphs) and 0.8 for the rest. This
threshold ensures that the contributors do a good job on the
test questions (their segmentation matches with the provided
ground truth), and presumably on the actual questions so
that high consensus on the collected segmentations for each
glyph can be obtained. We observed that we need contributors
with higher performance, as we depend on the segmentations
coming from only two contributors per glyph in this setting.
That is why we increased the min IU threshold for the second
half of the glyphs. The minimum time spent on the task was
set as 30 seconds. The maximum number of judgments by a
single contributor was set as 48.

C. Segmentation Evaluation Procedure

Evaluation is performed by comparing the ground truth
of the glyphs with the crowd segmentations for the small-
scale stage. This is detailed in Section VII-A. For the large-
scale stage, we compare the segmentations of the contributors
against each other. We also checked the problematic cases
in which the f-measure agreement is less than 0.8 among
contributors as an internal task in Crowdflower platform.

VII. ANNOTATION ANALYSIS

In this section, the crowd annotations for small-scale and
large-scale stages are presented in terms of the analysis of
ratings and segmentations.

A. Small-Scale Stage

As described in Section VI-A, we conducted two exper-
iments in small-scale stage: 1) with Thompson (T), and 2)
with Macri-Vail (MV) references of the glyphs. We analyze
the annotations from these experiments in four aspects: variant
selection, damage rating, segmentation analysis, and sensitivity
to the number of annotators.

1) Variant Selection: We compare the agreement for the
variant selection in the two experiments. First, note that the
MV catalog contains the glyph variants from both codices and
monuments, whereas the variants in the Thompson catalog
come only from monuments. Typically, monumental glyphs
have more details and are visually more complex than codical
glyphs. In this sense, the variants from the Thompson catalog
are in general more different from the codices glyphs than the
MV variants.

The final variant for each glyph is selected by majority
voting among the contributors’ responses. Fig. 9a shows the
percentage of contributors that selected the most-voted variant
for the experiments with the Thompson (blue) and Macri-
Vail (yellow) variants. We observe that all of the contributors
agreed on a variant for 67.22% of the glyphs when the MV
variants (yellow) were shown (61.22% for the T case).

Fig. 9b shows the histogram of the number of variants
for the annotated glyph categories. The median values are 2
and 4 for T (blue) and MV (yellow) variants, respectively.
Even though there were, in general, more number of variants
available, full agreement was higher for the MV case.

A related result is illustrated in Fig. 9c. The contributors
gave higher ratings of visual similarity of the chosen variant
to their marked glyph region to MV variants. The mean of the
average similarity ratings obtained with T variants is 2.46 (in
the scale of 5), whereas this value is 2.98 with MV variants
case.

Moreover, the contributors found the task harder in the case
of T variants (Fig. 9d). The mean of the average difficulty
ratings obtained with T variants is 3.37 (in the scale of
5), whereas this value is 2.44 with MV variants case. We
also applied Kolmogorov-Smirnov non-parametric hypothesis
testing [30] to compare cumulative distributions of difficulty
and similarity ratings obtained with the T and MV variants.
For both tests, the null hypotheses, that the average T rating
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(a) (b)

(c) (d)

Fig. 9: The distributions of average ratings in the small-scale
stage with Thompson (blue) and Macri-Vail variants (yellow).

samples and MV rating samples come from the same distri-
bution, are rejected at 0.01 significance level with p values of
1.2883x10−118 and 2.9343x10−16 respectively.

Overall, we observed that MV-variant tasks are rated easier,
and reach higher consensus rates for the chosen variant than
the T-variant cases.

2) Damage Rating: The average damage ratings (range of
1 to 5) from the crowd and the damage rating assigned by the
experts are considerably different. For the experts, more than
90% of the glyphs in this set were easily recognizable (5 in
the range of 1 to 5). However, the damage perception of the
non-experts was focused around the middle of the scale. For
around 64% of the glyphs, the contributors selected “moderate-
damage” (3 in the range of 1 to 5) for both T and MV cases.
This can be interpreted as the raw block crops are visually
noisy in most of the cases, even though for the experts the
glyphs are in good conditions to be identified.

3) Segmentation Analysis: For each glyph, an aggregated
mask is generated from the crowd segmentation masks such
that at least half of the contributors (i.e. at least 3) marked an
image point as belonging to the glyph region as illustrated in
Fig. 10.

The evaluation is performed by comparing (1) the aggre-
gated segment against the binary ground truth (S vs. GT),
(2) the aggregated segment against the convex hull of the
binary ground truth (S vs. GT-CH), and (3) the convex hull of
the aggregated segment against the convex hull of the ground
truth (S-CH vs. GT-CH). Results are shown in Table IV. We
observed that most of the contributors mark the glyph regions
without going into fine contour details, as it can be quite
time-consuming. This is acceptable, as the main interest is
in the regions with the target glyph rather than very detailed
markings. Therefore, we decided to use convex hulls for
further evaluation in Figs 11-12b.

Table IV summarizes the comparative segmentation perfor-
mance with the help of the variants from the two catalogs.
It is observed that the MV variants helped to bring out

(a) (b) (c)

Fig. 10: a) The convex hull of the ground truth (red), b) the
gray-scale image of the aggregated segmentations, and c) the
final aggregated segmentation for the glyph in Fig. 3e.

(a) (b)

Fig. 11: a) The f-measure distributions of the segmentations
(against ground truth) in actual question set (AQ, blue) and
test question set (TQ, orange) with the MV variants in the
small-scale experiment. b) The mean f-measure agreements
for the glyphs in large-scale experiment.

TABLE IV: Average f-measure values of aggregated segmen-
tations obtained with Thompson and Macri-Vail variants in
small-scale stage.

Catalog
Variants Set S vs. GT

(%)
S vs. GT-CH

(%)
S-CH vs.

GT-CH (%)
T TQ 65.7 94.5 96.6

MV TQ 65.5 95.1 97.3
T AQ 59.1 85.1 87.5

MV AQ 59.9 86.4 88.6
T All 60.2 86.6 89.0

MV All 60.8 87.7 89.9

marginally better aggregated segmentations. The table also
reports the mean scores when we consider the glyphs used
as test questions (TQ) and actual questions (AQ) as separate
sets. The f-measure distributions of TQ and AQ sets in the
MV variants cases are plotted in Fig. 11 (the T variants case
has similar distributions). We observe that the majority of
the glyphs are well-segmented. As we manually chose the
test questions to be relatively easy to annotate, we observe
a relatively higher mean f-measure for TQ sets than for AQ
sets.

Fig. 12 illustrates the boxplots of the sorted average f-score
values of 122 non-numerical MV classes (left for S vs. GT,
and right for S-CH vs. GT-CH comparison). While most of the
classes are well-segmented, few of them have low average f-
measure (5 classes have an average f-measure less than 40%).
We observe that these classes are visually more complex and
composed of several parts that might not have been marked
by the contributors. When using the convex hull comparison,
only first ten classes have an average f-score less than 70%.
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(a) S vs. GT (b) S-CH vs. GT-CH

Fig. 12: Sorted average f-measure of aggregated segmentations for the unique glyph categories in the small-scale stage.

Fig. 13: Mean f-measure values of the aggregated masks
obtained using 5 (blue), 3 (pink), 2 (yellow) segmentations,
and 2 segmentations that have at least 0.8 f-measure agreement
(green) per glyph with MV variants.

4) Sensitivity to The Number of Annotators: We simulated
the performance for the case of fewer annotators. Fig. 13
shows the average f-measure values for the aggregated masks
with different number of segmentations. We aggregated a max-
imum of 10 combinations of randomly selected segmentations,
and took the mean f-score of these aggregated masks for each
glyph. Obtaining aggregated masks with 3 segmentations (MV-
3) rather than 5 (MV-5) resulted in a marginal decrease in the
average f-score (blue to pink bars).

Furthermore, we analyzed the intersection of two segmen-
tations either for the randomly selected ones (MV-2 yellow
bars) or in the case of above 0.8 f-measure agreement (MV-
2 green bars). In the latter case, we obtained very similar
average f-score results to the ones with 3-segmentations.
Besides, the standard deviation of the f-measures obtained
with randomly sampled 2-annotations are below 10% and
are usually acceptable. These observations motivated us to
perform the large-scale stage with two annotations per glyph.

5) Conclusion: 368 and 397 unique contributors partic-
ipated to the small-scale stage for the T-variant and MV-
variant cases respectively. The corresponding average number
of glyph annotations per contributor were 7.3 and 8.9 (median,
min and max values were 5, 1, and 24 for the T-variant
case, and 6, 1, and 29 for the MV-variant case respectively).
This evaluation shows that the defined task is simple enough
for a non-expert crowd to produce satisfactory results. Even
though the contributors may get confused and segment parts
of other glyphs which look more similar to the variants than
the target region, overall the performance of the contributors
was encouraging to proceed with the large-scale stage.

B. Large-Scale Stage

Here, we analyze the results observed during large-scale
stage. We obtained 21907 annotations containing 20982 saved
segmentations.

1) Glyph Variant Selection: Fig. 14a shows that the first
variant was chosen in 73.2% of the annotations. This is not
surprising as usually the two first variants in the Macri-
Vail catalog are instances directly taken from the codices,
and the others are line drawings of generally more complex
monumental glyphs taken from the Macri-Looper catalog [28].
In 7.7% of these annotations, “none of the variants” option was
chosen.

Moreover, for 23.2% of the annotations, the contributors
found that the chosen variant looked different or very different
than the glyph they had segmented. On the other hand, only
10.5% of the annotations are marked as “very similar.” This
has to be investigated further, but the reason behind it may
be the tendency of the crowd to be conservative or unsure
about the visual similarity scale, or indeed due to the visual
differences of the glyph regions and the variants.

2) Task Difficulty and Glyph Damage: For the damage
ratings, we notice that the general tendency of the contributors
(41.9% of the annotations) is to give average score. However,
we remark that there are still cases marked as “damaged”
or “very damaged” by the non-expert crowd (30.6%), even
though we provided glyph cases that are identifiable and in
good condition according to the experts. We believe that the
crowd gives relative ratings in the full-scale according to the
examples they have previously seen.

In terms of task difficulty, only 16.9% of the annotations
have “hard” or “very hard’ ratings. This is a positive feedback
from the crowd about the perception of the task complexity.

3) Segmentation Analysis: Fig. 11b shows overall f-
measure agreement distribution for the large-scale set.
Verification. For the cases with more than 0.8 f-measure
agreement, we have cropped the bounding boxes of the
segmentations and scrolled through them to spot problematic
cases for each sign category. There were much less problems
in such cases (318 out of 8229 glyphs) in which both the
contributors marked another region as the glyph area or
are confused due to category annotation problems. Among
these cases, we re-assigned the segmentations that correspond
to neighboring glyphs, and used them while obtaining the
aggregated mask. We, visually, checked the segmentations of
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(a) The percentage of the most
voted variant. (b) Similarity ratings.

(c) Damage ratings. (d) Difficulty ratings.

Fig. 14: Distributions of the ratings in the large-scale stage.

1921 glyphs that have less than 0.8 f-measure agreement, and
marked the segmentation that matches the target region.
Minimum IU Threshold. As described in Section VI-B, for the
first half of the glyphs in the large-scale stage, the minimum
intersection-over-union measure between the annotator’s seg-
mentation and the indicated segmentation of the test questions
was set to 0.7. This threshold is increased to 0.8 for the rest of
the glyphs. With this more strict threshold, we observed a 3.8%
increase in average median f-measure agreement (from 90.2%
to 94.0%) and a 5.7% increase in average mean f-measure
agreement (from 82.1% to 87.7%).
Challenging Cases. Clearly, the difficulty of our task is not
uniform across the glyph instances. Fig. 15 illustrates some of
the cases with high disagreement between segmentations. The
main reasons for high disagreement are:

• Glyph complexity: Glyphs with a large convex area are
easier to segment than concave and discontinuous glyphs,
i.e. with many separate parts. For instance, in Fig. 15c,
one contributor selected a concave large glyph (green)
somehow resembling the first variant instead of the red
target region.

• Confusion from the variants: Some variants are a subset
or superset of others (i.e., 2S2), as shown in Fig. 15b.

• Dissimilarity between the target region and the variants:
We identify three subcases.
- Target sample not covered by catalog variants. We
noticed that some glyph instances from eight MV classes
do not look similar to any of the available variants. For
instance, in Fig. 15d, the target region is missed by
all contributors and the neighbor glyphs were marked
instead.
- Partial dissimilarity of the glyph. Some glyph instances
may exhibit different partial elements from the category
variants (Fig. 15b) and this may confuse non-experts.
- Wrong class annotation. Considering the tedious process
of labeling a glyph with the codes from several catalogs,

(a) (b)

(c) (d)

Fig. 15: Confused segmentations from the large-scale stage
due to (a) similar glyphs in the block, and damaged instances,
(b-c) visually-confusing variants, (d) visually dissimilar glyph
instances.

manual mislabeling is inevitable. We were able to identify
few such cases.

• Mismatch of the damage rating between expert and non-
expert views. This may be explained in terms of recogni-
tion of the glyph within context vs. visual completeness.
For instance, in Fig. 15a, none of the contributors marked
the target region, as the target region is either damaged
or lacks partial details.

• Similarity of the other glyphs in the block. The red
segmentation in Fig. 15a exemplifies this case, even
though the target glyph belongs to class AA1, not HE6,
the outline of the neighboring glyph is quite similar to
the target region, and the visual difference is subtle.

4) Conclusion.: 328 unique contributors participated to the
large-scale stage. The average number of glyph annotations per
contributor was 66.8 (median, min and max values were 33,
2, and 432 respectively). This stage illustrates the feasibility
of obtaining satisfactory outcomes even in the case of two
non-experts and with minimal manual verification. Overall,
we obtained valid segments for 9175 glyphs (together with
the ones from the small-scale stage) that are spread over 276
MV categories. We used the aggregated valid segments in the
classification task that is described in the next section.

VIII. BASELINE CLASSIFICATION EXPERIMENTS

We now illustrate how our dataset can be used in glyph
classification using standard methods.

Razavian et. al. report that the penultimate fully-connected
layer activations from a pre-trained convolutional neural net-
work (CNN) are competitive with the problem-specific state-
of-the-art approaches in several computer vision tasks [36].
Furthermore, the mid-layer activations have been shown to
be more generic than the last-layer activations in a transfer
learning setting [46]. Therefore, to obtain a baseline perfor-
mance for the new glyph dataset, we conducted classification
experiments on the mid-layer activations from a pre-trained
deep network.
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A. Data Preparation

Note that our intent is in defining and illustrating a baseline
method that highlights challenges and possible classification
tasks. For assesing the difficulty of our dataset, we experi-
mented with different number of classes. We considered the
glyphs with at least one valid segmentation. We have 10
classes with more than 200 such glyphs, whereas 47 classes
have just one such glyph. To handle the data imbalance
problem, in each experiment, we randomly picked an equal
number of glyphs from each class, and we repeated this 5-
times. Then, we divided each set of glyphs to training (60%),
validation (20%), and test sets (20%). We report the average
accuracies among 5-folds in Section VIII-C.

For each glyph, to obtain a square crop centered on the
aggregated binary mask, we applied the following steps.

- Dilation. We buffered the aggregated mask via dilation in
case of segmentation not covering all boundary pixels. We set
the dilation amount dynamically as 1/32 of the long edge size
of the bounding box.

- Color filling. We sampled 3 red-green-blue (RGB) col-
ors from background areas of the codices. Additionally, we
computed a dynamic RGB value from each block image as
0.65 ∗ thresholdOtsu [32]. In the need of padding, we filled
the areas with these RGB values. Note that this quadruples
the number of samples per class.

- Padding. For convenience during convolution, we applied
padding around all the edges for 1/6 of the long edge size of
the buffered aggregated mask. Then we padded the short edge
to make the final crop square-sized.

- Scaling. We scaled all processed square crops to 128x128
pixels. Note that the testing image size may differ from the
training image size in VGG-net, since testing images are
forwarded through only convolutional layers.

B. Methodology

We forward the preprocessed glyph segmentations in the
pre-trained VGG-16 network [38] and extract conv5 (last
convolutional layer) features. We trained a fully-connected
shallow network (two layers) from these features to perform
classification.

C. Results

Table V shows the average accuracies among 5-fold ex-
periments with different number of classes. As the number
of classes increases and the number of samples per class de-
creases, the classification problem becomes more challenging.
With 200 glyphs per class in the 10-class experiment, we
obtained 87% average accuracy. For the 150-class case, we
obtained 20.9% accuracy (random baseline would be 0.66%).
These results both show the complexity of the data set and
encourage further transfer learning experiments with deep
features even in the case of small amount of target data.

IX. CONCLUSION

In this work, we achieved the segmentation of Maya glyphs
from three genuine codices (Dresden, Madrid, and Paris) with
the help of the crowd. The main conclusions are the following:

TABLE V: Average accuracies for classification experiments.

# of classes
(# of glyphs per class)

Avg.
Acc.

10
(200)

25
(100)

30
(80)

50
(48)

100
(20)

150
(5)

Train 99.9 97.8 95.8 81.5 41.7 52.4
Val. 86.2 80.3 77.0 65.4 38.6 21.8
Test 87.0 79.4 76.8 62.4 36.2 20.9

• Task design. As the data target does not come from
everyday-objects, guiding non-experts is essential to ob-
tain a satisfactory outcome. From our experience with the
task design in the preliminary stage, we observed that
simpler and focused task design (to segment individual
glyphs rather than all glyphs in a block) and clear
instructions are indispensible.

• Catalog choice. From the small-scale stage, we con-
cluded that the variants from the MV catalog matched
a higher percentage of the glyph instances compared to
the variants from the T catalog. This enabled the non-
experts to reach a higher consensus on the “closest-
looking” variant, and obtain higher average f-measure.
Furthermore, we observed that the crowd found the task
easier with MV variants. These results were expected as
monumental glyphs were the main source of Thompson
catalog variants. Even though Thompson catalog has
more number of variants per glyph, they fail to span the
codical version of the glyphs, which became a strong
point of MV catalog in our work.

• Non-expert behavior analysis. We pointed out the main
challenges that the crowd faced during the task, such as
visual within-class dissimilarities or between-class simi-
larities, and effect of damage. These challenges affect the
segmentation outcome. However, they are inherent from
the nature of the data. That is why our work needed a
careful task design, and multi-stage analysis (preliminary,
small- and large-scale).

• Maya codical glyph corpus. We gathered over 9K
individual glyphs corpus from the three genuine Maya
codices along with the corresponding metadata, such as
similarity rating of the instances to the MV variants. The
dataset will be made publicly available.

• Baseline classification. We presented baseline results
for classification tasks on the new dataset. These results
illustrate that the new dataset is challenging, and yet the
transfer learning methods with deep neural networks are
promising to explore even on this challenging dataset.
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