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Abstract

The SNR spectrum was previously introduced as a natural consequence of using cepstral normalisa-
tion in speech recognition; it is closely related to the articulation index of Fletcher. Motivated initially
by a theoretical difficulty in frequency warping, the SNR spectrum is combined with a cochlear model,
yielding a theoretically sound yet simple noise robust feature. Two time-domain cochlear model imple-
mentations, representing different recursive approximations, are compared. The combination of SNR
spectrum, cochlear model, perceptual linear prediction and cepstral normalisation leads to an intuitive,
efficient and effective feature that is mostly physiologically plausible.

Index Terms: cochlear model, SNR spectrum, gamma-tone filter.

1 Introduction

If automatic speech recognition is deployed in a noisy environment, it is well known that the implemen-
tation must explicitly take account of the background noise in order to prevent poor performance. Many
techniques exist in the literature to enable this; the simplest is arguably the spectral subtraction of Boll
[1]. The state of the art in noise robustness is probably in the body of literature derived from the vector
Taylor series approach [2], or the deep learning approaches that are currently popular [3]. It is not the
goal of this work to compete with such highly parametric approaches. Rather, we seek scientific insights
into the way the human auditory system may achieve noise robustness, in the hope that this may in turn
prescribe the “right” way to build components for such state of the art speech recognition systems.

The SNR spectrum [4, 5] was motivated by the fact that the robustness afforded by basic cepstral
normalisation [6, 7, 8] is very difficult to improve upon in practice. Garner [4] showed that the use
of cepstral mean normalisation (CMN) is equivalent to presenting a term of the form log(1 + SNR) to
the speech recognition decoder. Further, calculating this term from the outset rather than relying on
CMN to produce it leads to theoretical and practical advantages. It was further demonstrated [5] that
the SNR spectrum is particularly suited to linear prediction (in its perceptual form [9]), especially when
combined with cepstral variance normalisation (CVN). The SNR cepstrum turns out to be very closely
related (identical subject to linear transform) to the articulation index (AI) described by Allen [10, 11],
who was also involved in its first use in a speech recognition context [12].

The SNR spectrum was defined in discrete Fourier transform (DFT) space. This was motivated in
part because, under an additive Gaussian model, DFT outputs can be assumed to follow (complex) Gaus-
sian distributions. This in turn makes the SNR derivation quite rigorous [4]. In practice, however, the
SNR calculation is always followed by a frequency warp in the form of mel-spaced triangular filters. In
principle, it would be better to calculate the SNR after the mel-filters as the samples would be better
defined in a statistical sense; i.e., the larger bandwidth would lead to less variance. The distribution of a
mel-warped variate can be calculated as a weighted sum of the distributions of the squared component
DFT bins. However, whilst a squared DFT component is exponentially distributed, a sum of exponential
distributions with different parameters is not easily tractable.

One solution to the tractability problem above is to implement the warped filter bank in the time
domain; in the case of a linear filter, this would involve summing Gaussian variates, the result of which
would remain Gaussian. This is in fact the approach taken by Lobdell et al. [12], but for different reasons.
Many candidates exist for time domain filter forms, but an immediately apparent and compelling one is
the gamma-tone filter bank which arises as a model of the cochlea [13].

In the remainder of the paper, the theory behind SNR features is reviewed motivating a time do-
main implementation. Two candidate gamma-tone implementations are described. They are tested with
reference to the previous results of Garner [4, 5] with encouraging results.



An implementation is freely available via the tracter' and libssp? packages.

2 The SNR spectrum

Following the additive Gaussian model of [14], the value, t;, of DFT bin f of a given frame can be assumed

to be Gaussian distributed [5],
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In the case that only noise is present, the variance vy is the noise variance v¢. When both speech and
noise are present, the variance is the sum o + v¢, where oy is the speech variance. It was shown [4] that
using the SNR spectrum rather than the absolute power spectrum (periodogram) has noise robustness
properties. The maximum likelihood estimate of the SNR, &y is
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The value that is then input to the mel filter is then
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where V¢ is the maximum likelihood value of the noise variance calculated in the intuitive way.
In order to rigorously calculate SNR in the mel domain, it is necessary to generate the distribution of
a single mel bin. This amounts to applying a transformation of the form
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i.e., what is the distribution of a weighted sum of independent but not identically exponentially distributed
variates? This is mathematically difficult.
A heuristic approach is to simply treat mel bins exactly as DFT bins are treated; this implicitly makes
(reasonable) assumptions about the form of the distribution of mel bins. However, it is not rigorous.

3 Gamma-tone models

3.1 Background

The name gamma-tone was coined by Aertsen and Johannesma [15] as an approximation of a single
sound element from a male grassfrog. More generally, it is a time domain description of a naturally
occurring band-pass filter. One persuasive reason to favour it in auditory work is that it approximates
reverse correlation measurements of the resonance of the basilar membrane; for a description with illus-
trations, see [16].

In the context of human cochlear models, the main text is by Patterson et al. [13], although a more
detailed description is that of Holdsworth et al. [17]. The latter define the impulse response of a gamma-
tone as

gt(t) = t" ! exp(—27mbt) cos(2mtfot + d). (5)

where fj is the centre frequency and b is the bandwidth. They also point out that, for efficiency, the filter
can be implemented (approximately) as a cascade of first order (n = 1) sections.

Gamma-tones have been used previously in speech recognition, notably by Schliiter et al. [18], who
cite other work. In general, however, such cochlear models have not been shown to outperform the
more common mel cepstra for general tasks (Schliiter et al. combine them with other features for good
performance) and are not commonly used. Li and Huang [19] show that gamma-tone like features can
benefit from further processing to achieve noise robustness for speaker identification.

In the context of the present work, the gamma-tone is a linear filter bank. Since each filter is linear,
the distribution of filtered Gaussian variates remains Gaussian. This in turn means that essentially the
same SNR calculations that are applicable to DFT bins can be applied to filter outputs, without further
processing required for frequency warping.

Thttps://github.com/idiap/tracter
*https://github.com/idiap/libssp
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Figure 1: Example 10-channel frequency response of the cochlear filter bank of Holdsworth et al.

3.2 Holdsworth’s implementation
Holdsworth et al. state that the filter can be implemented in three stages:

1. Frequency shift the array by —fy Hz _
Zx = e_JZﬂfokTXk. (6)

where T is the sample period.

2. Pass through a first order recursive filter

727TbT) (

wie=wr_1+ (1—e Zk-1—Wr-1). (7)

This can be done multiple times for each order n.

3. Frequency shift the array by +fo Hz

Ma et al. [20] point out a trick to calculate the exponentials associated with the frequency shifts.
Writing
—j2nft _ eijTrfeijnf(tfl) (9)
reduces each exponential to a multiplication for each k.

The parameters of the model are based on the equivalent rectangular bandwidth (ERB) scale. Follow-
ing [21],

e

Bers(f) = 24.7(4.37 x 1073f + 1), (10)
The parameters can then be set [17] as:

1
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Figure 2: Example 10-channel frequency response of the APGF cochlear filter bank of Lyon

The centre frequencies are equally spaced on the “ERB rate” scale
ERB rate = 21.410g;0(4.37 x 1073f + 1). (13)

A filter bank implemented as described above is shown in figure 1.

3.3 Lyon’s all-pole gamma-tone filter

Lyon [22, 23] points out that the gamma-tone form was originally described by Flanagan [24] to describe
earlier measurements by von Békésy. Flanagan gives three approximations in the Laplace domain. His
F3(s) is complicated, but has a gamma-tone time domain form; F;(s), however, although being compli-
cated in the time domain, has a simple Laplace form:

— 447 S+ € 1 2 —sT
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i.e., a high pass filter plus cascaded second order section (SOS). Lyon calls this the all-pole gamma-tone
filter (APGF), and suggests that this is more appropriate as, at least in the right-hand quadrants of the
z-domain, the asymmetry of the response is closer to that of the cochlea.

Lyon does not give an implementation, but one follows from the description above: To find a discrete
version of this SOS, notice that (from tables)

w

(s +a)2+ w? (15)
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where £(-) is the Laplace transform. Writing t = kT, the equivalent z-transform, Z(-), is

Z (e~ “*T sin(wkT))
e Tz 1sin(wT)
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Dividing the right hand side of equation 16 by its value at z = 1 (for unit gain at DC), and converting
to a recursion formula,

Y = (1 —2e T cos(wT) + e 2T)x 4
+2e Teos(wT)yx_1 —e 2Ty 5. (A7)

Comparing equation 15 with Holdsworth’s formulation of equation 5, ¢ can be arbitrarily set to cause
cos to be sin, and

w = 27tfy, (18)
a = 27b, (19)

where b and fy can be set as above. Such a filter bank is illustrated in figure 2.

4 Experiments

4.1 General

Given the above description, a working hypothesis is that a performance gain may be achieved by replac-
ing the periodogram and mel filterbank in a speech recognition front-end by a time-domain filter of the
type described. In order to evaluate this hypothesis, experiments are presented involving incremental
changes to a standard front-end.

4.2 Database

The aurora 2 task [25] is a well known evaluation for noise compensation techniques. It is a simple
English digit recognition task with real noise artificially added in 5 dB increments such that performance
without noise compensation ranges from almost perfect to almost random. Both clean (uncorrupted)
and multi-condition (additive noise corrupted) training sets are provided, along with three test sets using
different combinations of noise and channel. In previous work [5] it was shown that, although aurora 2
is artificial, it is a good indicator of performance on more realistic data.

4.3 Baseline performance

In an initial experiment, we assess the performance of the two gamma-tone filters compared to rather
standard mel cepstra. The basic front-end begins with pre-emphasis by a filter with a single zero at
z = 1. The signal is then framed into overlapping frames with a 10 ms period. The periodogram is then
calculated for each frame, followed by a triangular mel-spaced filterbank. Finally, a logarithm and cosine
transform yield cepstra of which the first 13 coefficients including “zeroth” term are retained. In the
results, this case is referred to as “MFCC”. Mean and variance normalisation are applied to the cepstra
(CMVN) before augmenting with first and second order derivatives.

In the cochlear versions, the framing, periodogram and mel filter stages are replaced with time-
domain filterbank followed by a framing and variance (energy) calculation per frame. The logarithm
and cosine transform are then applied to the resulting vector, followed by CMVN and derivatives. In the
results, the Holdsworth et al. implementation is referred to as “GF” and that of Lyon as “APGF”. Note that
the half-wave rectification typically associated with such models is not used; rather, the average frame
energy is used as an estimate of the variance vy.

A-priori, we may expect the cochlear versions to perform slightly worse than the mel baseline; this
would be consistent with general feeling from the literature. We do not expect any extra noise robustness
from uncompensated filters, although some authors do report it [26]. Neither do we expect any difference
between cochlear implementations, except that the APGF should run more quickly.

Results are illustrated graphically in figure 3 for the basic front-end and figure 4, and summarised in
table 1 for the three cases. In the figures, the first number in parentheses is the performance for clean
test data, the second is the average of the 0 dB to 20 dB results. Since there is little difference between
test sets, the tables summarise the latter metric averaged over test sets.

The opening hypothesis is borne out; the gamma-tone implementations do not perform as well as the
standard front-end. In particular, although Lyon’s APGF is competitive in matched conditions, it does
not perform well in mismatched conditions. Further, (Holdsworth’s implementation of) the conventional
gamma-tone is not competitive.
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Figure 3: Baseline MFCC results.

| Front-end | Multi [ Clean |

MFCC
GF
APGF

90.1%
88.8%
90.7%

74.5%
57.7%
70.4%

Table 1: Results for baseline tests.

4.4 SNR performance

In a second experiment we replace the inputs to the logarithm with SNR features following [4]. This case
represents the main hypothesis of the paper, that the cochlear filter should perform better because of its
adherence to the SNR estimation theory. An extra case is that of the heuristic “Mel” SNR, where the SNR

is calculated on conventional mel filterbank

outputs.

| Front-end | Multi | Clean

MFCC
Mel
GF
APGF

90.1%
89.9%
89.9%
90.5%

82.0%
80.6%
80.6%
81.1%

Table 2: Results for SNR tests.

Results are summarised in table 2. Note that, whilst the results for matched conditions do not change
much, there is a considerable improvement for the mismatched case. The performance gap between
techniques is largely closed. It is difficult, however, to say that the hypothesis is demonstrated; whilst the
APGF does outperform the heuristic mel approach, it is not by much.
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Figure 4: Baseline APGF results.

4.5 SNR-PLP performance

In a final experiment, we replace the cepstral calculation with a linear prediction stage as in [5]; i.e., a
cosine transform before the logarithm yields the (warped) autocorrelation from which LP cepstra follow.
In previous work [5], it was shown that this led to a significant performance improvement on clean
training conditions. We would expect a-priori to see such an improvement in the cochlear filter case too.

| Front-end | Multi | Clean |

MFCC 90.5% | 84.5%
Mel 91.0% | 83.9%
GF 90.9% | 84.5%
APGF 90.8% | 84.9%

Table 3: Results for PLP-SNR tests.

Results are summarised in table 3. This is particularly interesting in that, whilst all techniques show
an improvement, both gamma-tone solutions perform equally or perhaps better than the conventional
cases. The clean result lends weight to the opening hypothesis, although again the results are probably
too close.

4.6 Hyper-parameters

Although in general we try not to optimise hyper-parameters, some issues arise. The noise estimation is
based on the minima tracking approach of [27, 28]. This in turn requires a multiplicative correction C; in
the DFT case, C = 11. The Al, however, also has a correction factor that multiplies the SNR. Without an
analysis of the noise estimator, it is impossible to distinguish the two factors. It was reported by [5] that
setting C = 1 took care of both factors; it was hypothesised that they are related. In the present study,
whilst C = 1 was used in the MFCC case, the heuristic mel and (AP)GT cases required C = 0.5; this was
found heuristically. An analysis of this factor is a matter for future work.

The APGF implementation uses the bandwidth calculations appropriate for the GF case with two SOSs



and n set to 2. The GF case has order n = 4. Whether the the GF bandwidth is appropriate for the APGF
case is also a matter for future work.

5 Conclusion

The opening hypothesis of this study was that a time domain warped filter-bank could work better than
a mel-binned one because the SNR calculation could be more rigorous. In fact, although there is some
evidence that this has been demonstrated, the evidence is not large. Further, there are other small
differences between implementations such as mel vs. ERB warping and filter shapes that could account
for the differences.

By contrast, however, there was a small expectation that time-domain filters may not perform as
well as conventional MFCCs. Whilst this is true for the uncompensated case, it is not so when noise
compensation is introduced. In particular, the APGF is able to even outperform the conventional case. In
fact, although it was not an aim of the study, figures 3 and 4 show that the APGF can also outperform the
conventional case for clean test data.

A tentative conclusion follows that the combination of APGF, SNR spectrum (Al), linear prediction
and cepstral normalisation is a promising component in a state of the art speech recognition system. It
is also appealing not only in that it is mostly physiologically plausible, but also because it has a sound
mathematical basis.
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