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Abstract—The i-vector approach to speaker recognition re-
quires estimating Sufficient Statistics (SS) (i.e., zeroth- and first-
order statistics) for a given utterance of speech with respect to
a Universal Background Model (UBM) usually represented by
Gaussian Mixture Models (GMM). To estimate SS, alternate ap-
proaches have also been experimented. Studies suggest that using
acoustic phone posteriors estimated from a Deep Neural Network
(DNN) based Automatic Speech Recognition (ASR) system can
be useful in estimating accurate speaker representations with i-
vectors. In this paper, we analyze and compare the UBM-GMM
and several versions of DNN approaches together with subspace
Gaussian Mixture Models to estimate i-vectors for a speaker. We
show that better alignments of speech frames can lead to superior
speaker verification performance. This is achieved through the
use of the decoded output from the ASR system, whereas existing
systems only use posteriors at the output of the DNN directly. The
posteriors from the decoding lattices are rescaled suitably to deal
with its sparse nature that can affect SS computation. We show
that a direct correlation exists between senone recognition accu-
racy of the system generating the posterior and the performance
of corresponding speaker recognition systems. The posterior
estimation methods are compared on standard NIST 2010 SRE
dataset. Significant improvements are obtained when using the
ASR decoder, thereby confirming that with better frame-level
alignments speaker verification performance improves. Equal
Error Rate (EER) as low as 0.9% is achieved on the telephone
condition of the evaluation set.

Index Terms: speaker recognition, posterior estimation, i-

vectors, GMM, DNN, SGMM

I. INTRODUCTION

Speaker recognition, concerned with the identification or

verification of a person from his/her voice, has witnessed

considerable progress in the last decade. With the introduc-

tion of techniques such as Joint Factor Analysis (JFA) [1]

and Probabilistic Linear Discriminant Analysis (PLDA) [2],

text-independent speaker verification systems are nowadays

capable of achieving error rates under 1% for known acoustic

conditions. State-of-the-art speaker recognition systems are

built around the i-vector (identity vector) approach [3], mod-

eling a speech recording by projecting its acoustic features

onto a low-dimensional representation. The i-vector space, also

referred to as the Total Variability Subspace (TVS), models

many of the variabilities observed in the original recording,

e.g. speaker, channel and language. Estimating an i-vector for

a speech recording requires a sequence of short-term acoustic

feature vectors to be aligned with the mixture components

of a Universal Background Model-Gaussian Mixture Model

(UBM-GMM). Sufficient Statistics (SS) are computed from

this frame-to-mixture alignment. The statistics are used to

project the utterance onto the TVS.

In [4], the UBM-GMM components were replaced by

the output states of a DNN-based hybrid Automatic Speech

Recognition (ASR) system (referred to as the DNN/HMM

system in this paper). The posteriors at the output of the

DNN were used to estimate SS. It demonstrated that a well-

defined acoustic space significantly helps model speakers

better, as opposed to unsupervised training of the UBM-

GMM components. The improvements in modelling come

from both well-defined nature of the DNN output states

(typically senone units) and improved alignment accuracy

from the discriminative classifier [5]. If defining the GMM

components from the acoustic classes (more accurately, the

states) of an ASR system was alone sufficient, a supervised

GMM would perform just as good contrary to the findings

in [6], thus highlighting the importance of better alignment.

Extending this argument, it would be reasonable to assume that

the alignment obtained after ASR decoding with a Language

Model (LM) would further improve performance since it well

known that frame-level alignment becomes even more accurate

than the DNN output. However, in our experiments and in

literature (where the DNN/HMM system provide acceptable

baselines), no such results have been demonstrated. In this

paper, we show that performance issues can arise due to the

sparsity of the posteriors after ASR decoding as they affect

the Gaussianity assumptions in LDA and PLDA. We propose

two countermeasures: the first method modifies the decoder

configuration such that the alignment is preserved but the

posteriors are less sparse, and the second technique involves

fusing the DNN output directly with the frame alignment

obtained from the decoder.

The rest of the paper is organized as follows: Section III

briefly describes the i-vector system used. State-of-the-art

DNN/HMM ASR system and strategies to collect SS for

speaker recognition are described in Section IV. The ar-

chitecture of the proposed system is given in Section V.

Experimental results are presented in Section VI. Finally, the

conclusions are given in Section VIII.

II. PREVIOUS WORK AND MOTIVATION

In this section, we describe previous work relevant to the

techniques used in this paper. The i-vector approach forms

the basis of state-of-the-art speaker recognition systems used

today [3]. While many approaches attempted to combine the

modelling power of DNN with i-vector, recently succesful

approaches fall under two major categories: the use of pos-

teriors from a DNN trained for ASR ([4], [7]) to compute
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SS for i-vectors, and the use of Bottleneck Features (BNFs)

obtained from a DNN (or a stacked DNN) trained for ASR [8].

The former will be referred to as the DNN/HMM system for

brevity. In [8], stacked DNNs were trained for ASR. The

DNNs had BN layers that were later used to train a UBM-

GMM based speaker recognition system. Results showed that

combining MFCCs with BNFs provided the best performance

among several configurations of UBM-GMM systems. Both

techniques still require training an ASR system, which in turn

requires 1000s of hours of transcribed training data tying the

speaker recognition system to one particular language.

The use of ASR systems to aid speaker recognition is not

new. HMM/GMM based ASR systems have already been used

as UBMs for speaker recognition systems [9], [6]. In [4], the

authors comment that it did not fair better than their proposed

system. It is also now well established that the discriminative

power of DNN for acoustic state classification is superior

to that of GMM modelling of HMM states. In [10], [11],

phone recognizers were used to obtain speaker-discriminative

features based on idiolectal uniqueness as motivated in [12].

In [13], Subspace GMM (SGMM) systems were used to

train speaker vectors instead of using the conventional TVS

training [14].

The performance gains obtained with the DNN/HMM setup

was further improved by employing techniques originally

developed to improve ASR systems. In [15], fMLLR transform

was applied to MFCC features to train the DNN, while still

using conventional MFCCs to train the i-vector system. Using

fMLLR did not show improvements in the telephone-telephone

condition of the NIST SRE 2010 dataset ([16]) when LDA-

PLDA backend was used, but better results were obtained

when Nearest-Neighbour Discriminant Analysis (NDA) was

applied instead. Results on other conditions in the same dataset

with the NDA backend showed improvements for conditions

3 and 4 with the minDCF10 metric, but not in terms of Equal

Error Rate (EER). The results suggest that applying speaker

transform can be helpful in mismatch conditions.

In [6], Time Delay DNN (TDNN) to estimate frame-level

posteriors was introduced. An interesting comparison with a

supervised GMM (sup-GMM) is also presented in their work.

While the sup-GMM perform better than the conventional

GMM, the TDNN based system outperforms all other systems.

While the use of ASR systems, partially or completely, have

been throughly experimented, the variety of such systems do

not tell us which one to use. And for each configuration how

to use it. With the success of using posteriors from DNN

to compute i-vectors, it is natural to extend the technique to

use the output of the decoder to compute the same. However,

performance issues can arise despite the increase in alignment

accuracy owing to the sparse nature of the posteriors obtained

after decoding. The sparsity can affect the Gaussianity assump-

tions of i-vectors and lead to sub-optimal results. Thus, in

this paper we tackle this issue by rescoring the output of the

decoded system with no weight on language model. That is,

after decoding only the acoustic posteriors are used.

UBM

Feature

Extraction

I-vector

Extraction

Sufficient

Statistics

N, f

w

xt

Fig. 1. Block diagram showing the i-vector extraction procedure from a
speech recording.

III. I-VECTOR EXTRACTION

The i-vector extractor projects Gaussian mean supervectors

on a low-dimensional subspace called total variability space

(TVS) [3]. The i-vector extraction procedure is shown in Fig-

ure 1 and further described below. The underlying variability

model used for i-vector extraction is

s = m+Tw, (1)

where s is the supervector adapted with respect to a UBM-

GMM from a speech recording. The vector m is the mean

of the supervectors usually obtained from the UBM-GMM,

T is the matrix with its columns spanning the total variability

subspace and w is the low-dimensional i-vector representation.

In the above model, the i-vector is assumed to have Gaussian

distribution with zero mean and unit variance as prior distri-

bution.

Given a sequence of MFCC feature vectors

{x1,x2, . . . ,xt}, the first-order statistics (f ) are estimated to

obtain the i-vector representation. The subvector fc of f is

given by

fc = Σ
−

1

2

c

(

∑

n

γn,cxn − µc

)

, (2)

where f = [f t1, f
t
2, . . . , f

t
C ]

t, C is the number of mixtures in the

UBM-GMM, µc and Σc are the mean and covariance matrix

of the cth mixture. The posterior γn,c for the nth frame of

speech with respect to the cth mixture is given by

γn,c =
ωcN (xn|µc,Σc)

∑C

k=1
ωkN (xn|µk,Σk)

. (3)

where ωc is the weight of cth mixture component. Given the

first order statistics, the i-vector is estimated as follows

w =

(

I+

C
∑

c=1

NcT
t
cΣ

−
1

2

c Tc

)−1

T
t
Σ

−1
f , (4)

where Tc is the submatrix of T for the cth mixture, Σ is a

block diagonal matrix with each block given by Σc for c =
1, 2, . . . C and

Nc =
∑

n

γn,c (5)

is the effective number of feature vectors assigned to the

cluster c. The i-vector estimation equation (Equation 4) is the

MAP estimate of w assuming Gaussian distribution.
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The matrix T is trained from a large development data set

containing multiple speakers with multiple speech recordings

for each speaker. An Expectation-Maximization (EM) algo-

rithm is used to estimate the matrix [14], [17].

The i-vectors obtained from a speech utterance are further

projected onto a discriminative space using techniques such as

LDA, WCCN [18], [3] and PLDA [2], [19]. Prior to training

and evaluating i-vector using PLDA, a length normalization

is applied [20]. Using PLDA parameters two i-vectors can be

compared as belonging to the same class or as belonging to

two different classes, thus generating a simple log likelihood

ratio to score a pair of speech utterances.

IV. DNN/HMM ASR FOR SS COMPUTATION

Recent studies have leveraged the enormous successes of

DNN-based modelling for speaker recognition [4], [7], [21],

[8]. DNNs enable non-linear modelling of data, which is often

required for real world data such as audios, videos, etc. The

non-linear processing helps to model complex processes such

as speech production. Thus, DNN-based modelling of speech

units has found applications in ASR [22], Text to Speech

Synthesis (TTS), prosodic modelling, etc.

A. Senone posteriors for speaker recognition

State-of-the-art ASR systems employ DNNs to model fun-

damental speech units such as senones, which are clustered,

context-dependent sub-phonetic HMM states generated by a

set of phonetic decision trees. State posterior probabilities are

estimated for a frame of speech with context of typically 9

to 13 frames where each state represents a cluster of senones.

The likelihoods from the posterior probabilities, along with

word sequence likelihoods from the Language Model (LM),

are then passed to the decoder to obtain the ASR output [23],

[22]. In [4], it was shown that a DNN trained for ASR

can replace the traditional UBM-GMM to estimate SS for

i-vector extraction. The posteriors obtained at the output of

the DNN forward pass process are directly used to compute

SS. We term this system HMM/DNN forward pass system.

This technique resulted in large performance gains for speaker

verification systems as better alignments are obtained with

respect to the UBM components. The results showed that

replacing unsupervised training of the UBM components with

well-defined acoustic classes can have a significant impact on

verification performance. The high-scoring component in the

posteriors for each speech frame is expected to come from

linguistically related senones. Later, this technique was also

extended to language identification [21], [24].

Although there has been sufficient evidence that phone-

level classes possess speaker-discriminative information ([25]),

successful integration into the state-of-the-art framework such

as i-vector PLDA was not achieved until recently. The effec-

tiveness of senone posteriors for i-vector extraction provides

new research directions for speaker recognition. Particularly,

we seek to investigate whether we can take advantage of

accurate senone alignments obtained by using the LM and

the ASR decoder [26]. The LM not only provides more accu-

rate alignments but may also help capture speaker-dependent

characteristics closely related to the speech contents, which is

useful for better speaker discrimination [12], [27].

We propose to study the estimation of SS from senone

posteriors obtained at the output of ASR decoding to take

advantage of better senone alignments. Posterior vectors to

estimate SS are obtained from the: (i) word recognition

lattices (i.e., word LM was used to generate word lattices),

(ii) phone recognition lattices (i.e. phone LM was used to

generated phone lattices). Eventually senone-level posteriors

are extracted from these lattices similar to posterior vectors

extracted with only acoustic models (e.g. DNN forward-pass).

Even though the senone alignments are more accurate, they

need not result in better speaker recognition performance

because of their inherent sparsity. Such high sparsity arises

as a result of smoothing the posterior vectors obtained from

the DNN and smoothed by the ASR decoder based on word

sequence probabilities from the LM. We show, through senone

recognition rates, that this may not be favorable for speaker

recognition systems given the nature of SS estimation as given

in Equations 2, 5. The contribution of senones is directly de-

termined by not only their presence in the lattice generated by

the ASR decoder, but also by the posterior values themselves.

Extremely low values contribute little to the SS and may prove

detrimental to the speaker recognition performance as they

tend to have an effect similar to missing the senones altogether.

In this paper, we propose to rescale the ASR lattices with

only the acoustic likelihoods, thereby completely ignoring

the language model probabilities for SS estimation. Once the

lattice is generated for an utterance, the forward-backward al-

gorithm is applied with an acoustic scale suitable to generating

posterior values that can be suitably handled by the i-vector

system. As a result, all the active states in the lattice contribute

to the SS. In Section VI-G, it is shown that this method of post-

processing the posteriors does not affect the senone recognition

rate.

B. Integration into i-vector framework

To integrate an ASR system into the i-vector framework, the

parameters of the UBM-GMM are estimated from frame-level

posterior probabilities, computed by the ASR system, and their

corresponding features as required by Equations 1, 2, and 3.

This process replaces the M step of the EM algorithm used

to estimate the parameters of a GMM [28], [29], [30]. The

update equations are given as follows

ωc =

∑

n γn,c
∑

c

∑

n γn,c
(6)

µc =

∑

n γn,cxn
∑

n γn,c
(7)

Σc =

∑

n γn,c (xn − µc) (xn − µc)
′

∑

n γn,c
. (8)

In our experiments, we also considered Σc to be diagonal as

no major improvements were observed when a full covariance

matrix was used.
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C. Bottleneck features

Bottleneck Features (BNF) have provided an alternate

method to leverage the modelling power of DNN [8], [31].

In [8], the BN extracted from a stacked DNN is used as a

complementary feature to MFCCs in the UBM-GMM i-vector

system. Significant performance improvements were obtained

with respect to the conventional UBM-GMM i-vector system.

In this paper, we also compare the approach to use BN with

approaches that derive senone posteriors from DNN-based

ASR systems. First, we show that the score-level fusion of

individual systems trained on MFCC and BNFs perform as

well fusing the features and training one single system. Next,

we show that

V. PROPOSED ANALYSIS

The different systems presented earlier give rise to multiple

posterior extraction procedures. All such systems, apart from

the baseline i-vector PLDA system with UBM-GMM, are

developed for ASR. Posteriors can be obtained either using

only the acoustic model (AM) or using both the AM and the

LM. The HMM/DNN system produces posteriors at the end

of the DNN forward pass and after the decoding stage. We

analyse the influence of LM on the acoustic likelihoods with

respect to the performance of i-vector systems trained using

such posteriors.

As state-of-the-art ASR systems employ speaker adaptation

techniques such as fMLLR, comparisons are made on two

types of ASR systems: one that applies fMLLR and one

that does not apply any speaker adaptation technique. The

former system is termed HMM/SD-DNN while the latter

is called HMM/SI-DNN, where the acronyms SD and SI

signify that the systems are speaker dependent and speaker

independent, respectively. The speaker dependency indicates

the use of fMLLR transforms on the input MFCC features in

the training and decoding stages. A HMM/GMM system is

used to estimate the fMLLR transform over a single speech

recording. This transform is applied on MFCC features before

being passed to the HMM/SD-DNN system as input. The same

procedure is followed to train the SD-DNN.

In general, to train HMM/DNN systems, alignments from

HMM/GMM systems act as labels. Such GMM-based systems

have considerably lesser model complexity (e.g. in terms of

the number of parameters) and their performance is worse

compared to the HMM/DNN system (as will be reported in

Section VI). Using posteriors obtained from such systems can

help demonstrate the importance of senone-alignment accuracy

for SS estimation. Thus, as a result of the two DNN systems

developed, we also propose the study of using alignments

from the HMM/SI-GMM and HMM/SD-GMM systems. The

speaker recognition performance of i-vector systems that use

posteriors from these systems to compute SS are compared

with each other and the baseline UBM-GMM system as shown

in Figure 2.

Previous studies have shown that posteriors from a DNN

trained for ASR can help improve speaker verification perfor-

mance. This system only differs from the UBM/GMM i-vector

system in the source of posteriors to estimate SS. Thus, we

also conduct experiments to analyse speaker discriminability

of these posteriors. In such an experiment, the zeroth-order

statistics over a recording are collected and normalized to sum

to 1.0. This posterior vector is used as the speaker i-vector and

two i-vectors are compared using the Kullback-Leibler (KL)

divergence measure.

In addition to the experiments mentioned above, we also

propose to separately analyse the effect of using MFCCs with

context - similar to the input to DNNs. Conventionally, DNNs

are trained with a higher dimensional feature vector obtained

by stacking multiple neighbouring MFCC frames as input. In

this paper, the DNN uses a context of 9 frames (≈ 190ms).

However, other systems presented do not use as much context

explicitly (although in the case of ASR systems the context is

also taken care while decoding). Thus, we analyse the effect

of using a longer context, in this case a context of 190 ms, to

estimate the UBM-GMM parameters. The UBM-GMM is then

used to compute SS while keeping the original MFCC feature

vectors to train the i-vector extractor. This was done in order

to reduce the model complexity of T-matrix as features with

higher dimensionality would require more data. To reduce the

dimensionality of the stacked MFCC, LDA is applied with

senones as classes. The labels for each frame of the LDA are

derived from the alignment obtained from the HMM/SI-GMM

system.

Finally, the performances of all the above mentioned sys-

tems are compared with an alternative method exploiting

DNNs for speaker recognition. In particular, BN features

produced from a DNN trained for ASR are concatenated to

the conventional MFCC features to extract i-vectors [8]. A

GMM is estimated on such features on the same development

set as other systems. A UBM-GMM based i-vector PLDA

system is developed with these features. With the performance

of the system using BN features we can directly compare

the two mainly used approaches to exploit DNNs for speaker

recognition.

VI. EXPERIMENTAL SETUP

Speaker verification experiments were conducted on the

female subset of the NIST 2010 SRE data, following the

official protocol [16]. Following the setup of [8], system

performance is evaluated on conditions 1 through 5 (labelled

as cond1 through cond5 in this article) and results are given

as EER (Equal Error Rates) and minDCF (minimum Decision

Cost Function). Conditions 1 through 4 use interview style

recordings for training and condition 5 uses telephone record-

ings. For testing, conditions 1 and 2 have interview style data,

conditions 3 and 5 have telephone data and condition 4 has

data recorded over microphones.

In the following sections, the setup of the explored speaker

verification systems are detailed.

System configurations

The i-vector based systems explored in this work differ in

how posteriors are computed to estimate the SS (i.e., from

UBM-GMM, HMM/GMM, HMM/SGMM, and HMM/DNN

models), whereas all other processing steps are kept the same

across systems.
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UBM-GMM

HMM/GMM

HMM/DNN

Feature

Extraction

I-vector
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I-vector

Extraction

I-vector

Extraction
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I-vector
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p(s|xt)

p(s|xt)

p(s|xt)

Fig. 2. Block diagram showing the architecture of the proposed system that uses posteriors obtained from the different ASR systems compared to using the
conventional UBM-GMM system.

A. Feature configuration and training data

The front-end used 20 MFCC features along with delta

and acceleration parameters, extracted every 10 ms using a

window of 30 ms (as used by systems such as [8]). They

were further processed through a short term Gaussianization

module ( [32]) with a context of 300 frames. All systems

presented in this paper use the same feature configuration.

Although it is common for ASR systems to use only 13

MFCC dimensions with delta and acceleration, we preserved

the MFCC configuration for both ASR and i-vector systems as

it was observed the Word Error Rate (WER) of ASR systems

dropped by ≈ 2% absolute with the increased number of co-

efficients.

The female part of Fisher English Part I and II data (≈)

2000 hours) was used to train the UBM-GMM system, the

T-matrix, the parameters in Eq. 7 and 8, and all the acoustic

models used in this work. LDA and PLDA parameters were

trained with the following datasets: The NIST datasets - SRE

2004, 2005, 2006, 2008 and 2008 extended, Switchboard Part

II and Part III, and Switchboard Cellular Part I and II.

The ASR system employs a CMU dictionary with 42k

words and a 3gram Language Model (LM) for decoding with

word LM [13]. Additionally, a bigram phone LM were trained

on the same Fisher training data for our language independent

experiment with the HMM/SI-DNN system.

B. Baseline UBM-GMM I-vector system

A UBM-GMM with 2048 components and i-vector extractor

of 400 dimensions were trained. The i-vector dimension was

reduced to 350 after LDA, followed by length normalization

before being scored using PLDA.

The Kaldi toolkit [33] was used for LDA and PLDA

training. A standard i-vector extractor was implemented for

Kaldi as well [34], based on the baseline system described

in [17].

C. HMM/GMM system parameters

The HMM/SI-GMM system uses context-dependent tri-

phone states with GMM observation probability density func-

tions, and a total of 1’530 senones and 300k Gaussians [35].

The number of senone states was automatically derived by

the tree-clustering algorithm that was constrained to have

around 2k states in order to be comparable with the number of

UBM-GMM components. We note that state-of-the-art ASR

systems have higher number of states. Comparing the ASR

performance of ASR systems with 2k and 7k states, we

observed about 1% absolute drop in WER. The system is

built on the speaker recognition front-end, as described in

Section VI-A. We trained the HMM/SD-GMM system, in

which fMLLR transforms estimated per-recording are used, as

we will not have access to speaker labels during enrollment

and testing of speaker recognition systems.

D. HMM/SGMM system parameters

The UBM with 2048 components is trained by clustering

all the Gaussians in a HMM/GMM based ASR system. A

system with 4300 states and 100k Gaussians (following state-

of-the-art system parameters for HMM/SGMM as in [36])

and similar number of sub-states as the number of Gaussians

were used [37]. Unlike ASR systems, the SGMM developed

here is tuned to speaker recognition purposes. The phonetic

subspace is constrained to a dimension of 40 (i.e. S = 40)

while the speaker dimension is set to 400.

E. HMM/DNN system parameters

The input to the DNNs are 540 dimensional vectors obtained

by stacking 9 MFCC feature vectors and the output classes

are senone probabilities. As mentioned in Section IV-A,

two DNN models, HMM/SI-DNN and HMM/SD-DNN, were

trained with the same configuration with alignments from the

HMM/SI-GMM and HMM/SD-GMM, respectively. We used

the Kaldi toolkit to train a DNN with 6 hidden layers with

2’000 sigmoid units per layer and softmax units at the output.

The DNN parameters were initialized with stacked Restricted

Boltzmann Machine (RBM) that are pretrained in a greedy

layer-wise fashion [38], [39]. The utterances and frames are

presented in a randomized order while training both of these

networks using stochastic gradient descent to minimize the

cross-entropy between the labels and network output. The

DNNs are trained on the same features as the GMM-HMM

baselines, except that the features are globally normalized to

have zero mean and unit variance. The fMLLR transforms

are the same as those estimated for the GMM-HMM system

during training and testing.
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TABLE I
ASR results on Fisher development set in Word Error Rates (WER) [%]. The

HMM/GMM systems have 1’530 states with 300k Gaussians and the

HMM/SGMM system has 4300 states with 100k substates.

System WER [%]

HMM/SI-GMM 42.3
HMM/SD-GMM 35.9
HMM/SI-DNN 26.0
HMM/SD-DNN 25.2
HMM/SI-GMM (with BN features) 27.8

HMM/SGMM 31.1

Senone posteriors from the SI- and SD-DNNs are obtained

using two different methods: (i) a DNN forward pass, and

(ii) full DNN/HMM decoding, i.e. using both AM and LM.

To generate i-vectors, the means and the covariance matrices

for each of the DNN outputs are computed from the first and

second order moments of the feature vectors using the DNN

posteriors. Only diagonal covariances are estimated.

In the final DNN setup, inspired by a stacked DNN [8], we

trained another DNN on the same data as before to extract BN

features. We did not train a stacked DNN as was done in [8] so

that the performance of the system can be compared with the

rest. A BN layer with 80 linear outputs is introduced after 4

hidden layers and another hidden layer follows the bottleneck

layer. Finally, the output layer has the same number of states

(1’530).

F. ASR results

The performance of the ASR systems, namely the

HMM/SD-GMM system, the HMM/SI-GMM system, the

SGMM system, the HMM/SI-DNN system and the HMM/SD-

DNN system are compared in Table I. The systems are

evaluated on a subset of the Fisher data set that was kept aside

for evaluation. As expected, the Word Error Rate (WER) is

lower for the DNN systems and speaker adaptation is always

observed to be useful. The SGMM system outperforms the

HMM/SD-GMM system. The HMM/SD-DNN system outper-

forms all other systems with a WER of 25.2%. This perfor-

mance is 1.2% better in absolute terms than the HMM/SI-DNN

system.

In addition to the conventional ASR approaches mentioned

above, we explore an alternative decoding method in order

to move away from the language dependence of the ASR

systems used in this paper. The LM that was trained for a

large vocabulary speech recognition is replaced by a simple

phone bigram LM trained on the Fisher dataset. This system

is referred to as “HMM/SI-DNN (phone bigram)”. Although

such a rudimentary LM will certainly not improve the ASR

performance we consider it as a step in the direction of

language-independent ASR development for speaker verifica-

tion. Although there are numerous ways in which language

independence can be achieved, we considered an approach

that would have minimal changes with the state-of-the-art ASR

system while retaining the well-trained acoustic models. We

consider other techniques as a part of our future work.

TABLE II
SENONE RECOGNITION RATES ON FISHER DEVELOPMENT SET OF ALL THE

ASR SYSTEMS USED

System SRR (%)

HMM/SI-GMM 55.2
HMM/SD-GMM 56.2

HMM/SI-DNN (forward pass) 53.5
HMM/SI-DNN 73.4

HMM/SD-DNN (forward pass) 52.4
HMM/SD-DNN 72.3

The Phone Error Rates (PER) of the HMM/SI-DNN system

and HMM/SI-DNN (bigram) system were also compared. On

the Fisher development set, a deterioration of approximately

2% was observed from using the word LM to phone LM.

G. Senone Recognition Rates

In this section, the Senone Recognition Rates (SRR) of the

HMM based ASR systems are analysed. The performances

are presented in Table II. The SRR is the percentage of

senones correctly identified according to the groundtruth (

which may be obtained by aligning the reference transcription

using an ASR system). A speech frame is considered correctly

identified if the maximum scoring senone matches with the

groundtruth. As expected, the SRR improves with better

acoustic modelling and is the best when an ASR decoder is

used with the word LM. The SRR improves by 2.4% absolute

after decoding the HMM/SI-DNN forward pass posteriors.

The improvement is still significant considering the number

of frames in the dataset (≈ 779.5k frames).

Although it can be expected that the speaker recognition

should improve with better alignments, the posterior values

per frame obtained from the lattices with the optimal AM and

LM likelihoods scaling parameters are extremely sparse. For

instance, when the posteriors are thresholded, that is posteriors

less than a certain value (e.g. 10−5) are floored to 0.0, the

speech frame is no longer aligned to the true senone in ≈
17% of the frames. Thus, even though the alignment obtained

after decoding of HMM/SI-DNN is more accurate compared to

using only the posteriors after forward-pass, such low scoring

posteriors do not contribute to the SS. Thus, the likelihoods

are re-scaled prior to the forward-backward algorithm. The

best scaling, in terms of SRR, was obtained when the AM

was 0.01 and the LM scale was 0.0. Other values for LM

scale were also explored, but it proved beneficial to ignore the

LM likelihoods once the recognition lattices are generated. The

LM contribution is still available in the refined alignments.

VII. RESULTS

In this section, we discuss the results of our experiments

using all the systems described earlier. First, the speaker ver-

ification performances are presented, followed by the results

of the experiments on the amount of speaker content available

on the different types of posteriors used. The motivation for

the latter is provided by results that acoustic model-based

posteriors provided significantly better speaker recognition

performance. Thus, to observe whether the posteriors provide
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TABLE III
COMPARISON OF SPEAKER RECOGNITION PERFORMANCE IN TERMS OF EQUAL ERROR RATE (EER)/MINIMUM DECISION COST FUNCTION (MINDCF)

WHEN USING DIFFERENT POSTERIOR EXTRACTION TECHNIQUES, NAMELY UBM-GMM, DNN AND SGMM

System Decoding (Y/N) Speaker Adaptation (Y/N) Cond1 Cond2 Cond3 Cond4 Cond5

Baseline

UBM-GMM × × 1.41/0.22 2.43/0.40 1.58/0.38 1.32/0.35 2.25/0.28

MFCCs with Context

UBM-GMM from MFCCs with Context × × 1.03/0.20 1.78/0.27 1.28/0.20 0.98/0.24 1.97/0.24

HMM/GMM based ASR systems

HMM/SI-GMM X X 0.83/0.18 1.69/0.25 1.33/0.14 0.74/0.19 1.32/0.16
HMM/SD-GMM X X 0.97/0.13 1.41/0.18 0.60/0.08 0.63/0.17 1.54/0.16
SD-DNN forward pass × × 0.7/0.15 1.09/0.15 0.77/0.08 0.55/0.15 1.18/0.13
HMM/SD-DNN X X 0.78/0.14 1.13/0.13 0.80/0.09 0.50/0.13 1.00/0.13
SI-DNN forward pass × × 0.65/0.16 1.12/0.17 0.66/0.09 0.55/0.14 1.02/0.16
HMM/SI-DNN X X 0.81/0.15 1.36/0.17 0.73/0.09 0.48/0.14 0.91/0.12
HMM/SI-DNN (bigram) X X 0.88/0.16 1.63/0.22 1.16/0.20 0.98/0.19 1.23/0.19

HMM/SGMM based ASR system

HMM/SGMM X X 1.17/0.25 2.32/0.32 1.61/0.31 1.17/0.24 1.58/0.22

Bottleneck features

UBM/GMM (MFCC+BN) × × 0.87/0.1 1.35/0.2 0.48/0.1 0.33/0.16 0.84/0.11

speaker discriminability by themselves or through the i-vector

framework.

A. Speaker verification results

The results on 5 conditions (cond1 through cond5) of

the NIST SRE 2010 dataset are presented in Table III. The

systems that use decoding and speaker adaptation are marked

accordingly. Both Equal Error Rates (EER) and minDCF

(minimum Decision Cost Function) values are reported. A

target prior of 0.0001 was used with equal cost of 1.0 for false

alarms and misses. The baseline system is the conventional

i-vector PLDA system as described in Section III. For the

matching microphone conditions the EER is already as low as

1.4%. For mismatched conditions that have a large number of

trials, such as cond2, the EER was approximately 2.4%.

The speaker verification results of the HMM-based systems

are given next. The results are presented in the order of model

complexities of the systems - from HMM/GMM systems to

hybrid HMM/DNN systems.

The senone posteriors obtained after decoding from the

HMM/SI-GMM system already provided benefits to the

speaker verification system. Although the framework for in-

tegrating acoustic class-based posteriors from ASR systems

exist already, these results have seldom been reported. In

this system, significant improvements are observed for all

conditions. Absolute improvements in EER of up to ≈0.9%

are obtained. In case of cond5, this translates into a relative im-

provement of ≈41%. Thus, even with a less sophisticated ASR

system whose WER is worse by 10.7% relative than the state-

of-the-art (see Table I) it is possible to obtain considerable

improvements from the baseline system. The results clearly

demonstrate the significance of constraining the acoustic space

linguistically through ASR systems although the availability of

large amounts of annotated data has its costs.

With the HMM/SD-GMM, further improvements were ob-

served over the HMM/SI-GMM especially with respect to

minDCF. In cond1, while there is clear loss in EER by

17% relative, the minDCF improved by 27.8% relative. The

relative improvements in minDCF vary from none (cond5) to

57% (cond3). The system also provides the best performance

among all systems for cond3 both in terms of EER and

minDCF. Overall, speaker adaptation techniques, in particular

fMLLR, does lead to better speaker verification especially in

interview conditions. This also points us to a trend that better

ASR performance could lead to better speaker recognition

performance.

We now present results on the DNN-based systems. The SI-

DNN forward pass system presented in Table III is, in princi-

ple, similar to the system presented in [4]. We also observed

gains similar to that presented in literature. Compared to the

baseline system, relative improvements in EER was observed

to be at least ≈54%. The minDCF improved between 27%

(cond1) and 60% (cond4) relative. The forward pass system

was then compared with the same DNN-based ASR system

that used full ASR decoding.

The HMM/SI-DNN system can be compared to the baseline

system, and the SI-DNN forward pass system. The system

clearly improved over the baseline i-vector system with rela-

tive improvements in EER ranging between 42.5% for cond1

and 63.6% for cond3, and relative improvements in DCF

varying between 31.8% and 76.3%.

While HMM/SI-DNN is better in the telephone based con-

ditions, it performed worse for the interview conditions. This

suggests that speaker adaptation may provide some help in

mismatched conditions. Overall, for the family of systems that

used HMM/SI-GMM mentioned till now, speaker verification

systems were noticed to improve always. The system also

provided the best performance in cond5 where the EER is as

low as 0.91% and the minDCF is 0.12. This leads to the most
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interesting result from our studies. A comparison between the

SI-DNN forward pass system and the HMM/SI-DNN system

reveals that significant performance gains can be achieved by

exploiting the decoder output in ASR systems. The EER and

the minDCF improved by 10.7% and 25% relative, respec-

tively. However, we found no performance benefits in any

of the mismatch conditions (cond2 to cond4). We also note

that these improvements vanish when using different acoustic

scales, for example the AM likelihood scale regularly used

for optimal ASR performance. Thus, direct application of the

decoder output to speaker recognition does not necessarily

help. In case of cond5, the EER reduced by 0.3% absolute

while the minDCF increased to 0.19. Therefore, we believe

that the highly sparse nature of the posteriors obtained after

decoding has a detrimental effect on the performance even

though decoding with word LM provides better frame-level

alignments.

Similarly, the HMM/SD-DNN forward pass system and

HMM/SD-DNN system were compared. Contrary to the re-

sults showed earlier with the SI-DNN systems, the system

performance improves in two of the mismatched conditions

(cond2 and cond4), while for the other mismatch condition

(cond3), the minDCF does not change. This once again

indicates that using speaker adaptation techniques can help

negotiate channel variabilities. The HMM/SD-DNN forward

pass system performs notably better than the HMM/SI-DNN

in all but one condition (cond5). The minDCF reduces by only

0.01, from 0.12 to 0.13, even in the worst case.

As expected, the HMM/SD-DNN system further improves

the performance over the HMM/SD-GMM system. Relative

improvements in EER of up to 57% were achieved. Relative

improvements in EER with respect to the baseline were

ranging from ranging from 45% to as high as 63%.

In the results discussed so far, a strong correlation between

the SRR as presented in Table II and the speaker verification

metrics, especially for the telephone condition (cond5),can be

seen. The EER decreases with the increase in SRR suggesting

that better alignment of the features with mixture components

could lead to better speaker modelling.

The use of phone LM over word LM in the HMM/SI-

DNN (bigram) systems lead to performance deterioration. The

minDCF doubled in cond3 while it increased from 0.12 to 0.19

in cond5. The results reiterate the importance of the choice

of LM, but in another direction also show promising results

towards the application of ASR techniques focused toward

supporting multiple languages, which are certainly useful in

practical scenarios.

Based on the results presented above it can be concluded

that the discriminative modelling of acoustic classes influences

speaker recognition performance in the i-vector framework.

Another difference between the HMM/SI-GMM system and

the HMM/SI-DNN system is the use of a temporal context

of duration 200 ms. To fairly compare these two systems, the

HMM/SI-GMM system was trained using MFCC involving

the same context as the HMM/SI-DNN system to compute SS.

These results are also presented in Table III under ”MFCCs

with context”. Simply using context-based MFCC improves

the recognition performance significantly. The best relative

TABLE IV
SPEAKER DISCRIMINATIVE PROPERTIES OF POSTERIORS: THE STUDY

INDICATES THE AMOUNT OF SPEAKER INFORMATION PRESENT IN THE

POSTERIORS BY USING ZEROTH-ORDER STATISTICS AS I-VECTORS

System Cond5 (EER in %)

UBM-GMM 24.5
HMM/SI-GMM 40.3
HMM/SD-GMM 40.3
HMM/SD-DNN (forward pass) 42.0
HMM/SI-DNN (forward pass) 41.7

EER improvement achieved was ≈ 27%. Interestingly, in all

conditions the performances are also better than the HMM/SI-

GMM system (although there is only a marginal difference in

minDCFs).

Next, the performance of the HMM/SGMM system is also

presented to compare alternative acoustic modelling tech-

niques. The performance of the proposed approach using

SGMM posteriors is consistently better compared to both the

baselines in all but one of the cases (cond3), in which it

worse by 0.1%. A best case absolute improvement of 0.7%

is obtained on cond5. The HMM/SGMM system is worse

than the HMM/SI-GMM in the interview conditions and has

only marginally better minDCFs for telephone conditions. It

performs consistently worse than the HMM/SD-GMM in all

the conditions.

Finally, we compare the effect of using BN features along

with MFCC in the UBM-GMM i-vector system. A direct

comparison with the HMM/SI-DNN forward pass system

shows significant difference in EERs and minDCFs for many

conditions. Notably, the performances of the BN system in

cond1 and cond5 are significantly better than the HMM/SI-

DNN forward pass system. However, the performance for

other conditions show very little difference in minDCF. The

EER of the system for cond2 is worse by 17% relative. Note

that cond2 has the most of number of trials. In general, the

forward pass system works consistently better for mismatch

conditions as evidenced by the differences in minDCF. This

suggests that the two methods may be providing complimen-

tary information that can be further exploited.

B. Speaker verification from posteriors

To further investigate the influence of the posteriors used to

compute sufficient statistics we compared them for the amount

of speaker information they contained. This would suggest if

the posteriors indeed represent speaker-independent acoustic

classes or speaker-dependent acoustic classes and also direct

future research on how to train the posterior-extraction for

optimal speaker recognition.

In this experiment, the zeroth-order statistics were used as

i-vectors. That is, the i-vectors for an audio recording were

obtained by accumulating posteriors over time and renormal-

izing them so that the elements of the vector sum to 1. The

i-vector now is simply the zeroth-order statistics, which are a

stack of Nc vectors as defined in Eq. 5. Two i-vectors were

compared using the KL divergence measure. If w1 and w2

are two i-vectors, the KL divergence is given as follows
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KL (w1,w2) =
C
∑

i=1

(

w1,ilog
w1,i

w2,j

)

(9)

where C is the number of mixture components of a GMM, or

the number of senone classes in the ASR system as the case

may be, w1,i are the elements of the vector w1, w2,i are the

elements of the vector w2.

Two i-vectors are similar if the KL divergence is closer to 0.

Even though state-of-the-art speaker recognition performance

is not expected, the error rates can suggest the amount of

speaker content available in the posteriors. The results of the

speaker verification experiments are presented in Table IV.

Once again, the systems are only evaluated on the the core

condition 5 (cond5) of the NIST SRE 2010 dataset. The trends

on other conditions are the same. A major trend in these

results point to the speaker dependence of the UBM-GMM

posteriors and the lack thereof in the ASR posteriors. While

the EERs of the UBM-GMM system are in the range of 15%

to 25%, of the ASR based systems are between 40% and

45%. The clear contrast in the results and the corresponding

speaker verification results with the i-vector PLDA systems

(see Table III) suggest that the supervised training of the

acoustic classes is beneficial for i-vector systems. In fact, the

better the ASR performance the more speaker independence.

However, comparing Tables III and IV indicate that more

speaker independence can lead to better speaker verification.

C. System fusion results

In this section, the results of score fusion of a subset of

the systems presented in Table III are presented. Only the

DNN based systems are fused together. This is primarily done

to exploit the difference in system performances across all

five conditions, especially between the SI-DNN and SD-DNN

systems.

The results of fusion are presented in Table V. In general, a

combination improved system performance considerably when

systems that used decoder and those did not were combined.

The combination of systems that used only forward pass

posteriors did not provide significant benefits. Only minor

improvements in terms of the minDCF are observed when

fusing the scores from the HMM/SI-GMM system and the

HMM/SI-GMM forward pass system. The combination of

HMM/SI-DNN with the forward pass systems showed signif-

icant improvements. In mismatch conditions, as hypothesized

earlier, with the fusion of HMM/SI-DNN and HMM/SD-

DNN (forward pass) the minDCFs were observed to reduce

for all conditions. The best results for cond2 and cond5

were thus obtained, with minDCF values of 0.13 and 0.10,

respectively. The results while fusing the HMM/SI-GMM with

the HMM/SI-GMM forward pass systems are quite similar.

Once again, the EERs and minDCFs reduced in all conditions

showing favorable indications of combining systems using

posteriors from different stages of the ASR system.

VIII. CONCLUSIONS

This paper presented a comparison of different approaches

to SS estimation using different ASR systems for i-vector

based speaker recognition. We improved on the existing tech-

nique that uses posteriors obtained from a DNN trained for

ASR by passing them to the decoder. The lattices generated

by the ASR decoder were used for SS estimation with the

motivation to use better alignment to compute these statistics.

ASR systems employing different acoustic modelling methods

were studied. Our results reveal that the proposed method of

using rescaled AM posteriors from ASR lattice can indeed

improve speaker verification performance. We also showed

that the performance gains are positively correlated to the

senone recognition accuracy of the models. The EER of

the HMM/SI-DNN forward pass system improves by 10.7%

relative corresponding to a relative gain of 25% in minDCF.

The use of ASR systems that employed the fMLLR speaker

adaptation technique provided added benefits in channel mis-

match conditions for speaker verification. Thus, further im-

provements were observed from the score-level fusion of the

HMM/SD-DNN and HMM/SI-DNN based systems. Along

with the systems presented, we also experimented with the

HMM/SGMM system.

An independent experiment was conducted to isolate the

effect of using features with a long context. Our results

showed that the presence of a context significantly improves

the standard i-vector system performance. A best case relative

improvement of 27% was obtained.
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