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Abstract

Automatic speaker verification systems can be spoofed through recorded, synthetic or
voice converted speech of target speakers. To make these systems practically viable, the
detection of such attacks, referred to as presentation attacks, is of paramount interest. In
that direction, this paper investigates two aspects: (a) a novel approach to detect presen-
tation attacks where, unlike conventional approaches, no speech signal related assumptions
are made, rather the attacks are detected by computing first order and second order spectral
statistics and feeding them to a classifier, and (b) generalization of the presentation attack
detection systems across databases. Our investigations on Interspeech 2015 ASVspoof chal-
lenge dataset and AVspoof dataset show that, when compared to the approaches based on
conventional short-term spectral processing, the proposed approach with a linear discrimi-
native classifier yields a better system, irrespective of whether the spoofed signal is replayed
to the microphone or is directly injected into the system software process. Cross-database
investigations show that neither the short-term spectral processing based approaches nor the
proposed approach yield systems which are able to generalize across databases or methods
of attack. Thus, revealing the difficulty of the problem and the need for further resources
and research.

1 Introduction

The goal of an automatic speaker verification (ASV) system is to verify a person through her/his
voice. The system receives as input a speech sample along with an identity claim. It outputs a
binary decision: the speech sample corresponds to the claimed identity or not. ASV systems can
make two types of errors: reject a true or genuine claim referred to as false rejection, or accept a
false or impostor claim referred to as false acceptance. ASV systems can be applied in different
scenarios such as forensic or personal authentication. Though the ultimate goal is to have a
system that is error free, the ASV systems in practice are error prone and, depending upon
the application, a trade-off between the error types exist. For example, in forensic applications
false rejections would be considered more costly, while in speech-based personal authentication
applications false acceptances would be considered more costly. This paper is concerned with an
up-and-coming issue related to ASV systems in the latter scenario, i.e., personal authentication
scenario.

Like any authentication system, ASV-based authentication systems, or in general biometric
systems, can be attacked. Specifically, as illustrated in Figure 1, there are different points at
which a biometric system can be attacked [1]. In this paper, our interest lies in attacks at point
(1) and point (2), where the system can be attacked by presenting a spoofed signal as input.
It has been shown that ASV systems are vulnerable to such elaborated attacks [2, 3]. As for
points of attack (3) - (9), the attacker needs to be aware of the computing system as well as the
operational details of the biometric system. Prevention of or countering such attacks is more
related to cyber-security, and is thus out of the scope of the present paper.
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Figure 1: Potential points of attack in a biometric system, as defined in the ISO-standard 30107-
1 [4]. Points 1 and 2 correspond respectively to attacks performed via physical and via logical
access.

Attack at point (1) is referred to as presentation attack as per ISO-standard 30107-1 [4] or
as physical access attack. Formally, it refers to the case where falsified or altered samples are
presented to the biometric sensor (microphone in the case of ASV system) to induce illegiti-
mate acceptance. Attack at point (2) is referred to as logical access attack where the sensor is
bypassed and the spoofed signal is directly injected into the ASV system process. The main
difference between these two kinds of attacks is that in the case of physical access attacks, the
attacker, apart from having access to the sensor, needs less expertise or little knowledge about
the underlying software. Whilst in the case of logical access attacks, the attacker needs the skills
to hack into the system as well as knowledge of the underlying software process. In that respect,
physical access attacks are more likely or practically feasible than logical access attacks. Despite
the technical differences, in abstract sense this paper treats physical access attacks and logical
access attacks as presentation attacks, as both are related to presentation of falsified or altered
signal as input to the ASV system.

There are three prominent methods through which these attacks can be carried out, namely,
(a) recording and replaying the target speakers speech, (b) synthesizing speech that carries
target speaker characteristics, and (c) applying voice conversion methods to convert impostor
speech into target speaker speech. Among these three, replay attack is the most viable attack, as
the attacker mainly needs a recording and playback device. In the literature, it has been found
that ASV systems, while immune to “zero-effort” impostor claims and mimicry attacks [5], are
vulnerable to such elaborated attacks [2]. The vulnerability could arise due to the fact that ASV
systems are inherently built to handle undesirable variabilities. The spoofed speech can exhibit
undesirable variabilities that ASV systems are robust to and thus, can pass undetected.

As a consequence, developing countermeasures to detect spoofing attacks is of paramount
interest, and is constantly gaining interest in the speech community [3]. In that regard, the
emphasis until now has been on logical access attacks, largely thanks to the “Automatic Speaker
Verification Spoofing and Countermeasures Challenge” [6], which provided a large benchmark
corpus containing voice conversion-based and speech synthesis-based attacks. As discussed in
more detail in Section 2, in the literature, countermeasure development has largely focused
on investigating short-term speech processing based features that can aid in discriminating
genuine speech from spoofed signal. This includes cepstral-based features, phase information,
and fundamental frequency based information, to name a few.

The present paper focuses on two broad inter-connected research problems concerned with
presentation attack detection (PAD), namely,

1. Most of the countermeasures developed until now have been built on top of standard
short-term speech processing techniques. However, both genuine accesses and presentation
attacks are speech signals that carry same high level information, such as message, speaker
identity, and information about environment. There is not much prior knowledge that can
guide us to differentiate between genuine access speech from presentation attack speech. So
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a question that arises is: do we still need to follow standard short-term speech processing
techniques for PAD? In that direction, we propose a novel approach that simply uses first
order and second order spectral statistics computed over Fourier magnitude spectrum to
detect presentation attacks.

2. As mentioned earlier, research on detecting spoofing attacks has mainly focussed on logical
access attacks, though physical access attacks are more likely or practically easier. So a
first set of questions that arises is: are physical access attack detection and logical access
attack detection different? Would the methods developed for logical access attack detection
be scalable to physical access attack detection? Towards that, we present benchmarking
experiments on AVspoof corpus, which contains physical access attacks. Specifically, we use
the recent work by Sahidullah et al. [7], which benchmarked several anti-spoofing systems
for logical access attacks, as a starting point. We select from it several well-performing
methods and evaluate them along with the proposed-approach of using spectral statistics
based features on physical access attack detection, through an open source implementation
based on the Bob framework [8]1, and contrast them w.r.t. logical access attack detection.
We then, in one of the first efforts, further study these aspects from cross-database and
cross-attack perspective.

It is worth mentioning that a part of the results presented in the paper has appeared in [9]
and in [10]. We focus on the analysis of these results and show that the models learned for the
detection of logical and physical access attacks are different and that, as a consequence, models
cannot generalize.

The remainder of the paper is organized as follows. Section 2 provides a background on the
countermeasures developed for logical access attacks. Section 3 then motivates and presents the
proposed spectral statistic based approach for PAD. Section 4 presents the experimental setup.
Section 5 presents the results and Section 6 presents an analysis of the proposed approach and
results obtained. Finally, in Section 7, we conclude.

2 Related work

As mentioned earlier, various methods have been proposed in the context of logical access attack
detection. All these approaches, as illustrated in Figure 2, can be broadly seen as development of
a binary classification system. This involves extraction of features based on conventional short-
term speech processing and training a classifier. In this section, we provide a brief overview
about the methods. For a more comprehensive survey, please refer to [3].

Figure 2: Presentation attack detection system.

2.1 Features

In the literature, different feature representations based on short-term spectrum have been
proposed for synthetic speech detection. These features can be grouped as follows:

1. magnitude spectrum based features with temporal derivatives [7]: this includes standard
cepstral features (e.g., mel frequency cepstral coefficients, perceptual linear prediction
cepstral coefficients, linear prediction cepstral coefficients), spectral flux-based features

1http://idiap.github.io/bob/

3



that represent changes in power spectrum on frame-to-frame basis, sub-band spectral
centroid based features, and shifted delta coefficients.

2. phase spectrum based features [11, 12, 7]: this includes group delay-based features, cosine-
phase function, and relative phase shift.

3. spectral-temporal features: this includes modulation spectrum [7], frequency domain linear
prediction [7], extraction of local binary patterns in the cepstral domain [13, 14], and
spectrogram based features [15].

The magnitude spectrum based features and phase spectrum based features have been investi-
gated individually as well as in combination [16, 17, 18, 19].

In addition to these spectral-based features, features based on pitch frequency patterns
have been proposed [20, 21]. There are also methods that aim to extract “pop-noise” related
information that is indicative of the breathing effect inherent in normal human speech [22].

2.2 Classifiers

Choosing a reliable classifier is especially important given possibly unpredictable nature of at-
tacks in a practical system, since it is unknown what kind of attack the perpetrator may use
when spoofing the verification system. Different classification methods have been investigated
in conjunction with the above described features such as logistic regression, support vector ma-
chine (SVM) [7, 13], artificial neural networks (ANNs) [23, 24], and Gaussian mixture models
(GMMs) [7, 11, 12, 16, 17, 18, 19]. The choice of classifier is also dictated by factors like di-
mensionality of features and characteristics of features. For example, in [7], GMMs were able
to model sufficiently well the de-correlated spectral-based features of dimension 20-60 and yield
highly competitive systems. Whilst in [25], ANNs were used to model large dimensional hetero-
geneous features.

The classifiers are trained in a supervised manner, i.e., the training data is labeled in terms
of genuine accesses and attacks. During recognition or detection, the classifier outputs a frame
level evidence or scores for each class, which are then combined to make a final decision. For
instance, in the case of GMM-based classifier, the log-likelihood ratio is computed similarly to a
GMM-UBM ASV system, and is then compared to a preset threshold to make the final decision.

3 Proposed approach: long-term spectral statistics

This section first motivates the use of long-term spectral statistics based information for PAD,
and then presents the details of the proposed approach.

3.1 Motivation

In presentation attack detection, we face a situation where we need to discriminate a speech
signal (genuine) against another speech signal (attack) without a good prior knowledge about
the characteristics that distinguishes the two speech signals. In the literature, as discussed in
the previous section, approaches have been developed by applying conventional speech modeling
techniques to extract features and then classify them. The difficulty stems from the fact that
conventional speech modeling is equally applicable to both genuine access signals and attack
signals, even when synthesized. More precisely, the synthesis and voice conversion systems are
largely built around the notion of source-system modeling, which is also used for extracting
features for PAD. Success of such approaches largely depends upon the details involved in
source-system modeling, and consequently, may need more than a single feature representation.
For instance, the top five systems in ASVspoof Challenge 2015 employed multiple features. In
this paper, we take an approach where we make minimal assumptions about the signal. More
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precisely, we assume that the two signals have two different statistical characteristics, irrespective
of what is spoken and who has spoken. One such statistical property is the means and variances
of the energy distributed in the different frequency bins.

When such measurements are done in the conventional short-term framework, i.e., using 20-
30 ms frame sizes, they could be meaningful for detection of presentation attacks. For instance,
long term average spectrum (LTAS) has been used in the clinical domain for voice quality
measurement. It is employed for example for the early detection of voice pathology [26] or
Parkinson disease [27], or for evaluating the effect of speech therapy or surgery on the voice
quality [28]. In addition to assessing voice quality, LTAS has also been used to investigate voice
characteristics. For example, to differentiate between speakers gender [29] and speakers age [30],
and also to study singers and actors voices [31, 32]. Natural speech and synthetic speech differ
in voice quality. This difference could be captured in terms of spectral statistics.

The long-term spectral statistics are also used to build robust speech and speaker recog-
nition systems. Specifically, state-of-the-art speech and speaker recognition systems employ
cepstral mean normalization (CMN) [33] and cepstral variance normalization (CVN) [34] to
handle channel variability. Formally, the cepstrum is the Fourier transform of the log magni-
tude spectrum [35, 36]. Thus, mean and variance of log magnitude spectrum is indicative of a
channel variability, which is a desirable feature for presentation attack detection.

In summary, as spectral statistics can be indicative of voice quality as well as channel vari-
ability, we hypothesize that they can be used to develop countermeasures against presentation
attacks. The following section presents the approach in detail.

3.2 Approach

The approach consists of three main steps:

1. Fourier magnitude spectrum computation: the input utterance or speech signal x is split
into M frames using a frame size of wl samples and a frame shift of ws samples. We first
pre-emphasize each frame to enhance the high frequency components, and then compute
the N -point discrete Fourier transform (DFT) F , i.e., for frame m, m ∈ {1 · · ·M}:

Xm[k] = F(xm[n]), (1)

where n = 0 · · ·N − 1, with N = 2dlog2(wl)e, and k = 0 · · · N2 − 1, since the signal is
symmetric around N

2 in the frequency domain. If |Xm[k]| < 1, we floor it to 1, i.e., we set
|Xm[k]| = 1 so that the log spectrum is always positive. For each frame m, this process
yields a vector of DFT coefficients Xm = [Xm[0] · · ·Xm[k] · · ·Xm[N2 − 1]]T.

The number of frequency bins depends upon the frame size wl. In our approach, it is a
hyper parameter that is determined through cross validation.

2. Estimation of utterance level first order (mean) and second order (variance) statistics per
Fourier frequency bin: given the sequence of DFT coefficient vectors {X1, · · ·Xm, · · ·XM},
we compute the mean µ[k] and the standard deviation σ[k] over the M frames of the log
magnitude of the DFT coefficients:

µ[k] =
1

M

M∑
m=1

log |Xm[k]|, (2)

σ2[k] =
1

M

M∑
m=1

(log |Xm[k]| − µ[k])2, (3)

k = 0 · · · N2 − 1.

This step yields a single vector representation for each input signal or utterance.
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3. Classification: the single vector long term spectral statistic representation of the input
signal is fed into a binary classifier to decide if the utterance is a genuine access or an
attack. In the present work, we investigate two discriminative classifiers: a linear classifier
based on linear discriminant analysis (LDA) and a multi-layer perceptron (MLP) with one
hidden layer.

4 Experimental setup

We describe the details of the experimental setup in this section. All the systems described here
are based on the open-source toolbox Bob2 [8] and on Quicknet3 and are reproducible4.

4.1 Databases

We present experiments on two databases, which are the largest speech databases that can be
used for attack detection: (a) the automatic speaker verification spoofing (ASVspoof) database,
which contains only logical access attacks; and (b) the audio-visual spoofing (AVspoof) database,
which contains both logical and physical access attacks.

4.1.1 ASVspoof

The ASVspoof5 database contains genuine and spoofed samples from 45 male and 61 female
speakers. This database contains only speech synthesis and voice conversion attacks produced
via logical access, i.e., they are directly injected in the system. The attacks in this database were
generated with 10 different speech synthesis and voice conversion algorithms. Only 5 types of
attacks are in the training and development set (S1 to S5), while 10 types are in the evaluation
set (S1 to S10). This allows to evaluate the systems on known and unknown attacks. The full
description of the database and the evaluation protocol are given in [6]. This database was used
for the ASVspoof 2015 Challenge and is a good basis for system comparison as several systems
have already been tested on it.

4.1.2 AVspoof

The AVspoof database6 contains replay attacks, as well as speech synthesis and voice conversion
attacks both produced via logical and physical access. This database contains the recording
of 31 male and 13 female participants divided into four sessions. Each session is recorded in
different environments and different setups. For each session, there are three types of speech:

• Reading: pre-defined sentences read by the participants,

• Pass-phrase: short prompts,

• Free speech: the participants talk freely for 3 to 10 minutes.

For physical access attack scenario, the attacks are played with four different loudspeakers:
the loudspeakers of a laptop used for the automatic speaker verification system, external high-
quality loudspeakers, the loudspeakers of a Samsung Galaxy S4 and the loudspeakers of an
iPhone 3GS. For the replay attacks, the original samples are recorded with: the microphone
of the ASV system, a good-quality microphone AT2020USB+, the microphone of a Samsung
Galaxy S4 and the microphone of an iPhone 3GS. The use of diverse devices for physical access
attacks enables the database to be more realistic.

2https://www.idiap.ch/software/bob/
3http://www1.icsi.berkeley.edu/Speech/qn.html
4Source code: https://pypi.python.org/pypi/bob.paper.taslp 2016
5http://dx.doi.org/10.7488/ds/298
6https://www.idiap.ch/dataset/avspoof
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4.2 Evaluation Protocol

In both databases, the dataset is divided into three subsets, each containing a set of non-
overlapping speakers: the training set, the development set and the evaluation set. The number
of speakers and utterances corresponding to these three subsets are presented in Table 1 and in
Table 2 respectively for the ASVspoof database and the AVspoof database.

Table 1: Number of speakers and utterances for each set of the ASVspoof database: training,
development and evaluation.

data set speakers utterances
male female genuine LA attacks

train 10 15 3750 12625
development 15 20 3497 49875
evaluation 20 26 9404 184000

Table 2: Number of speakers and utterances for each set of the AVspoof database: training,
development and evaluation.

data set speakers utterances
male female genuine PA attacks LA attacks

train 10 4 4973 38580 17890
development 10 4 4995 38580 17890
evaluation 11 5 5576 43320 20060

The evaluation measure used in ASVspoof 2015 Challenge was equal error rate (EER), where
the decision threshold τ∗ is set as:

τ∗ = arg min
τ
|FARτ − FRRτ |

More specifically, in both the development and evaluation set, the threshold is fixed indepen-
dently for each type of attack with the EER criterion. Then, the performance of the system is
evaluated by averaging the EER over the known attacks (S1-S5), the unknown attacks (S6-S10)
and all the attacks.

EER is an unrealistic evaluation measure as the performance is measured based on a decision
threshold determined on the evaluation set. Thus, a more realistic evaluation approach would
be to determine τ∗ on the development set and compute the half total error rate (HTER) on
the evaluation set:

HTERτ∗ =
FARτ∗ + FRRτ∗

2

As presented in the following section, we adopt HTER as the evaluation measure for both
ASVspoof and AVspoof databases.

4.3 Methodology

We study the proposed approach along with other approaches proposed in the literature in the
following manner:

1. we first conduct experiments on the ASVspoof database using the evaluation measure
employed in the Interspeech 2015 competition, i.e., EER. We then extend the experiments
with HTER as the evaluation measure;

2. next, we conduct experiments on the AVspoof database and study both logical access and
physical access attacks with HTER as the evaluation measure;
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3. and finally, we investigate the generalization of the systems through cross-database exper-
iments. More specifically, we use the training and development sets of one database to
train the system and determine the decision threshold, and then evaluate the systems on
the evaluation set of the other database with HTER as the evaluation measure.

4.4 Systems

In this section, we present the systems investigated, namely, baseline systems and the LTSS-
based systems. All these systems have a common preprocessing step for voice activity detection
(VAD) to detect the begin and end points of the utterance, which is done by jointly using the
normalized log energy and the 4 Hz modulation energy [37] on frame sizes of 20 ms and frame
shift of 10 ms. It is worth mentioning that, in case of physical access attacks, this step removes
an indicative noise present at the beginning and the end of the utterances, as a consequence of
pressing play and stop buttons. Removing those parts ensures that our system is not relying on
these portions to differentiate between genuine accesses and attacks.

4.4.1 Baseline systems

We selected several state-of-the-art PAD systems that performed well in a recent evaluation by
Sahidullah et al. [7] on the ASVspoof database as baseline systems.

Feature extraction By following [7], we selected four cepstral-based features with linear-scale
triangular (LFCC) and rectangular (RFCC), mel-scale triangular (MFCC) [38], and inverted
mel-scale triangular (IMFCC) filters. It is worth pointing out that: (a) RFCC and LFCC
only differ in the filter shapes; and (b) LFCC, MFCC, and IMFCC have the same filter shapes
but differ in filter placements. These features are computed from a power spectrum (power of
magnitude of 512-sized FFT) by applying one of the above filters of a given size (we use size 20
as per [7]). We also implemented spectral flux-based features (SSFC) [37], which are Euclidean
distances between power spectrums (normalized by the maximum value) of two consecutive
frames, subband centroid frequency (SCFC) [39], and subband centroid magnitude (SCMC) [39]
features. A discrete cosine transform (DCT-II) is applied to all the above features, except for
SCFC, and the first 20 coefficients are taken.

Since Sahidullah et al. [7] reported that static features degrade performance of PAD systems,
we kept only deltas and double-deltas [40] (40 in total) computed for all features.

Classifier We adopted a GMM-based classifier (two models corresponding to genuine access
and attack), since it yielded better systems when compared to SVM. We used the same 512
number of mixtures and 10 EM iterations as done in [7]. The score for each utterance in the
evaluation set is computed as a difference between the log-likelihoods of the genuine access model
and attack model. The score is finally thresholded to make the final decision.

4.4.2 LTSS-based systems

Feature extraction The underlying idea of the proposed approach is that the attacks could
be detected based on spectral statistics. It is well known that when applying Fourier transform
there is a trade-off between time and frequency resolution, i.e., the smaller the frame size, the
lower the frequency resolution and the larger the frame size, the higher the frequency resolution.
So, the frame size affects the estimation of the spectral statistics. Alternately, the frame size is
an hyper-parameter.

For both logical access attack and physical access attacks, we determined the frame sizes
based on cross validation, while using a frame shift of 10 ms. More precisely, we varied the
frame size from 16 ms to 512 ms and chose the frame size that yielded the lowest EER on the

8



development set. For the case of logical access attacks, we have found that frame size of 256 ms
yielded 0% EER on both ASVspoof Challenge and AVspoof database. In the case of physical
access attacks on AVspoof database, we found that 32 ms yields the lowest EER, which is 0.02%.
A potential reason for this difference could be that the channel information inherent in physical
access attacks is spread across frequency bins while in the case of logical access attacks the
relevant information may be localized. We dwell in more detail about it later in Section 6.4.

Classifier We investigate two classifiers, namely, a linear classifier based on linear discriminant
analysis (LDA) and a non-linear classifier based on multi-layer perceptron (MLP). The input to
the classifiers are the spectral statistics estimated at the utterance level as given in Equation
(2) and Equation (3), i.e., one input feature vector per utterance.
LDA: the input features are projected onto one dimension with LDA and we directly use the
values as scores.
MLP: we use an MLP with one hidden layer and two output units. The MLP was trained
with a cost function based on the mean square error using the back propagation algorithm and
early stopping criteria. The number of hidden units was determined based on cross validation.

5 Results

This section presents the performance of the different systems investigated. We first present the
studies on ASVspoof database in Section 5.1 followed by the studies on AVspoof database in
Section 5.2, and finally the cross database studies in Section 5.3.

5.1 Performance on ASVspoof database

For the purpose of reference, Table 3 shows the five best systems (denoted as System ID A-E)
proposed in the ASVspoof 2015 challenge [6]. The ASVspoof 2015 challenge systems typically
employed multiple features and fusion techniques. For example, the team that achieved the best
performance [16] used a fusion of cochlear filter cepstral coefficients, instantaneous frequency and
mel-frequency cepstral coefficients, classified with a GMM. Similarly, the second best system [41]
employed fusion of multiple features based on mel-frequency cepstrum and phase spectrum;
transforming them into i-vectors; and finally classifying with a support vector machine. More
information on these systems can be found in the respective citations provided in the table.

Table 3: Performance of the five best systems in the ASVspoof 2015 challenge in terms of EER
(%), taken from [6]. Evaluation set.

System Known Unknown Average
A [16] 0.408 2.013 1.211
B [41] 0.008 3.922 1.965
C [23] 0.058 4.998 2.528
D [24] 0.003 5.231 2.617
E [17] 0.041 5.347 2.694

Table 4 presents the results based on the evaluation protocol used in the ASVspoof 2015
competition. The results for known and unknown attacks of the evaluation set are presented
separately. We show the results presented in Table 4 of [7] (columns titled as “[7] EER (%)”)
as well as our Bob-based implementation of the same systems (columns titled as “Bob EER
(%)”). We can observe that both implementations lead to similar results for known attacks,
while our Bob-based system shows smaller error rates for unknown attacks. Furthermore, when
compared to the top five systems in the ASVspoof 2015 challenge (Table 3), it can be observed
that the baseline systems typically yield lower performance on known attacks but largely better
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performance on unknown attacks. The proposed approach however yields comparable systems
on known attacks and comparable or better systems on unknown attacks.

Table 4: EER(%) of PAD systems on ASVspoof with results in “[7] EER (%)” column taken
from [7]. Evaluation set.

System [7] EER (%) Bob EER (%)
Known Unknown Known Unknown

SCFC 0.07 8.84 0.10 5.17
RFCC 0.12 1.92 0.12 1.32
LFCC 0.11 1.67 0.13 1.20
MFCC 0.39 3.84 0.46 2.93
IMFCC 0.15 1.86 0.20 1.57
SSFC 0.30 1.96 0.23 1.60
SCMC 0.17 1.71 0.18 1.37
LTSS, LDA N/A N/A 0.03 2.09
LTSS, MLP N/A N/A 0.10 0.40

Table 5 presents the results in terms of HTER. It can be observed that the proposed approach
yields one of the lowest HTERs for known attacks scenario when using a LDA classifier and the
lowest HTER for unknown attacks scenario when using a MLP. Furthermore, these results can
be contrasted with the results in the right column of Table 4, i.e. Bob EER, as they share the
same implementation except for the evaluation measure. It can be observed that the rank order
of the systems based on the HTER and EER are not same, especially for the case of unknown
attacks. Thus, indicating that the evaluation based on EER is not a true indicator of practical
scenario.

Table 5: HTER(%) of PAD systems on ASVspoof. Evaluation set.

System Known Unknown
SCFC 0.20 6.71
RFCC 0.21 2.11
LFCC 0.27 1.77
MFCC 0.84 3.76
IMFCC 0.32 3.19
SSFC 0.35 2.12
SCMC 0.38 1.88
LTSS, LDA 0.03 6.36
LTSS, MLP 0.18 0.60

5.2 Performance on AVspoof database

Table 6 presents the results on the AVspoof database, which contains both logical access (LA) at-
tacks and physical access (PA) attacks. Two separate baseline systems and LTSS-based systems
were trained and evaluated for these two attacks.

We can note that: (i) the LA set of AVspoof is less challenging compared to ASVspoof
for all, except for SSFC-based methods and for our MLP-based system, and (ii) presentation
attacks are significantly more challenging compared to LA attacks for all the baseline systems.
The increase in HTER for almost all the baseline PAD systems is considerably high for PA
compared to LA attacks. This means that presentation attacks, besides emulating a more
realistic scenario, pose a serious threat to the state of the art systems and need to be considered
in all future evaluations of anti-spoofing systems. On the other hand, the proposed approach
with linear classifier outperforms the baseline systems on both LA attacks and PA attacks. The
MLP-based system yields one of the lowest error rate on PA but performs worse on LA.
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Table 6: HTER (%) of PAD systems on AVspoof, separately trained for the detection of Physical
Access (PA) and Logical Access (LA) attacks. Evaluation set.

System LA PA
SCFC 0.00 5.15
RFCC 0.03 2.70
LFCC 0.00 5.00
MFCC 0.00 5.34
IMFCC 0.01 3.76
SSFC 0.70 4.17
SCMC 0.01 3.24
LTSS, LDA 0.04 0.18
LTSS, MLP 1.00 0.14

Table 7: Cross database evaluation on ASVspoof and AVspoof databases of PAD systems in
terms of HTER (%). Evaluation set.

System ASVspoof (Train/Dev) AVspoof-LA (Train/Dev)
AVspoof-LA (Eval) AVspoof-PA (Eval) ASVspoof (Eval) AVspoof-PA (Eval)

SCFC 1.43 6.48 19.99 7.56
RFCC 34.93 38.54 25.58 13.20
LFCC 0.71 10.58 18.44 8.40
MFCC 1.87 9.82 10.13 5.15
IMFCC 2.28 46.49 21.80 49.57
SSFC 34.64 41.68 43.50 36.26
SCMC 1.23 12.16 22.99 7.97
LTSS, LDA 43.35 45.62 14.08 36.64
LTSS, MLP 50.00 50.00 46.13 23.01

5.3 Cross-database testing

This section presents the study on generalization capabilities of the systems. To do so, as
mentioned earlier in Section 4.3, we used the training and development sets of one database and
the evaluation set of anther database. We train the systems on the detection of logical access
attacks and observe whether or not it can generalize to the detection of logical access attacks of
another database and to the detection of physical access attacks.

Table 7 presents the results of the study. We see that there is no system that outperforms the
others in all the scenarios. The performance depends on which data was used during the training
and during the evaluation. Furthermore, even though our system outperforms the others when
training and evaluating on the same dataset, we observe that it does not generalize well to unseen
attacks and unseen recording conditions. Furthermore, LDA-based system outperforms MLP-
based system on three scenarios, suggesting that the MLP-based system overfits. We analyze
the reasons in Section 6.2.

6 Analysis

In this section, we give further insights into the long-term spectral statistics based approach. We
first analyze the results obtained on the ASVspoof database per type of attack with a focus on
the S10 attack as this is the most challenging one. Then, we analyze why our system yields one of
the highest error rate in Table 7 when trained on the AVspoof-LA database and evaluated on the
ASVspoof database. Afterwards, we analyze the LDA classifier to understand the information
modeled for logical and physical access attacks. Finally, we study the impact of the frames
length, which is directly related to the frequency resolution, on the performance of the system.
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Table 8: EER (%) per type of attack computed on the ASVspoof database. Evaluation set.

System S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
A [16] 0.10 0.86 0.00 0.00 1.08 0.85 0.24 0.14 0.35 8.49
B [41] 0.00 0.02 0.00 0.00 0.01 0.02 0.00 0.02 0.00 19.57
D [24] 0.0 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 26.1
E [17] 0.024 0.105 0.025 0.017 0.033 0.093 0.011 0.236 0.000 26.393
LFCC 0.032 0.500 0.000 0.000 0.126 0.151 0.011 0.234 0.032 5.561

CQCC [42] 0.005 0.106 0.000 0.000 0.130 0.098 0.064 1.033 0.053 1.065
LTSS, LDA 0.000 0.043 0.000 0.000 0.086 0.086 0.022 0.086 0.032 10.218
LTSS, MLP 0.011 0.151 0.000 0.000 0.352 0.288 0.054 0.043 0.065 1.564

6.1 Analysis of ASVspoof results

As explained in Section 4.1, the evaluation set of the ASVspoof database contains 10 different
types of attacks, denoted respectively S1 to S10, which are either voice conversion of speech
synthesis attacks. The attacks S1 to S5 are contained in the training, development and evaluation
set, while the attacks S6 to S10 are only in the evaluation set. The attacks S1 to S4 and S6 to
S9 are all based on the same “STRAIGHT” vocoder [43]. On the other hand, S5 is based on
the MLSA vocoder [44], and S10 is a unit-selection based attack, which does not require any
vocoder.

Table 8 shows the per-attack based comparison between the best systems of the Interspeech
2015 ASVspoof competition, the best baseline system (LFCC), the recent system based on
constant Q cepstral coefficients (CQCC) [42], and the systems based on the proposed LTSS
approach. We can observe that all systems achieve very low EERs on the attacks S1 to S9. The
main source of error is the S10 attack and the overall performance of the systems differ as a
consequence of that. More precisely, among the systems compared, System D and System B
in the ASVspoof Interspeech 2015 challenge yield the best performance across all the attacks
except for S10. Similarly, we can see that, in our approach, the LDA classifier consistently yields
a comparable or better system than the MLP classifier, except for the S10 attack. This indicates
that a more sophisticated classifier is needed to detect attacks arising from concatenative speech
synthesis systems. Otherwise, a linear classifier is sufficient to discriminate genuine accesses and
attacks based on LTSS. These observations also help in understanding the trends on AVspoof-LA
where the LDA based system outperforms the MLP based system.

Finally, it is worth pointing out that in the literature, to the best of our knowledge, CQCC-
based approach has achieved the best performance on S10 attack, and as a consequence one of
the best overall average performance. We can observe that the proposed LTSS based approach
with MLP as classifier closely matches that.

6.2 Analysis of cross-database performance

In our experimental studies on ASVspoof database, we observed that the proposed approach
generalizes across unseen attacks. However, in the case of cross database studies, especially
when trained on ASVspoof and tested on AVspoof-LA (see Table 7), we observe that it is
worse than all systems. In order to understand, we analyzed the score histograms on ASVspoof
that are used to determine the threshold and the score histograms that are obtained in the test
condition. Figure 3 shows these histograms. We see that on the development set of the ASVspoof
database, the attacks scores are clearly separated from the genuine accesses scores. However,
when applying the same threshold on the evaluation of the AVspoof database, we see that a lot
of genuine accesses are wrongly classified as attacks, i.e., the FRR is high (86.496%) while the
FAR is still very low (0.002%). We believe that this difference is a consequence of the difference
in the recording conditions. Specifically, the genuine speech in ASVspoof database was recorded
in a hemi-anechoic chamber using an omni-directional head-mounted microphone. On the other
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hand, the genuine speech of AVspoof-LA database was recorded in realistic conditions with
different microphones: a very good quality microphone, laptop microphone and two smartphones
microphones.

(a) Development set: ASVspoof database (b) Evaluation set: AVspoof LA database

Figure 3: Score histograms of the proposed LDA-based system, trained on the ASVspoof database
and evaluated on the AVspoof-LA dataset.

6.3 Analysis of the discrimination

When classifying the features with a LDA, we project them into one dimension, which best
separates the genuine accesses from the attacks in the sense that we maximize the ratio of the
“between class variance” to the “within-class variance”. By analyzing this projection, we can
gain insight about the importance of each component in the original space. More precisely, each
extracted feature vector is a concatenation of a spectral mean and a spectral standard deviation.
Thus, each half of a feature vector lies in the frequency domain, and their components are linearly
spaced between 0 and 8 kHz. For example, if we compute the spectral statistics over frames
of 256 ms, each spectral mean and spectral standard deviation vectors are composed of 2048
components and the ith component will correspond to the frequency ≈ i × 3.91Hz. Analyzing
the LDA projection vector can thus lead us to understand the importance of each frequency
region.

Figure 4 shows the plot of the absolute values of the first 800 components of the projection
vector learned by the LDA classifier trained to detect the physical access (AVspoof-PA) and
logical access (AVspoof-LA) attacks on the AVspoof database, and the logical access attacks
on the ASVspoof database (ASVspoof). These components correspond to the spectral mean
between 0 and ≈ 3128 Hz. As the frequency increase above this value, the average amplitude of
the LDA weights does not change, which is why the high-frequency components are not shown
on this figure.

We observe that when detecting physical access attacks, even though the weights are slightly
higher in the low frequencies, importance is given to all the frequency bins. This can be explained
by the fact that playing the fake sample through loudspeakers will modify the channel impulse
response across the whole bandwidth. Thus, the relevant information to detect such attacks is
spread across all frequency bins. However, in the case of logical access attacks, we observe that
importance is given to a few frequency bins that are well below 50 Hz, i.e., the discriminative
information in the frequency domain is highly localized in the low frequencies. We observed
similar trend as AVspoof-LA with LDA classifier trained on ASVspoof database.

Natural speech is primarily realized by movement of articulators that convert DC pressure
variations created during respiration into AC pressure variations or speech sounds [45]. Alter-
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(a) physical access attacks (AVspoof
PA)

(b) logical access attacks (AVspoof
LA)

(c) logical access attacks (ASVspoof)

Figure 4: 800 first LDA weights for physical and logical attacks of AVspoof and ASVspoof
databases, corresponding to the frequency range [0, 3128] Hz.

natively, there is an interaction between pulmonic and oral systems during speech production.
In speech processing, including speech synthesis and voice conversion, the focus is primarily on
glottal and oral cavity through source-system modeling. In the proposed LTSS-based approach,
however, no such assumptions are being made. As a consequence, the proposed approach could
be detecting logical access attacks on the basis of the effect of interaction between pulmonic
and oral systems that exists in the natural speech but not in the synthetic or voice converted
speech (due to source-system modeling and subsequent processing). It is understood that the
interaction between pulmonary and oral cavity systems can create DC effects when producing
sounds such as clicks, ejectives, implosives [45]. Furthermore, human breath in the respiration
process can reach the microphone and appear as “pop noise” [22], which again manifests in the
very low frequency region. This possibly explains why the LDA classifier gives emphasis to very
low frequency regions in the case of logical access attacks.

6.4 Analysis of the impact of the frame length

In the experimental studies, we observed that physical access attacks and logical access attacks
need two different window sizes (found through cross-validation). A question that arises is: what
is the role of window size or frame lengths in the proposed approach? In order to understand
that we performed evaluation studies by varying the frame lengths, namely, 16ms, 32 ms, 64 ms,
128 ms, 256 ms and 512 ms. Figure 5 presents the HTER computed on the evaluation set for
different frame lengths. We compare the performance impact on the detection of physical and
logical access attacks of the AVspoof database and on the logical access attacks of the ASVspoof
database. For the sake of clarity, unknown S10 attack results are presented separately than the
rest if unknown attacks S6-S9.

For physical access attacks AVspoof-PA, it can be observed that the performance steadily
decreases from 16 ms to 128 ms and after that it degrades. A likely reason for the degradation
after 128 ms is that in physical access attacks there is a channel effect. For that effect to be
separable and meaningful for the task at hand, the channel needs to be stationary. We speculate
that the stationary assumption is not holding well on longer window sizes.

For logical access attacks, it can be observed that for AVspoof-LA, ASVspoof S1-S5 (known)
and ASVspoof S6-S9 (unknown), the performance steadily drops from 16 ms till 256 ms with
slight degradation at 512 ms. Whilst for ASVspoof S10, which contains attacks synthesized using
unit selection speech synthesis system, the performance degrades at first and then steadily drops
with increase of window size. Our results indicate that for attacks arising due to parametric
modeling of speech, as in the case of ASVspoof S1-S9 and AVspoof-LA, frequency resolution is
not an important factor while for unit selection based concatenative synthesis, where the speech
is synthesized by concatenating speech waveforms, high frequency resolution is advantageous
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Figure 5: Impact of frames lengths on the performance of the proposed LDA-based approach,
evaluated on the three datasets: ASVspoof, AVspoof-LA and AVspoof-PA.

or helpful. More specifically, together with the observations made in the previous section, we
conclude that the relevant information to discriminate genuine access and logical access attacks
based on concatenative speech synthesis is highly localized in the low frequency region. This
conclusion is in line with the observations made with the use of CQCC feature [42], which also
provides high frequency resolution in the low frequency regions and leads to large gains on S10
attack condition.

Finally, the analysis also clearly shows that typical short-term speech processing with 20-30
ms window size and other speech signal related assumptions such as source-system modeling is
not a must for detecting spoofing attacks.

7 conclusions

In one of the first efforts, this paper investigated detection of both physical access attacks and
logical access attacks. In this context, we proposed a novel approach that detects presentation
attacks based on input signal magnitude spectrum statistics and studied it in comparison to
approaches based on conventional short-term spectral features. Our investigations on two sepa-
rate datasets, namely, Interspeech 2015 ASVspoof challenge and AVspoof lead to the following
observations:

1. The proposed approach which does not make any speech signal related assumptions works
equally well for both physical access attacks and logical access attacks. However, analysis of
the linear discriminative classifier shows that for physical access attacks the discriminative
information is spread over different frequency bins while for logical access attacks the
discriminative information is more localized in low frequency bins.

2. Standard short-term spectral features based approach proposed in the literature work well
for logical access attacks but lead to inferior systems on physical access attacks, when
compared to the proposed approach. This can be due to the fact that in the literature
the research has mainly focused on logical access attacks. As a consequence, the methods
may be more tuned to that.

3. Cross-database and cross-attack studies show that none of the approaches truly generalize
across databases. Such a claim arises despite observing that LFCC based system trained
on ASVspoof leads to a low HTER on AVspoof-LA test set because a small modification
i.e. by just replacing the triangular shaped filters by rectangular shaped leads to a drastic
degradation.
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Taken together these observations provide the following directions for future research:

1. The proposed approach of using long term spectral statistics provide benefits such as simple
feature extraction with no speech signal related assumption, linear classifier. So, should
we treat the problem from the perspective of prior knowledge based speech processing or
not? In that direction, we aim to focus on up-and-coming approaches to learn relevant
information or features and the classifier jointly from the raw speech signal with little or no
prior knowledge. Such methods of discovering features could lead to better understanding
of the problem.

2. The cross-domain studies show that there is need for more resources and further research
on how to make the counter-measure systems robust or domain invariant. On the latter
aspect, we aim to explore multiple classifier fusion techniques, as the studies indicate that
a single feature would not be sufficient.

3. Our experiments and analyses show that physical access attacks and logical access attacks
are not of the same nature. So should the future research emphasis lie on physical access
attacks or logical access attacks? Given the realistic nature of physical access attacks, our
future work will build on the on-going initiatives in the context of the SWAN project7 for
data collection and development of counter-measures.
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