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ABSTRACT

In the past few years, Deep Neural Network (DNN) based i-
vector Speaker Verification (SV) systems have shown to provide
state-of-the-art performance. However, error rates increase drasti-
cally for short duration recordings. In this paper, we improve the
i-vector approach for short utterances, (i) by using smoothed DNN
posteriors for i-vector extraction, and (ii) by normalizing the content
of the enrollment data to match the test data. The quality of DNN
posteriors is enhanced by employing an Automatic Speech Recog-
nition (ASR) system to generate phone recognition lattices. These
lattices incorporate content information through the use of lexical
and language models across a number of hypothesized paths. Con-
tent normalization is then performed by estimating i-vectors on pho-
netic units. The largest similarity scores across phonetic units co-
occurring in enrollment and test are taken. Experiments on a modi-
fied protocol of the RSR database show that the proposed approach
achieves 67% relative improvement in equal error rate over a DNN-
based i-vector baseline system in a condition where the content of
the test data has been seen during enrollment.

Index Terms— speaker verification, i-vectors, content mis-
match, posteriors

1. INTRODUCTION

Over the last decade, the state-of-the-art techniques in Speaker Ver-
ification (SV) such as i-vector and Joint Factor Analysis (JFA) have
shown to provide high performance for a variety of conditions in-
cluding long duration utterances [1, 2]. When applied to forensic or
access control, systems are asked to deal with short recordings of
speech. However, the performance of SV systems on short test ut-
terances is far from being acceptable for any deployable system [3].
Such poor performance can be mainly attributed to the difficulty of
the SV systems to deal with the content mismatch, i.e. the choice of
words differ from enroll to test [4].

In text-dependent SV systems using fixed phrases, the test and
enrollment content is expected to be the same. In case it is not,
the system can reliably detect the mismatch and reject the claim.
In text-independent SV, the test and enrollment content is uncon-
strained, thus being unlikely for the content to be matched. In this
scenario, systems are asked to make decisions independently of such
mismatch, i.e. focusing on the speaker factor only.

Various techniques have been explored that aim at exploiting
the content information of the test data for text-independent SV sys-
tems [5, 6, 7]. In [5], content information is used by extracting an
i-vector for every linguistic unit of the utterance. Experimental re-
sults show that a significant gain in performance can be achieved
using this approach. In [6, 7], content-matching is performed by

transforming the enrollment data to match the lexical content of the
test utterance. In [6], a few top-scoring posteriors from a Gaussian
Mixture Model (GMM) are selected to transform a conversational ut-
terance into a text-dependent one. In [7], posteriors estimated using
a Deep Neural Network (DNN) are used for content-matching, prior
to i-vector extraction. This approach outperforms a GMM based i-
vector system, probably due to the use of DNN being trained for
content discrimination. Furthermore, an approach that scales enroll-
ment zero-th order statistics to match test statistics is proposed as a
way to successfully deal with content mismatch [7].

The conventional approaches described above perform content
matching in the i-vector framework using context-dependent state
(senone) posteriors estimated using DNN. In our work, we use
senone posteriors estimated from Automatic Speech Recognition
(ASR) phone recognition lattices. These senone posteriors incorpo-
rate the information of both the acoustic (incorporating also lexical
model) and language models, thus increasing phone classification
accuracy. We leverage on recent work where the performance of
i-vector based SV systems was shown to be directly linked to such
accuracy [8].

We also present a method to perform content normalization by
selecting regions in the enrollment data to match the test data by
employing i-vectors. In this approach, we assume that estimating i-
vectors on linguistic units, such as phones, of the speech signal can
contain sufficient speaker and content information. The common
phonetic units between the enrollment and test data are obtained by
using cosine distance metric.

The paper is organized as follows. Sections 2 and 3 describe the
scenarios considered in this paper and the baseline system while Sec-
tion 4 describes SV using posteriors generated by ASR and the con-
tent normalization technique. Sections 5 and 6 describe the experi-
mental setup for the evaluating the system and discuss the achieved
results by various systems. Finally, the paper is concluded in Sec-
tion 7.

2. TEXT-INDEPENDENT SCENARIO

Content variability has a strong impact on the performance of a SV
system when short utterances are involved [4, 9]. For text-dependent
SV, the enrolled content is expected to be the same as the test content,
as shown in Figure 1 (a) (Matched).

In the text-independent case, the system may have to deal with
the content mismatch to produce improved similarity scores. Re-
gardless of the enrollment data being used, two scenarios can be
considered to better understand the effect of content mismatch:

• Seen: the test content has been pronounced during enroll-
ment, and thus, lexical content of the test data is a subset of
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Fig. 1: Various scenarios of sharing content for the Text-Dependent
(TD) and Text-Independent (TI) systems.

the enrollment data. This is shown in Figure 1 (b).

• Unseen: the test content has not been spoken during enroll-
ment. Figure 1 (c) illustrates this as well as a possible in-
tersection between the phonemes or words co-occurring be-
tween enrollment and test data.

In this paper, we aim at improving speaker recognition perfor-
mance of a SV system in the scenarios described above.

3. BASELINE SYSTEM

The state-of-the-art text-independent SV approach to model speak-
ers is built around i-vectors [2]. This approach assumes that the
invariant speaker characteristics lie in a low dimensional subspace
of mean GMM supervectors. A speaker model is represented by a
fixed-dimensional vector called i-vector.

In [7], DNNs were used to cluster the acoustic space into linguis-
tic units such as senones, making it easier to focus on the content of
each utterance. The posterior probabilities of each of the senones
were then used for i-vector extraction. A posterior normalization
technique was further proposed to scale the zero-th and first order
statistics of the enrollment data to match those in the test data [7].
The technique is described as follows. Let Ne, Nt, Fe and Ft be
the zero-th order first order statistics of the enrollment and test utter-
ances respectively. The new statistics of the enrollment are obtained
as

N
′
e = βNe (1)

F
′
e = βFe, (2)

where β is a normalization constant and is defined as Nt/Ne. When
Ne or Nt is 0, β is set to zero as well. The details of the technique can
be found in [7]. The DNN based i-vector system using this technique
is among the baseline systems in this paper.

4. POSTERIORS AND CONTENT MATCHING

In this work, we use two techniques to perform content normaliza-
tion, one based on DNN posterior estimation and the other using
online i-vectors. Both are described in the following sections:

4.1. Posteriors from ASR decoder

A DNN based i-vector system involves the estimation of zero-th and
first order statistics as a prior step to computing the i-vectors. The
state-of-the-art SV systems compute these statistics using the senone
posteriors obtained at the output of the DNN [7, 10]. Therefore, the
DNN acts as a short-term content estimator in terms of senones.

In this work, senone posteriors are obtained after decoding using
language and lexical models, in the context of an ASR system. In [8],

it was shown that senone posteriors obtained after ASR decoding
performed better than those obtained after a DNN forward pass. The
former posteriors are smoothed by using language constraints and
drastically improve the phone accuracy.

In our work, we use a lattice decoder [11], based on a Weighted
Finite State Transducer (WFST), that outputs a graph of hypothe-
sized sequences of phones (although the acoustic model is trained
using a word dictionary, we applied a phone Language Model (LM)).
Senone posterior probabilities are estimated from the acoustic scores
at the nodes of the lattice, after the forward-backward recursion,
for each frame. These are used for i-vector extraction. For con-
tent normalization, we use the posterior normalization technique as
proposed for the baseline system [7].

4.2. Content normalization using i-vectors

In this paper, an alternative content normalization technique is fur-
ther proposed. This approach decodes phone sequences for each ut-
terance and computes i-vectors on the acoustic features aligned with
each phone class instance in an utterance.

Enrollment and test content are matched by computing the max-
imum similarity scores from each phone class instance in test to all
instances in enrollment. As many scores as the number of phone
class instances in test are obtained. Finally, these scores are aver-
aged to obtain a global similarity score. The rationale behind this
approach is to choose the best phone class instance in the enrollment
data. The accumulated global score is obtained as follows

s(X,Y) =
1

C

∑
j

minid(xi,yj), (3)

where X = {x1, x2, · · · , xR} and Y= {y1, y2, · · · , yC} repre-
sent set of i-vectors for the enrollment and test data, the function
d(xi, yj) computes the distance between the i-vectors xi and yj .
The score s(X,Y) represents the accumulated distance between the
closest phone units. We used the cosine distance metric to compute
the dissimilarity between two i-vectors. A threshold on the cosine
distance is applied to detect when a test phone unit is not present in
the enrollment data. This threshold is optimized for the development
data set.

5. EXPERIMENTAL SETUP

In this section, we describe the experimental setup for the baseline
and proposed systems.

5.1. Evaluation and Training Data

We performed experiments on the evaluation Part1 portion of the
RSR data set [9, 12, 13], restricting to female speakers only. This
subset contains 49 speakers with speech utterances from 30 unique
pass-phrases. The protocol described in [9] was adopted to perform
text-dependent and text-independent SV. We created three conditions
based on those found in [7] to evaluate the proposed systems:

• Matched: Speaker-mismatch trials involving 15 pass-phrases,
735 speaker models, 4’410 and 211’680 target and impostor
trials, as part of the original RSR text-dependent protocol.

• Seen: Text-independent trials involving 15 pass-phrases with
each speaker model being built using three sessions for each
pass-phrase, for a total of 45 utterances. The test data is same
as in Matched condition. The same number of trials as in
Matched condition are scored.



• Unseen: Text-independent trials with the enrollment data be-
ing the same as in the Seen condition. The test data are
taken from utterances involving pass-phrases that are not seen
during enrollment. This condition contains 4’405 target and
211’310 impostor trials.

The Fisher female English Part I and II data was used as the
training data. It contains about 13k utterances with 1000 hours. The
NIST datasets - SRE 2004, 2005, 2006, 2008 and 2008 extended,
Switchboard Part II and Part III, and Switchboard Cellular Part I
and II - were used as the development data. All speech files were
downsampled to 8 kHz for compatibility with other datasets used for
system development.

5.2. i-vector system

The front-end SV system extracts Mel Frequency Cepstral Coeffi-
cients (MFCC) of 20 dimensions from 25 ms of frame of speech
signal with 10 ms sliding window with the delta and double delta
features appended to it. Short time gaussianization is applied to the
features using a 3 s sliding window [14]. The Hungarian phoneme
recognizer is used to detect voice activity. It compares the sum of
posteriors over all phone classes with the posterior of the silence
class to classify each frame as speech or non-speech [15]. This is
used to mark the start and end points of the speech region in the
audio. The training data is used to estimate the parameters of the
i-vector model. The dimensionality of i-vector extractor is set to
400. Linear discriminant analysis (LDA) and Probabilistic Linear
discriminant analysis (PLDA) models are trained on the develop-
ment data.

5.3. ASR system

DNN acoustic model is trained as a part of the ASR system. It is
trained with MFCCs with 6 hidden layers each of dimension 1200.
The output layer has 1530 senone units including 20 silence units.
The ASR system employs a CMU dictionary with 42k words, similar
to [3]. The ASR system is validated on a separate subset consisting
of 200 utterances from the Fisher database with 3gram word LM.
The Word Error Rate (WER) on the validation set is 24.4%.

For generating phone recognition lattices, we used a 2gram
phone LM trained on transcripts of the training data. The extracted
senone posteriors are used to estimate the parameters of the i-vector
model.

6. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we describe the results obtained with the baseline
and the proposed SV systems. The various systems considered in
this paper are the following

• IvecPLDA: the conventional i-vector systems for speaker recog-
nition. The systems using GMM, DNN and decoded ASR
(phone) lattice posteriors are referred to as IvecGMM

PLDA, IvecDNN
PLDA

and IvecDNN-dec
PLDA respectively.

• PN: the systems using posterior normalization technique as
explained in Section 4.1. The systems using GMM, DNN
and decoded ASR (phone) lattice posteriors for i-vector ex-
traction are referred to as PN-IvecGMM

PLDA , PN-IvecDNN
PLDA and

PN-IvecDNN-dec
PLDA respectively.

• minD: the SV systems applying content normalization tech-
nique using i-vectors as explained in Section 4.2. The systems

Table 1: Performance of the various baseline systems in terms of
EER(%). The PN-IvecDNN

PLDA provides the best performance among
the baseline systems in Seen condition.

Systems/Conditions Matched Seen Unseen
IvecGMM

PLDA 3.7 16.5 22.5
IvecDNN

PLDA 2.8 11.6 23.4
PN-IvecGMM

PLDA 3.1 12.3 27.1
PN-IvecDNN

PLDA 2.4 8.6 28.4

using GMM, DNN and decoded ASR (phone) lattice posteri-
ors for i-vector extraction are referred to as minD-IvecGMM ,
minD-IvecDNN and minD-IvecDNN-dec respectively.

6.1. Baseline SV systems

Table 1 shows the performance of various i-vector based SV sys-
tems. We observe that the performance of the systems on Matched
condition (column 1 of rows 1 and 2) is worse compared to the re-
sults published in [16]. It may be due to the case that parameters of
the systems in [16] are tuned for the RSR dataset, while in this paper
we rather used the text-independent SV setup (without using RSR
data set for system development).

From Table 1, we observe that incorporating the linguistic in-
formation from a DNN benefits performance in Matched and Seen
conditions. The IvecDNN

PLDA consistently performs better than IvecGMM
PLDA

by relative Equal Error Rate (EER) of about 24% (from 3.7 % to
2.8% absolute) and 30% (from 16.5% to 11.6%) in Matched and
Seen conditions respectively. Furthermore, we observe that the per-
formance of both these systems in Seen condition is significantly
worse than in the Matched condition. We observe that even though
content of the test data is contained in the enrollment, the i-vector
system is unable to exploit this information. To use the content
information of test data, posterior normalization technique as de-
scribed in Section 3 is used. We observe that the technique helps
i-vector system in Matched and Seen conditions considerably. The
PN-IvecDNN

PLDA improves upon IvecDNN
PLDA by relative EER of about 14%

(from 2.8% to 2.4 % absolute) and 26% (from 11.6% to 8.6% abso-
lute) in Matched and Seen conditions respectively. In Unseen con-
dition, the systems based on posterior normalization perform worse
than the conventional i-vector system. The PN-IvecDNN

PLDA will act as
the baseline system for the following experiments.

6.2. SV systems using ASR lattice posteriors

We explore the application of posteriors estimated from phone
recognition ASR lattices in an i-vector framework. Table 2 shows
the performance of the i-vector systems using these posteriors. We
observe that IvecDNN-dec

PLDA outperforms IvecDNN
PLDA in Seen condition by

0.7% absolute improvement in EER. Significant gain in performance
is achieved by the PN-IvecDNN-dec

PLDA compared to PN-IvecDNN
PLDA , with

about 37% relative EER (from 8.6% to 5.4% absolute) for Seen
condition. This indicates the importance of more accurate senone
alignments in obtaining better SV performance.

6.3. SV systems based on content normalization technique

As opposed to using posterior normalization, we explore content
normalization using i-vectors, as described in Section 4.2. Table 3
shows the performance of the proposed content normalization based



Table 2: Performance of the various SV systems (using posteriors
from decoded ASR (phone) lattices) in terms of EER(%). The PN-
IvecDNN-dec

PLDA performs the best among the other systems in Seen con-
dition.

Systems/Conditions Matched Seen Unseen
IvecDNN-dec

PLDA 2.6 10.9 24.1
PN-IvecDNN-dec

PLDA 2.4 5.4 27.3

Table 3: Performance of the various SV systems (using content nor-
malization technique) in terms of EER(%). The minD-IvecDNN-dec

performs the best among the other systems in Seen condition.

Systems/Conditions Match Seen Unseen
minD-IvecGMM 1.8 4.1 27.5
minD-IvecDNN 1.1 2.8 28.1
minD-IvecDNN-dec 1.1 2.7 27.9

SV systems using posteriors from GMM, DNN and decoded ASR
(phone) lattices. We observe that the proposed systems outperform
the posterior normalization based systems in Matched and Seen
conditions. The minD-IvecDNN-dec performs better than PN-IvecDNN

PLDA

by relative EER of about 54% (from 2.4% to 1.1% absolute) and 67%
(from 8.6% to 2.7% absolute) in Matched and Seen conditions re-
spectively. This shows the importance of the content normalization
technique using i-vectors. The proposed system decreases perfor-
mance in Unseen condition. This may be due to that the phone units
that co-occur between the enrollment and test data do not contain
sufficient speaker information.

7. CONCLUSIONS

In this paper, we addressed content mismatch problem for short du-
ration SV using the i-vector approach. An i-vector system tackles
this problem by incorporating content information using senone pos-
teriors. A posterior normalization technique is applied to scale the
sufficient statistics of the enrollment data to match the statistics of
the test data. Significant gain in performance is observed for the
Matched and Seen conditions. The DNN based i-vector system ap-
plying posterior normalization is considered as the baseline system.

We proposed to improve upon the baseline system by, (a) en-
hancing the senone prediction accuracy of the DNN posteriors, and
(b) normalizing the content of the enrollment to match the test us-
ing i-vectors. We observe that proposed approach improves upon
the baseline system by 67% relative EER in Seen condition. This
shows the i-vectors contain sufficient speaker and content informa-
tion. However in Unseen condition, the proposed systems did not
give any improvement over the baseline systems. This is proba-
bly due to that the linguistic units co-occurring between the enroll-
ment and test data are insufficient to produce speaker discriminating
scores.
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