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Abstract

Neural language models (NLM) are an important component of
Automatic Speech Recognition (ASR), providing effective re-
scoring capability. Neural multilingual models have gained sig-
nificant attraction by transferring knowledge across languages,
especially to the ones with limited domain-specific data. De-
spite several studies on learning multilingual acoustic models,
there is lack of understanding of the effects of novel multilin-
gual training mechanisms for language modeling. In this work,
we propose a neural model, consisting of multiple language-
specific layers and one language-independent layer, trained in
a multilingual setting. Our proposed model consists of time
delay neural network components for the language-specific lay-
ers, and long short term memory for the language-independent
layer. The former captures the characteristics of the individual
languages, and the latter learns the common sentence structures.
We evaluate our model on four BABEL languages in terms of
perplexity for language modeling and Word Error Rate (WER)
for ASR. Evaluation results demonstrate the strengths of our
multilingual neural model. On Tagalog and Swabhili, our model
improves over previous monolingual and multilingual baselines
in both perplexity and WER, while on Turkish and Zulu, which
are high inflectional languages, it is not far behind N-gram
models which exhibit better performance than the neural-based
models.

Index Terms:Multilingual language modeling, neural net-
works, Re-scoring for speech recognition

1. Introduction

Neural Network Language Models (NNLMs) are widely used
for re-scoring word recognition hypotheses in Automatic
Speech Recognition (ASR) systems. There are applications
where the specific domain of data needs to be improved for
ASR. One such application is in the MATERIAL program '. In
this program, the ASR for low-resource languages is attempted
for document retrieval and summarization purposes. There are
different domains of data in this program, like broadcast news
and conversational speech. The availability of data related to
broadcast news is abundant in nature (can be mined from the
web) and hence these domains can be improved easily for ASR
by adding more data to the language model. However, for con-
versational speech, there is less availability of data. For such
domains, multilingual NNLMs sharing parameters across mul-
tiple languages can be used. These models aim to address these
data sparsity issues [1]. In general, such multilingual mod-
els have language-specific as well as language-independent pa-
rameters (i.e. shared among all languages). Parameter sharing

Uhttps://www.iarpa.gov/index.php/research-programs/material

across multiple languages may act as implicit regularization for
the NNLMs involved, especially for languages with insufficient
amount of domain-specific data, due to the knowledge transfer
that is occurring across languages [2].

Multilingual training of neural networks has grown in the
last few years on acoustic modeling for ASR [3-5], as well
as for language processing tasks such as document classifica-
tion [2] and machine translation [6]. Ragni et al. [1] proposed
a multilingual neural language model, inspired from previous
work on multilingual acoustic modeling in ASR [4]. Their
model comprises of a Recurrent Neural Network (RNN) with
one layer where the weights of the hidden layer of the RNN are
shared across the languages, but the input and output layers are
language-specific. Furthermore, the multilingual model in [1] is
further fine-tuned on each language. Lastly, the input and out-
put layers in [1] contain the vocabulary lists of all languages,
meaning that the loss is computed over the entire vocabularies
of languages.

In the aforementioned work, the approach followed can
cause bias when computing Softmax in the output layer for a
given language, since unrelated vocabularies (the ones in other
languages) are considered in the normalization factor of Soft-
max for the vocabularies of that language. In this work, we
pursue the direction of [1], by proposing a state-of-the-art ap-
proach for multilingual neural language modeling applied in
re-scoring hypotheses in ASR. Our proposed multilingual ar-
chitecture consists of a stacked neural network model, where
the first layer is language-specific and the second one is shared
across multiple languages. In addition, in contrast to [1], every
language has separate input and output layers and hence a sep-
arate loss function. The overall loss in our proposed approach
is the weighted sum of per-language loss values, used to opti-
mize the whole network through back-propagation (details in
Section 3).

Various forms of RNN models have been used for lan-
guage modeling [7-10], among which, Long Short Term Mem-
ory (LSTM) networks demonstrate the best and reliable per-
formance [11]. However, recent work has shown that the in-
finite memory capacity of RNN may be actually absent in prac-
tice [12-14]. Nevertheless, the RNN has the capability to
capture the common sentence structures among various lan-
guages [15]. The feed-forward neural networks, especially the
Time Delay Neural Network (TDNN) models, have also shown
competitive performance compared to LSTMs, if sufficient con-
text is provided. In the light of these studies, we explore the
combination of these two architectures (TDNN and LSTM) for
multilingual language modeling. The TDNN will be used for
capturing the characteristics of the individual languages and
hence acts as the language-specific layer. The LSTM will be



used for capturing the common sentence structures and repre-
sents the language-independent layer. The specific contribu-
tions of the paper are the following:

» Exploring a joint multilingual objective function for lan-
guage modeling based on the weighted sum of the per-
language losses.

e Designing a TDNN-LSTM stacked architecture where
the TDNN captures the characteristics of the individual
languages while the LSTM captures the common sen-
tence structures.

Our experimental results show noticeable improvement of
the proposed multilingual models in comparison to monolingual
models as well as previously proposed multilingual approaches
for two (Tagalog and Swahili) out of the four languages of inter-
est, both in terms of perplexity for language modeling and Word
Error Rate (WER) for ASR systems. There is no improvement
on the other two languages (Zulu and Turkish) probably due to
the fact that they are high inflectional languages with more out
of vocabulary words. Simpler N-gram model with lesser param-
eters provides better performance for these languages. Even
though the improvements brought by our multilingual model
are not observed in every language used in our experiments, the
WER is always at least as good or better than the performance
based on monolingual models. Furthermore, we also observe a
link between improvement in perplexity and WER for Tagalog
and Swabhili which is a promising finding.

Our TDNN-LSTM architecture is also compared to the
other combinations like TDNN-TDNN or LSTM-LSTM to
show that for capturing the particular characteristics of individ-
ual languages, the TDNN outperforms other architectures and
for capturing the common sentence structures across languages,
the LSTM is better. We show that our proposed method of com-
bining the networks (assuming the training principle remains
the same) enables a complementary capture of information by
the two networks for multilingual language modeling. As op-
posed to [1], our proposed model does not require fine-tuning
for obtaining gains in performance, saving the re-training phase
on each language, but could perhaps benefit from it separately.

The paper is organized as follows. Section 2 provides back-
ground on language models in ASR as well as the multilingual
acoustic model. The proposed multilingual language model is
described in Section 3. The results are presented and discussed
in Section 4, and Section 5 concludes the study.

2. Background
2.1. Language Modeling in ASR

Language modeling in ASR is typically based on the N-grams
which involve estimating the probability based on counting.
Later smoothing techniques were introduced to make the N-
grams more robust to zero counts [16]. Given the recent ad-
vances in language modeling using neural networks, one way
of exploiting them in ASR is by re-scoring the N-best list of
word recognition hypotheses obtained from the decoding based
on N-grams [7]. This is usually called the second pass decod-
ing. There are also attempts to use the neural networks for
first pass decoding. In [17], the RNN is used as a generative
model to generate text. The N-gram LMs are then trained based
on the generated text and finally used for decoding. In [18],
RNN LM histories are discretized to create Weighted Finite
State Transducers (WFST). A probability-based conversion has
been explored in [19], and this method involves the extraction
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Figure 1: Schematic of the proposed multilingual neural lan-
guage model architecture with stacked layers. The elements in
blue are language-specific and the green ones are language-
independent. NN indicates a neural network model which is
either TDNN or LSTM in our study.

of N-grams but the count based probabilities are replaced by the
RNN-LM probabilities. In the present study, we use the second
pass decoding, where the neural language model is used to re-
score the N-best hypothesis generated by the N-gram language
model.

2.2. Multilingual Acoustic Modeling

To train acoustic models for ASR with limited amount of data,
it is helpful to augment data to avoid sub-optimal convergence.
There are multiple ways for data augmentation. One method is
to create multiple copies of the training data by adding noise
or varying speed and volume. Another efficient method is to
train a multi-task network. In a multi-task network, it is pos-
sible to combine several low-resource languages to eliminate
the data insufficiency problem. In [20], 19 languages from
the Babel program are used to train a BLSTM based acoustic
model. We consider a similar approach in this paper, where
a single multilingual TDNN acoustic model is trained for all
the four languages. A 5-layer TDNN is trained with a block-
softmax output, with one output block for each of the languages.
During training of the network, each mini-batch is balanced to
contain examples from all languages. We use parallel training
proposed in [21] for this purpose. The initial alignments for
training the multilingual model are obtained from monolingual
HMM/GMM acoustic models.

3. Multilingual Language Model

In this section, we describe the architecture of our proposed
multilingual neural language model, depicted in Figure 1, and
explain its training procedure.

As shown in Figure 1, for a given language [, first a
language-specific word embedding maps the input batch of the
given language to its embedding vectors. A language depen-
dent neural network layer (TDNN) then captures the language-
specific characteristics of the input, followed by a language-
independent neural network layer (LSTM), where its parame-
ters are shared across all languages. In the next step, a language-
specific linear transform, followed by the softmax function, pro-
vides the predicted probability distribution Qt(” at timestep ¢
over the vocabulary of the given language [.

For training, we use a joint multilingual objective function
that facilitates the sharing of a subset of parameters for each
language 61, ...,0n of our stacked neural language network



Table 1: Statistics of the four BABEL languages.

Languages
Statistics | guag

Tagalog | Swahili | Turkish | Zulu

no. of sentences (train) | 93131 39354 | 82253 | 54660
no. of words (train) | 594854 | 250398 | 573323 | 369476
no. of sentences (dev) 11191 9678 10297 9163
no. of words (dev) 73143 | 62875 | 73306 | 58285
vocab. size 22907 | 23956 | 41196 | 56885

as in [2]:
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where Z = M X N., N, is the epoch size, M is the total
number of languages, ~; is a hyper-parameter for each lan-
guage objective which encodes prior knowledge about its im-
portance and H is the cross-entropy loss between the ground-
truth words and the predicted ones. Note that the sentence order
in each language is preserved above and that the overall loss is
back-propagated through the network, updating both language-
specific and language-independent parameters. The sentences
are processed in a cyclic fashion for the languages which have
lesser number of sentences. Once the last sentence of the text
corpus is processed for that language, the next sentence that
is processed is the beginning one. The joint objective £ can
be minimized with respect to the parameters 61,...,6 us-
ing Stochastic Gradient Descent (SGD). This training strategy
has been shown beneficial in the past for multilingual docu-
ment classification [2] and multilingual neural machine trans-
lation [22].

4. Experiments and Results

The experiments are performed on four babel languages, re-
leased as a part of the IARPA Babel program, namely Taga-
log, Swahili, Turkish and Zulu. The detailed statistics of each
language set are mentioned in Table 1. Each language has a
held out development set, used for reporting the perplexity of
language models as well as WER of the ASR systems. SRILM
toolkit [23] is used to create N-gram language models. The neu-
ral language models are implemented in pytorch. A modified
version of TDNN, released in [12] is used in our experiments.
We also implement a multilingual neural language model with
RNN, following the work in [1]. The acoustic models are
trained using the Kaldi speech recognition toolkit [24].

The neural networks are optimized using the Stochastic
Gradient Descent algorithm with early stopping, and negative
log likelihood as the loss function. One-hot encoding is used for
the input layers with the size of the number of vocabularies in
each language. The dimensions of the hidden nodes of TDNN,
LSTM, and RNN as well as the word embedding are set to 600.
The feed-forward architecture of the TDNN nodes consist of
three hidden layers. All hyper-parameters of the model are set
according to the best results, evaluated on the development set.
The parameter ; in Equation 1 is not explored exhaustively for
the range of values but set at the value of 1/M, where M is the
total number of languages.

Table 2: Perplexity on the Babel Set of four languages for mono-
lingual and multilingual LMs are presented. For the stacked
models, the first network is language-dependent and the sec-
ond one is shared. Full: full vocab size and 20K:vocab size of
20,000. Tag: Tagalog, Swa: Swahili, Tur: Turkish, Zul: Zulu

Perplexit
LM | rp y
Full 20K
Tag | Swa | Tur | Zul | Tag | Swa | Tur | Zul
N-gram 148 | 357 | 396 | 719 | 109 | 155 | 183 | 131

RNN (multi) [1] 142 | 294 | 284 | 665 | 104 | 218 | 117 | 115

TDNN-LSTM (mono) | 136 | 383 | 422 | 725 | 130 | 239 | 168 | 124
LSTM-LSTM (multi) | 159 | 302 | 509 | 1550 | 262 | 237 | 351 | 122
TDNN-TDNN (multi) | 137 | 622 | 293 | 1485 | 102 | 184 | 148 | 186
TDNN-LSTM (multi) | 133 | 284 | 337 | 1006 | 107 | 147 | 150 | 108

4.1. Language Modeling Results

As a baseline, we first compute the perplexity using N-gram
LMs. The N-gram used in this work is a tri-gram. We also
experimented with a four-gram but it was performing worse
than the tri-gram. The perplexities using the TDNN-LSTM are
shown in the last row of Table 2. For comparison, other archi-
tectures are also considered in Table 2. Initially if the entire vo-
cabulary is used for each language, the perplexity is recorded
and shown as the “Full” column of Table 2. It can be seen
that using the entire vocabulary results in larger perplexities for
Zulu, Turkish and Swahili. For Tagalog, the perplexities are
comparatively better.

The reason why Zulu, Turkish and Swahili have large per-
plexities can be understood from Table 1. Consider the ratio
of the training data to the vocabulary size for each language.
It can be seen that this ratio is the highest for Tagalog which
means there is enough training data for training the LM with
the respective vocabulary for Tagalog. For Swahili, even though
the vocabulary size is almost similar to Tagalog, the amount of
training data is much less. Hence this results in larger perplex-
ities. Zulu has the largest vocabulary which is almost double
of Swahili and has the training data much less than Tagalog al-
though slightly more than Swahili. This results in the very large
perplexities for Zulu. Turkish has almost the same amount of
data as Tagalog, however, it has a vocabulary which is almost
twice as big compared to Tagalog. This causes Turkish to have
higher perplexities. These perplexities computed on the entire
vocabulary are noisy and this problem is usually solved by lim-
iting the vocabulary size as done in [1].

In [1], the vocabulary size for each language was limited
to 75% of the total vocabulary size, with the remaining words
mapped to an unknown symbol “unk”. In this work, a simi-
lar approach is followed. However the vocabulary size of each
language is limited to "20K”. This value is chosen taking into
account the lowest vocabulary size of the four languages. The
remaining words out of the ”20K” are mapped to “unk”. By
doing this, the perplexities of each language are more stable as
seen in Table 2 for the column marked as "20K”.

The multilingual TDNN-LSTM LM is found to perform
well in terms of perplexity compared to the N-grams and
also outperforms the monolingual TDNN-LSTM LM for the



”Full” vocabulary case. Improvements can be seen for Taga-
log, Swahili and Turkish although degradation is observed for
Zulu. Similar observations are found for the ”20K” vocabulary
as well, although for this case, even for Zulu the performance is
better. The multilingual TDNN-LSTM LM is also compared
to the TDNN-TDNN and LSTM-LSTM LMs. The LSTM-
LSTM LMs suffers degradation in perplexity compared to the
TDNN-LSTM LM as seen in table 2 for both the ”Full” and the
”20K” vocabularies. The TDNN-LSTM LM also outperforms
the TDNN-TDNN LM except for Turkish in the “Full” vocabu-
lary case. Using the "20K” vocabulary, the TDNN-LSTM LM
is better than the TDNN-TDNN LM for Swahili and Zulu, al-
though it is slightly worse for Tagalog and Turkish. The results
using the RNN LM proposed in [1] is also computed and the
TDNN-LSTM system is better except for Zulu and Turkish us-
ing the "Full” vocabulary while using the "20K” vocabulary, the
results using TDNN-LSTM LM are better for Swahili and Zulu.
It is comparable for Tagalog but worse for Turkish. Overall, the
TDNN-LSTM LMs display good perplexity behavior in at least
two of the four languages and results indicate that they perform
well on languages with a small vocabulary. This can be further
validated by the fact that reducing the vocabulary of Zulu helps
in improving the perplexity.

In the following section, the proposed models are tested in
terms of the word error rate for ASR.

4.2. ASR Results

The perplexities of the four languages were seen to be more sta-
ble using the reduced vocabulary. Similarly for the ASR task,
the vocabulary of each language is limited as above. The N-
gram LMs are initially used for creating a graph for ASR de-
coding. Multilingual acoustic models are used and the setup
has been described in Section 2.2. The results using the N-gram
decoding are shown in Table 3. The proposed neural networks
are then used to re-score the N-best (N=1000) word recogni-
tion hypothesis generated from the lattices constructed using
N-gram with weights (0.75 for the neural network and 0.25 for
the N-gram) [25].

It can be seen that the Multilingual TDNN-LSTM outper-
forms the N-gram in terms of WER and also better than the
monolingual TDNN-LSTM system on Tagalog and Swahili.
Comparisons are made to the other multilingual LMs and it
can be seen that the TDNN-LSTM LM is better. The TDNN-
LSTM multilingual system does not perform better for Zulu and
Turkish. Zulu and Turkish are languages with high inflections.
On reducing the vocabulary, the number of out-of-vocabulary
words in these languages increases which hurts the ASR per-
formance. At the same time if the full vocabulary is used for
these languages, the perplexity increases significantly as seen
in Table 2 which will further hurt the ASR performance. This is
due to the larger number of parameters that will be required and
hence even more data is required for training. Simpler models
like N-grams with less parameters appear to be more effective
for these languages. Overall, the WERs for Swahili are better
than the ones reported in [1] even without applying the fine-
tuning. The relative improvement in WER for Tagalog is 2 %
and for Swabhili is 1 % with respect to the N-grams.

5. Conclusion

This work examines the use of multilingual language models
using neural architectures. A stacked TDNN-LSTM architec-
ture is used where the TDNN models the long context and the

Table 3: WER on the Babel Set of four languages for N-gram,
monolingual and multilingual LMs. Our model improves sig-
nificantly WER on two out of four languages without hurting
significantly the performance of the other two.

WER %

LM |
Tagalog | Swahili | Turkish | Zulu

n-gram (baseline) 44.5 354 46.1 54.2
RNN (multi) [1] 44.7 353 46.3 | 554
TDNN-LSTM (mono) | 43.8 353 46.7 | 55.0
LSTM-LSTM (multi) | 44.8 357 472 | 559
TDNN-TDNN (multi) | 44.4 35.5 46.3 | 55.8
TDNN-LSTM (multi) | 43.6 35.0 46.5 | 553

LSTM models the sentence structure. Training the multilingual
LMs involves adding the losses of each language and the to-
tal loss is back-propagated. Experiments show that the mul-
tilingual TDNN-LSTM architecture outperforms N-grams and
other stacked neural architectures on two out of four languages
in terms of both perplexity and word error rate. In the future,
more languages will be used for training, while adaptation to a
particular unseen language can also be performed as done in [1],
to further improve the perplexity and word error rate. In this
work, the weights of the multilingual LMs have not been ex-
plored exhaustively for the range of values but set at the equal
values. In the future, the weights can be tuned more effectively
to get better performances.
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