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ABSTRACT

This work discusses the potential of using Time Delay Neu-
ral Networks (TDNN) for language modeling in automatic
speech recognition (ASR) of low resource languages. Re-
cently, TDNN for language modeling has been shown to
achieve better perplexity than an equivalent Recurrent Neural
Networks (RNN). However, its potential for ASR decoding
has not been explored yet. In this work, we focus on exploring
the strength of TDNN as a language model for ASR in low
resource languages. TDNNSs are significantly easier to train
than RNN since they have a feedforward structure instead of
a recurrent structure. We explore a TDNN-based language
model both directly in the decoding graph and as well as
in the rescoring phase. Experiments show that the TDNN
LMs perform as the RNN, although it is faster and easier to
train the TDNN compared to RNN. Two languages from the
BABEL corpora are considered in this work: Tagalog and
Swabhili.

Index Terms— recurrent neural network, time delay neu-
ral network, low resource, language modeling

1. INTRODUCTION

In automatic speech recognition (ASR) systems, neural based
language models are often used to rescore top scoring hy-
potheses obtained using conventional back-off n-gram lan-
guage models (LM). Alternately, the lattices generated with
n-gram LMs may be directly rescored. Recurrent Neural Net-
works (RNN) are the most commonly employed neural LMs
in ASR systems [1-5].

Recently, a LM based on Time Delay Neural Networks
(TDNN), in which the convolution is applied with respect to
only the past time steps to avoid any leakage from the future
time steps, was proposed [6]. The TDNN LM was shown to
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have lower perplexity than a RNN LM. It was also mentioned
in [6] that the TDNN s should be used as a starting point for
various sequence modeling task. However, whether TDNNs
can be used for ASR was not discussed. Hence this work
focusses on exploring this, specifically in terms of ASR and
if TDNNs can be used over RNNSs.

There are various reasons why the TDNN is preferred
over RNNs for sequence modeling task [6]. In TDNNSs, the
long sequence as a whole is processed. This means that the
parallel convolutions can be done since the same filter is used
in a particular layer. In RNNs, there is some sort of sequen-
tial processing, since the predictions in the next time steps
depend on the predecessors to complete. TDNNs do not suf-
fer from the vanishing gradient problem which is common in
RNNSs. The receptive field size of a TDNN is better compared
to the RNN. This gives better control of the memory size of
the model, and it can also be used to adapt to different do-
mains very easily.

The training of the TDNN in our work is almost similar to
the work in [6]. However, in that work, it was not tested for
ASR. In order to use the network for ASR, some changes to
the original training have to be incorporated. The sentences
were processed in a dependent manner in [6] and the perplex-
ity obtained seemed promising. In our work, the sentences are
processed independently and not only is the perplexity com-
puted, but also word error rate which is useful for evaluating
the ASR performance.

A neural LM such as TDNN or RNN can be used for de-
coding in ASR. This can be in terms of the first pass decoding
or the second pass decoding. The first pass decoding involves
using the neural LM probabilities for graph creation. There
are a few examples in the literature for first pass decoding.
In [7], the RNN was used as a generative model to generate
text. The n-gram LMs are then trained based on the generated
text and finally used for decoding. In [8], RNN LM histo-
ries are discretized to create weighted finite state transducers
(WFEST). A probability based conversion has been explored
in [9], and this method involves the extraction of n-grams but
the count based probabilities are replaced by the RNN LM
probabilities. The second pass decoding involves the rescor-
ing of the hypothesis generated from the first pass decoding
by an n-gram LM [1].



In this work, the TDNN is explored for creating the Lan-
guage Model to be used for decoding in ASR for low resource
languages and this neural based LM will be used in both the
first pass decoding and the second pass decoding. For the
first pass decoding, the probabilities of the n-grams generated
by simple counting, will be replaced by the probabilities esti-
mated by the TDNN. The TDNN will also be used to generate
probabilities for the n-grams computed from the N-best list.
The use of n-gram probability generation is much clearer us-
ing TDNN since we know the history represents the previous
words. On the other hand, the RNN has a continuous his-
tory [8] represented by the recurrent layer and hence it is not
very clear if the history is actually represented just by the pre-
vious words. Hence estimating the n-gram probabilities by
the TDNN gives a clearer picture than by using the RNN as
done in [9]. The probabilities generated by the two will be
explored for the decoding process.

For the second pass decoding, the standard method [1,
2], will be used with the probability assignment of the sen-
tences being computed by the TDNN. The performance of
the TDNN will be compared to the standard n-grams as well
as the RNN LM using first and second pass decoding, in terms
of perplexity, word error rate and computational speed. The
specific contributions of this paper are as follows:

» Exploring TDNN for decoding as a language model
in ASR tasks for low resource languages (Tagalog and
Swahili)

» Using TDNN for second pass decoding

* Replacing probabilities of the n-grams generated by
simple counting with TDNN probabilities expecting
that the TDNN will be able to model the probabilities
better

The rest of the paper is organised as follows. Section 2
discusses the RNN LM. Section 3 introduces the TDNN. Sec-
tion 4 discusses the ASR decoding while section 5 describes
the acoustic models. The experiments are given in section 6.
Finally the conclusion is given in section 7.

2. RECURRENT NEURAL NETWORK LANGUAGE
MODELS

The recurrent neural network [1, 2] used for comparison in
this work is shown in Fig. 1. It consists of an input layer that
reads a one-hot encoding representing each previous word
I(t), and the previous state of the hidden layer C(t-1). The
hidden layer compresses the input information and produces
a new state C(t). C(t) is then passed to the output layer which
has the same dimension as I(t). The output layer produces
the conditional probability. This is the probability of the next
word given the previous word and the previous state of the
hidden layer. Training is done using the stochastic gradient

I(t) o(t)

C(t)

c(t-1)

Fig. 1. Architectural elements of an RNN with a single hidden
layer

descent algorithm and the weights are trained using the trun-
cated backpropagation through time (BPTT) algorithm [1].
There is also an additional class layer at the ouput [2,3] which
helps to reduce the computational complexity at a small cost
of accuracy.

3. TIME DELAY NEURAL NETWORKS

The time delay neural network (TDNN), show in Fig. 2, was
proposed in [6] for various sequence modeling tasks. Un-
like conventional TDNNs, we employ a causal version where
there is no leakage of information from the future time steps.
That is, the output at a particular time is convolved only with
elements from that time and earlier in the previous layer. Also
the size of the input and output is the same, which means that
the zero padding is added to keep the next layers same as the
previous ones. It is also called as a temporal convolutional
network (TCN) in [6]. This architecture resembles a finite im-
pulse response (FIR) implementation, unlike the RNN which
is analogous to an IIR filter. A similar architecture was pro-
posed in [10], where the only difference is the padding of
zeros to make sure the input is equal to the output. It had
the disadvantage that an extremely deep network is required
to achieve a long effective history. On the other hand, the
TDNN in our work can be used to incorporate a long effective
history by using a combination of deep networks and dilated
convolutions as follows:
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Fig. 2. Architectural elements of a TDNN, with filter size of 3
and having several dilations in different layers

where d is the dilation factor, £ is the filter size, and s — d.7
accounts for the direction of the past. The receptive field of
the TDNN can be increased by increasing the filter size and
using larger dilations d where the effective history is (k—1)d.

4. ASR DECODING

4.1. First Pass Decoding

The first pass decoding being implemented in this work is
based on replacing the n-gram probabilities with the proba-
bilities of the TDNN and then creating a finite state trans-
ducer with the new n-gram probabilities. Another method of
first pass decoding that will be used will be based on the N-
best list extracted from the lattices generated by the n-grams.
The N-best list are used to generate the new n-grams and the
probabilities of the new n-grams are estimated by the TDNN
instead of the normal counting. The similar process will be
followed using RNN for comparison.

4.2. Second Pass Decoding

In this form of decoding, the TDNN will be used to rescore
the N-best hypothesis generated from the lattices constructed
using n-gram in the initial pass. The scores are computed as
follows,

where w; is the word, h is the history, P4y, is the prob-
ability estimated by TDNN, P, is the probability estimated
by the n-gram and P, is the combined probability estimate.

The log likelihood score for each N-best hypothesis is
then,

logL(s) = n.wp + Z asc; + Ilms Z log Py (w;lh;) (3)

=1 =1

where, wp-word insertion penalty, asc-acoustic score, n-
number of words and Ims-language model scale

5. ACOUSTIC MODELLING

Two acoustic model architectures are used in this paper: (i)
a typical DNN/HMM system with the DNN trained using
a cross-entropy loss function, and (ii) a lattice-free MMI
(LF-MMI) based DNN/HMM system. Both acoustic models
are implemented in Kaldi. The systems are trained using
16 dimensional Perceptual Linear Prediction (PLP) features
appended with 3 dimensional pitch features. The features
are mean normalized over each audio channel. Speech/non-
speech activity is A conventional HMM/GMM system is
trained with these features using the standard Feature space
Maximum Likelihood Linear Regression (fMLLR) based
speaker adaptive training (SAT).

Alignments obtained from the HMM/GMM system are
used as outputs to the DNN/HMM system. A DNN with
4 hidden layers and p-norm activations are used. An initial
learning rate of 0.0015 and a final learning rate of 0.00015
are used to train the DNN with Stochastic Gradient Descent
(SGD). The learning rate is halved when the frame accuracy
on the validation set fails to improve. In addition, sequence
discriminative training is applied with the state-level mini-
mum Bayes risk criterion with a low learning rate of 0.00001.

LF-MMI models are trained using features at a frame rate
of 30 Hz. MFCC features with 40-dimensions are used to
train the system. In place of SAT, online i-vectors are used to
train the system and decode on test data in order to retain the
advantageous of LF-MMI in terms of speed. A TDNN with 7
layers is trained with each layer having 1024 rectified linear
units. LF-MMI models are trained with an initial learning rate
0.001 and a final learning rate of 0.0001 with a momentum of
0.1 for 4 epochs. Cross-entropy and leaky HMM regulariza-
tion are applied. The latter is applied with a co-efficient of
0.1.

6. EXPERIMENTS

The experiments are performed on datasets of two languages
namely Tagalog and Swabhili. The babel set is used for the ex-
periments. For Tagalog there were 93104 sentences (594809
words) for training and 917 sentences (5079 words) for the
development set. This development set was used to com-
pute the perplexity of the various models. There were 39354
sentences (250398 words) for training the Swabhili language
model and 1249 sentences (6889 words) were used for devel-
opment.



Table 1.
Swahili

Perplexity on the Babel Set of Tagalog and

Perplexity

Language Model| | Tagalog | Swahili

n-gram 124.1 137.2
RNN 104.5 129.1
TDNN 98.5 119.6

The TDNN implemented was the one found in [6], along
with some modifications in the original implementation. The
main modification in the original TDNN is processing the
sentences independently for both training and testing as is
done for the RNN training. The number of hidden layers was
taken to be 2. The size of the word embeddings is fixed to
600 and the number of hidden nodes are also taken to be 600.
The kernel size was taken to be 3. The RNN toolkit [11] was
used for the RNN training, which also trains the sentences in-
dependently. For the n-grams, the SRILM toolkit was used.
The n-gram used in the experiments is the 3-gram without any
pruning. The acoustic models were trained using the Kaldi
toolkit [12].

6.1. Perplexity

Initially the experiments are performed by computing the per-
plexity of the TDNN and comparing it with the perplexities
of the n-gram and RNN LM models. The respective models
are trained using the babel text for Tagalog and Swahili. The
training samples are passed in a random manner. The vocab-
ulary size is taken to be 20k words. The out of vocabulary
words are mapped to a ‘unk’ symbol. The results are shown
in Table 1. It can be observed that the perplexity of TDNN
is lower than n-gram LM and RNN LM on both Tagalog and
Swahili. This shows that the TDNN is able to model the con-
text better compared to both RNN and n-gram and this has
also been shown in [6], where it is mentioned that TDNN ex-
hibits substantially longer memory.

The TDNN has shown better perplexities compared to
RNN and n-gram. However their ability to perform on the
decoding tasks of ASR has not been explored yet. In ASR
tasks, the length of the sentences are not so long and it will be
interesting to see if the TDNN is able to improve the perfor-
mances on ASR as the RNN LM. The ASR task considered in
this work is on low resource languages such as Tagalog and
Swahili.

6.2. Word Error Rate (WER) for second pass decoding

The most common way of evaluating the performance of a
neural language model on the decoding task of ASR systems
is by the second pass rescoring. Initially the decoding is done

Table 2. WER using Second Pass Decoding on the Babel
Set of Tagalog and Swahili

WER (MBR)

WER (Chain)

Number of layers| | Tagalog | Swahili | Tagalog | Swahili

n-gram 47.9 44.7 45.5 414
RNN 46.5 44.0 4.4 41.0
TDNN 47.0 4.3 45.4 41.1

Table 3. WER with varying number of layers of TDNN on
the Babel Set of Tagalog and Swahili

WER (MBR)

Number of layers| | Tagalog | Swahili
2-layer 47.0 44.3
3-layer 47.2 44.4
4-layer 47.3 44.4

using the n-gram LMs. Once the lattices are formed, they are
used to extract the N-best list. The N value can be increased to
get good performances while at the same time maintaining a
faster decoding speed. The N value taken in this work is 1000.
This value is taken according to the best accuracy without
compromising the decoding speed. The N-best list created
are then passed through the TDNN and the probability of the
whole sentence is computed. This probability is then used as
described in section 4.2. The results using the second pass
decoding are shown in Table 2. It is observed that for ASR
decoding, the rescoring method is still better with the RNN
compared to the TDNN, although the TDNN is better than the
n-grams. The reason could be that the sentences are not very
long and hence the effective long history which is a property
of the TDNN is not being exploited much. Nevertheless, the
TDNN can still be used for ASR second pass decoding since
it is faster to train compared to the RNN.

6.3. Word Error Rate (WER) with varying number of
hidden layers of TDNN for second pass decoding

The hidden layers of the TDNN were varied to see if there
was any improvement. It was observed that with increas-
ing the number of hidden layers, the performance degrades.
This is expected, since with deeper structures of TDNN, it is
expected that the TDNN will cover larger effective history.
However in this work of low resource ASR, the sentences
are processed independently and also the length of the sen-
tences are not that long. Hence with 2 layer TDNN which
just about covers the effective history, the performance is the
best as seen in Table 3.



6.4. Word Error Rate (WER) for first pass decoding

The second pass decoding shows a good potential of using
TDNN as a langugage model for ASR. In this section, it is ex-
plored whether the TDNN is able to add information in terms
of the probabilities for the first pass decoding.

The first step is to create n-grams using the training data.
The n-gram probabilities which are count based probabilities
are replaced with the probabilities estimated from the TDNN.
We estimate probabilities for the bi-grams and the tri-grams
from the TDNN. The unigrams are obtained by counting. It is
not possible to estimate the unigram probabilities from the
TDNN since there will be no context available. These n-
grams which have probabilities estimated from the TDNN are
used to create the finite state transducer which is then used for
building the decoding graph. The results are shown in Table 4.
It can be seen that for both Tagalog and Swahili the perfor-
mance of the RNN and the TDNN slightly degrades compared
to the n-gram. The ngram uses a smoothing technique to re-
move the redundant n-grams from the training data. However
these n-grams may be present in the test data. These n-grams
may have appeared rarely in the training data which may have
caused the n-gram estimation method to smooth them out due
to their low count. The available n-grams after smoothing
may not change much on the WER performance even if their
probabilities are estimated by the TDNN or RNN.

Another method to exploit the TDNN is to estimate the
probabilities of those n-grams which have low count in the
training data but may very much be present in the test data.
These n-grams are extracted directly from the n-best hypoth-
esis. The n-best hypothesis will give a good idea of the n-
grams that may be present in the final decoded output. Hence
instead of building all the n-grams from the training set, we
use the train set to generate unigrams and the bi-grams and tri-
grams are estimated from the N-best hypothesis. The bi-gram
and tri-gram probabilities are estimated from the TDNN. The
results are shown in Table 5. It can be seen that this method
gives better WER for both TDNN and RNN compared to the
count based n-gram estimation. This shows that there is po-
tential of using TDNN as a language model for low resource
ASR and hence the experiments will be continued.

The training time of the TDNN is lower than the RNN for
the same amount of data and resources. It takes two hours for
the TDNN while almost one day for the RNN on the same
amount of training data.

7. CONCLUSION

The investigation of TDNN as a language model for low re-
source ASR has been performed in this work. The TDNN
gives good perplexity compared to RNN and n-gram. How-
ever, in terms of WER, the RNN still performs better, al-
though the TDNN performance is close to it and better than
the n-gram. The TDNN is faster to train compared to the

Table 4. WER using First Pass Decdoding (n-grams from
training text) on the Babel Set of Tagalog and Swahili

WER (MBR) WER (Chain)

Language Model| | Tagalog | Swahili | Tagalog | Swahili
n-gram 47.9 44.7 45.5 38.2
RNN 48.3 44.9 46.1 38.9
TDNN 48.1 45.2 46.0 38.7

Table 5. WER using First Pass Decdoding (n-grams from
n-best list) on the Babel Set of Tagalog and Swalhili

WER (MBR) WER (Chain)

Language Model| | Tagalog | Swahili | Tagalog | Swahili
n-gram 47.9 44.7 45.5 38.2
RNN 474 44.6 45.1 38.1
TDNN 47.6 44.4 45.2 38.3

RNN. Experiments in terms of first pass and second pass de-
coding showed that there is potential for the TDNN to im-
prove, since in this work, the long history property of the
TDNN has not been exploited much. This is due to the shorter
length of the sentences in low resource ASR. The experiments
will be continued in the direction of trying to exploit the long
history property of the TDNN and to incorporate it in a bet-
ter way into the low resource ASR. There is potential for the
TDNN to perform better as can be evident from the perplexi-
ties.
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