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Abstract

Detection of depression based on speech signal alone is a challenging problem. Inspired from recent works
on direct modelling of raw waveform for speech processing, this paper investigates automatic modelling of
glottal source information from speech signal using convolutional neural networks (CNNs) to detect depression.
Since this task is challenging, in addition to raw speech modelling, we investigate modelling of linear prediction
residual signal and zero frequency filtered (ZFF) signal. Experimental studies on AVEC 2016 challenge data set
show that depression can be better modelled using ZFF signal with low complexity than using raw speech signal
or linear prediction residual. Furthermore, the resulting system is better than or comparable to state-of-the-art
system based on low level descriptors.

Keywords Convolutional neural networks, depression detection, zero-frequency filtering, glottal source signals.

1 Introduction

Humans express their emotions through vocal, linguistic and facial gestures that convey the person’s mental
state. Depression is one such phenomenon, whose detection and severity assessment have gained interest in
the recent years [1, 2, 3, 4]. Automatic depression classification and severity prediction have been carried out
in the literature by measuring parameters from sessions of patient clinical interviews through multiple modes:
audio, video and text, and by using appropriate classification/regression tasks, for example [5, 6, 7, 8]. Valstar
et. al. [4], as part of the audio-visual emotion challenge (AVEC) 2016, report that the detection scores are lower
on purely speech based analyses as compared to those using multiple modes, indicating the need for further
research in the field.

Depression is known to affect human speech production and cognitive processes. Specifically, depression
impacts speech motor control [1, 9]. Depression, similar to many speech motor control disorders [10], can be
identified by articulatory and phonetic errors, prosodic abnormalities. Speech signal analysis based depression
detection focuses on these aspects. Sahu and Epsy-Wilson [11], Honig et al. [12] and Scherer et al. [13] have
researched on voice quality features, such as degree of breathiness, jitter, shimmer. Simantiraki et al. used glot-
tal source related features to detect depression: precisely, phase distortion deviation that is related to the shape
of the glottal pulse [14]. Valstar et al. used prosodic, spectral and voice quality-related features [4]. William-
sons et al. used vocal tract correlation features for prediction of an individual’s level of clinical depression [15].
i-vectors have also been studied for depression detection [16].

There have been also approaches motivated from speech emotion recognition research. Stasak et. al. used
Geneva minimalistic acoustic parameter set (GeMAPS) [17] to detect depression [18]. Similarly, Gupta et.
al. [19] used depression severity to predict affective states. Vlasenko et. al. used the extended GeMAPS
(eGeMAPS) features and vowel formant location information to improve the detection, indicating the role of
vocal tract system component in depression detection [20]. He and Cao [21] used a combination of features
along with LLDs to predict depression severity, such as intermediate representations from CNNs trained to
predict filter-bank representations from raw speech and to predict texture classification based features from
spectrograms. Another method is to automatically learn features through machine learning methods, such as
using CNNs [22]. These models can be further analysed for cues on their depression-related feature learning.
Ma et. al. [23] proposed to predict depression using neural networks comprising convolutional and long-short
term memory layers on log Mel filter-bank (LMFB) and magnitude-spectrogram features.

The present paper focuses on modelling glottal source information for depression detection. Depression can
effect muscle tension and control, which in turn can affect vocal fold behaviour [1, 24]. The main challenge
lies in accurately characterising the glottal source information from the speech signal, as it requires reliable
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Figure 1: Proposed methods. CNN architecture: Conv: convolutional layer with ReLU activations, MP: max-
pooling layer, FC: fully connected layer with ReLU activations, FC-S: fully connected layer with a single output
node and sigmoid activation.

separation of vocal tract system information from the speech signal. In recent years, directly modelling raw
waveforms for speech processing using neural networks have emerged [25, 26, 27, 28, 29, 30]. It has been found
that these approaches are capable of modelling voice source and vocal tract system information with minimal
assumptions [31, 30, 32, 33]. This paper investigates whether such methods can help in modelling better
glottal source information for depression detection. We carry out three lines of investigation: (a) modelling of
speech signal without any pre-processing, (b) modelling of linear prediction residual signal and (c) modelling
of zero frequency filtered (ZFF) signal. Our studies show that modelling ZFF signal leads to systems with low
complexity and better performance.

The rest of the paper is organised as follows. Section 2 details the proposed methods and motivates them.
Section 3 presents the experimental setup. Section 4 presents results and analysis. Section 5 concludes the
paper.

2 Proposed methods and motivation

We adopt the CNN-based approach to directly model raw speech signal that was first developed in the context
of speech recognition [25], and then was later extended to presentation attack detection [34], speaker recogni-
tion [30, 32], paralinguistic challenges [35] and gender recognition [33]. As illustrated in Figure 1, the system
consists of convolution layers followed by a multilayer perceptron, also referred to as a fully connected layer.
In the remainder of the section, we briefly motivate the proposed methods that differ only in terms of input
waveform. Figure 2 illustrates the three input waveform.

2.1 Speech signal

Speech is produced by excitation of the vocal tract system by the vibration of vocal cords. As speech signal con-
tains voice source related information, one can ask whether deep learning methods can figure that information
out automatically, given a few constraints in terms of speech processing. For instance, in the speaker recogni-
tion [30] and presentation attack detection [34] studies it was found that by letting the first convolution layer
model segmental speech (speech of duration about 1-3 pitch periods) the CNN learns to capture low frequency
information that could be related to speech/voice quality. Would such a modelling help depression detection?
Similarly modelling of sub-segmental speech (speech of duration below 1 pitch period) enables capturing of vocal
tract system related information [31, 32]. Glottal activity such as glottal closure instants (GCIs), glottal opening
instants (GOIs) are temporal events that would need high time resolution. In that context, would sub-segmental
speech modelling enable deciphering of those temporal events for depression detection?

2.2 Linear prediction residual signal

Linear prediction (LP) is a technique that is typically employed to deconvolve time varying vocal tract system
information and excitation information in the speech signal [36]. More precisely, the residual signal carries
glottal source information, and thus LP analysis forms one of the methods for glottal signal analysis [37, 38].
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Figure 2: Illustration of a speech signal, 16th order LP residual signal and ZFF signal and their respective
spectrograms of an utterance ”to uh open up a...”.

So can modelling of LP residual signal help in depression detection? Similar to speech signal modelling we can
model LP residual signal at segmental level and sub-segmental level.

2.3 Zero frequency filtered signal

Zero frequency filtering is a technique that has recently emerged for characterising glottal source activity [39,
40]. It exploits the property of impulse-like excitation at glottal closure instance to detect GCIs. ZFF signal
is obtained by passing the speech signal through a cascade of two ideal digital resonators located at 0Hz, and
then removing the trend in the resulting signal by subtracting the average over a window of the size in the
range of 1 to 2 pitch periods. In addition to GCIs, strengths of glottal excitation, fundamental frequency and
glottal opening instants can be estimated from the ZFF signal [39, 41]. Furthermore, Kadiri et. al. have
also investigated emotion recognition from these signals [42]. ZFF signal thus could be used for depression
detection. Again we can consider modelling ZFF signal at segmental level and sub-segmental level.

Hypothesis: Among these three signals, we hypothesise that ZFF signal should lead to a better system. The
reason being: (a) deciphering glottal source information directly from the speech signal may not be a trivial
task, especially with limited amount of training data, (b) it is well understood that LP residual often contains
effects due to resonances of the vocal tract system; this can affect glottal source processing [38], and (c) Zero
frequency resonator reduces the effect of high frequencies significantly, and thus can be expected to not be
affected by the time carrying characteristics of the vocal tract system [40]. In other words ZFF signal could be
regarded as a clean signal-level representation of the glottal source information.

3 Experimental setup

3.1 Data set

The audio part of the Distress analysis interview corpus - wizard of Oz (DAIC-WOZ) corpus [43] was used for
experimentation. The data set comprises audio-visual interviews of 189 participants who underwent evaluation
of psychological distress. The interviews were carried out in English using an animated virtual interviewer [44],
and each participant was assigned a self-assessed depression score through patient health questionnaire (PHQ-
8) method [45].
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Table 1: CNN architectures. Nf : number of filters, kW: kernel width, dW: kernel shift, MP: max-pooling.

Model (Input
frame size) Layer Conv MP

Nf kW dW
CNN2-subseg
(250ms)

1 128 30 10 2
2 256 10 5 3

CNN-subseg
(250ms)

1,2 same as CNN2-subseg
3 512 4 2 -
4 512 3 1 -

CNN-seg
(250ms)

1 128 300 100 2
2 256 5 2 1

3,4 same as CNN-subseg

CNN8-subseg
(510ms)

1 64 30 10 2
2 128 10 5 2
3 256 3 1 -
4 256 3 1 2

5,7 512 3 1 -
6 512 3 1 2
8 512 3 1 3

CNN8-seg
(510ms)

1 64 300 5 2
2-8 same as CNN8-subseg

We used the time labels provided in the data set to extract only the patient’s speech recordings for experi-
mentation. We excluded the sessions 318, 321, 341 and 362 from the training set that had time-labelling errors.
We evaluated the proposed techniques on the dev set, since the test set was held out as part of the AVEC 2016
challenge [4].

3.2 Setup

The training data was split into 95% of speakers for training and 5% of speakers for cross-validation. The
CNNs were trained using Keras deep learning library [46] with Tensorflow backend [47]. To ensure equal
representation of both the control and depressed classes during training, we duplicated the depressed class
utterances to a count matching as that of the control group. The architectures of CNNs used are listed in Table
1. The term subseg refers to sub-segmental modelling, where the filters in the first convolution layer models 30
samples (below 2 ms duration signal). Similarly, the term seg refers to segmental modelling, where the filters
model 300 samples (about 20 ms signal). Note that CNN, unless specified, refers to a 4-convolutional layer
network. “FC” in all the architectures contains 10 nodes. The input to the CNNs is 250 ms or 510 ms signal,
which is shifted by 10 ms. All the frames of the depressed group were labelled 1, and the rest 0.

The CNNs were trained using cross-entropy loss with stochastic gradient descent. Learning rate was halved,
in the range 10−1 to 10−6, between successive epochs whenever the validation-loss stopped reducing. The frame
level depression scores obtained were averaged per speaker to get speaker-level scores, which were thresholded
to classify as depressed or control (not depressed). More precisely, the threshold was varied in steps of 0.01,
and for each step the sum of the control and depressed F1 scores were computed. Finally the threshold that
gave the maximum sum-F1-score was chosen and the results were reported accordingly. In order to ascertain
that the systems are reproducible we repeated each experiment 10 times with different random initialisations.

We compare our results to existing works that have followed the same protocol, namely, (a) AVEC 2016
challenge support vector machine (SVM) based baseline system [4] using features extracted with COVAREP
tool [48], (b) CNN-based system that learns to detect depression given mel filter bank energies and spectrogram
as input [23] and (c) a system that models eGeMAPS features with SVM [20].

Table 2: Performance of various methods on AVEC 2016 dev set. Bold font marks the best system among the
proposed methods in terms of the corresponding metric.

Experiment F1 score Precision Recall
Depressed Control Depressed Control Depressed Control

AVEC baseline [4] (COVAREP-SVM) 0.46 0.68 0.32 0.94 0.86 0.54
Ma et al. [23] (LMFB/Spec-CNN) 0.52 0.70 0.35 1.0 1.0 0.54
Vlasenko et al. [20] (eGeMAPS-SVM) 0.55 0.79 - - - -
Raw speech with CNN-subseg 0.26± 0.01 0.79± 0.01 0.6± 0.09 0.69± 0.01 0.17± 0 0.94± 0.03
Raw speech with CNN-seg 0.57± 0.01 0.57± 0.01 0.43± 0.01 0.82± 0.02 0.82± 0.03 0.43± 0.01
LP residual with CNN-subseg 0.34± 0.01 0.78± 0.01 0.56± 0.05 0.7± 0.01 0.25± 0 0.89± 0.02
LP residual with CNN-seg 0.53± 0.02 0.57± 0.03 0.41± 0.02 0.77± 0.03 0.73± 0.03 0.45± 0.03
ZFF signal with CNN-subseg 0.65± 0.02 0.73± 0.02 0.54± 0.02 0.87± 0.02 0.81± 0.03 0.63± 0.03
ZFF signal with CNN-seg 0.52± 0.06 0.8± 0.01 0.61± 0.03 0.75± 0.02 0.45± 0.07 0.85± 0.02
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Table 3: Effect of system complexity on performance.

Experiment F1 score Precision Recall
Depressed Control Depressed Control Depressed Control

Raw speech with CNN8-subseg 0.4± 0.04 0.73± 0.03 0.45± 0.05 0.7± 0.02 0.36± 0.04 0.77± 0.05
Raw speech with CNN8-seg† 0.56± 0 0.53± 0 0.42± 0 0.82± 0 0.83± 0 0.39± 0
ZFF signal with CNN2-subseg 0.59± 0.03 0.7± 0.03 0.5± 0.03 0.81± 0.02 0.72± 0.04 0.62± 0.04

†Training converged 4 out of 10 runs.

4 Results and analysis

Table 2 shows F1 scores, precision and recall of the proposed methods, shown as mean ± standard deviation of
the 10 trials along with results of baseline systems. We can observe that ZFF signal consistently yields a better
system in terms of F1 score than raw speech signal and 16th order LP residual signal. When comparing sub-
segmental modelling and segmental modelling, it is not obvious which one is better. For instance, sub-segmental
modelling yields better F1 score for the depressed class, whilst segmental modelling yields better F1 score for
the control class. A closer inspection reveals that this is due to low recall for the control class. When comparing
the baseline systems with ZFF based system, we can observe that ZFF based system gains on the depressed
class detection while competitive on control class detection. When modelling raw speech signal and LP residual
signal, segmental modelling gives a good trade-off for both the classes, whilst sub-segmental modelling is able
to detect well the control class than the depressed class. We also observe that LP residual is not providing any
real advantage over modelling raw speech signal.

4.1 Impact of system complexity

As discussed earlier, speech signal contains multitude of information. One may need a more complex network
to focus on glottal source information. In contrast, ZFF signal could be modelled with low complexity. In order
to test this point, we trained:

1. Eight convolution layer CNN8-subseg and CNN8-seg system with raw speech signal as input.

2. Two convolution layer CNN2-subseg system with ZFF signal as input.

The details of the architecture can be found in Table 1.
Table 3 presents the results. It can be observed that CNN8-subseg improves slightly the depressed class

detection in terms of F1 score. We can observe that CNN8-seg with raw speech signal as input does not always
converge. Modelling ZFF signal with CNN2-subseg leads to slight drop in performance, but still is competitive
to the state-of-the-art methods. These results show that ZFF signal modelling is easier than raw speech signal
for depression detection.

4.2 Analysis of frequency response of first layer filters

We visualised the cumulative frequency response of the filters in the first convolutional layer, which is computed
as [31, 30]

Fcum =

Nf∑
k=1

Fk/‖Fk‖2, (1)

where Nf is the number of filters and Fk is the frequency response of filter fk. Fig. 3 (a) shows the cumulative
response in the case of modelling raw speech signal for CNN-subseg, CNN-seg, CNN8-subseg. Fig. 3(b) shows
the cumulative frequency response in the case of modelling LP residual for CNN-subseg and CNN-seg. Figure
3(c) shows the cumulative frequency response in the case of modelling ZFF signal for CNN-subseg, CNN-seg
and CNN2-subseg.

When modelling segmental speech, i.e. CNN-seg, in all the cases emphasis is given to very low frequency
region that is mostly related to fundamental frequency. The main difference lies with ZFF signal based system
where the filters by nature do not model high frequency regions, while with raw speech signal based system
and LP residual signal based system the filters model high frequency regions, potentially related to vocal tract
system. This could explain the difference between the CNN-seg systems reported in Table 2.

When modelling sub-segmental speech, i.e. CNN-subseg, in the case of modelling raw speech signal the
filters give emphasis to high frequency regions (1000-4000 Hz). In the case of CNN8-subseg the emphasis
shifts to low frequency regions (0-2000 Hz) while de-emphasising high frequency regions. This trend possibly
explains slight gain in the depressed class detection with CNN8-subseg (see Table 3). In the case of residual
signal modelling, the emphasis is given to low frequency region and a few high frequency regions. In the case
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Figure 3: Comparison of the overall frequency responses of the first convolutional layers in various CNNs.

of ZFF signal modelling, the filters give emphasis to region below 1000 Hz. Change of network complexity,
specifically CNN2-subseg, does not change much the frequency response of the filters. It can be observed again
that ZFF signal based system by nature does not model any high frequency components.

5 Discussion and Conclusion

This paper investigated different ways to model glottal source information directly from raw waveform using
CNNs. Our investigations on AVEC 2016 challenge data showed that filtering the speech signal with zero
frequency resonator and then modelling the resulting ZFF signal is better than modelling raw speech signal
or LP residual signal. Further, it was found that ZFF signal modelling can yield systems that are better than
or comparable to state-of-the-art systems based on eGeMAPS features and deep neural network based systems
modelling short-term spectral information. Our future work will focus along the following directions:

1. Analysis of the cumulative frequency response of filters learned in the first convolution layer suggests
that it is beneficial to model low frequency regions (below 1000 Hz), while high frequency regions of
speech signal could interfere with their modelling. A natural question that arises is: can modelling of raw
speech signal after low pass filtering or modelling of LP residual after low pass filtering like done in SIFT
algorithm [49] yield improved systems?

2. In our studies, we have observed that sub-segmental level modelling of ZFF signal helps in detecting the
depressed class better, while segmental level modelling helps in detecting the control class better. In
our future work, we aim to understand better the difference between these two modellings by gaining
insight into what the neural network learns as a whole: more precisely, by utilising the recently proposed
gradient-based visualisation approach to analysis raw waveform based neural network systems [50]. We
believe that such an insight would not only help in understanding the specific glottal source information
that is being modelled, but would also provide ways to exploit these two levels of modelling for improved
performance.
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