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ABSTRACT

Idiap has made one submission to the fixed condition of
the NIST SRE 2018. It consists of three systems: a
gender-dependent i-vector system, a gender-independent x-
vector system and a gender-independent Deep Neural Net-
work (DNN)/i-vector system. The acoustic model for the
DNN/i-vector system was trained using Lattice-Free Maxi-
mum Mutual Information (LF-MMI) criterion. The back-end
for all the systems consists of the conventional Linear Dis-
criminant Analysis (LDA) projection followed by Probabilis-
tic LDA (PLDA) scoring for inference. The PLDA was also
adapted unsupervisedly using the unlabelled data provided as
a part of the development set. The entire system was imple-
mented using the Kaldi toolkit.

1. INTRODUCTION

Our systems are developed based on two frameworks for
speaker recognition: the i-vector framework [1] and the x-
vector framework. In both frameworks, the back-end of the
systems remains the same. Two versions of the standard i-
vector framework are employed: an i-vector system that uses
the conventional UBM/GMM as implemented in [1, 2, 3, 4]
and another i-vector system that computes sufficient statis-
tics based on the DNN system trained for Automatic Speech
Recognition as presented in [5]. The two systems are de-
scribed in Section 2 and 3. The x-vector system setup is given
in Section 4. The results on the NIST SRE 2018 development
set are provided in Section 5.

2. I-VECTOR PLDA SYSTEM

The i-vector PLDA systems have been part of the state-of-
the-art speaker recognition since its introduction in [1]. In
NIST SRE 2016 evaluations, GMM-UBM based i-vector sys-
tems performed better than the DNN/i-vector systems [6] pri-
marily due to language mismatch [7]. As the scenario in the
current evaluation is similar, we trained a gender-dependent
GMM-UBM i-vector. However, as opposed to identifying the
gender of the enrolled and test speaker, we obtain scores from
both systems (male and female) and fuse them together with
the scores from other systems. Both i-vector based systems

used in the paper were trained using our implementation of
the standard i-vector framework implemented for the Kaldi
toolkit [8]. PLDA models are trained using the Kaldi toolkit
as well [9]. The PLDA model parameters are then adapted in
an unsupervised way to the NIST SRE 2018 unlabelled de-
velopment set.

The front-end used 20 Mel Frequency Cepstral Co-
efficient (MFCC) features along with delta and acceleration
parameters with 30 ms window and 10 ms frame shift [4].
Short term Gaussianization was applied with a context of 300
frames [10].

Gender-dependent GMM-UBMs with 2’048 components
and i-vector extractors of 500 dimensions were trained. The
ivector dimension was reduced to 350 after LDA, followed
by mean subtraction and length normalization before being
scored using PLDA. The following data was used to train the
GMM-UBM and i-vector extractors: Fisher English, Switch-
board Cellular, NIST SRE 2004, 2005, 2006 and 2008. In
addition, NIST SRE 2010 was used to train LDA and PLDA.

3. DNN I-VECTOR PLDA SYSTEM

As stated in Section 2, the primary system developed at Idiap
for Speaker Recognition (SRE) NIST 2018 is built around the
i-vector approach, modeling a speech recording by projecting
its acoustic features onto a low-dimensional representation.

As an interesting extension of conventional i-vector
framework, in [5], the GMM-UBM components were re-
placed by the output states of a DNN-based hybrid Automatic
Speech Recognition (ASR) system. The sufficient statistics
were estimated using the context-dependent phone poste-
rior probabilities estimated at the output of the DNN. The
work has demonstrated that a well-defined acoustic space can
significantly improve speaker modeling, as opposed to unsu-
pervised training of conventional GMM-UBM components.
It is assumed that the improvements in modeling are due to:
(i) well-defined nature of DNN output states, and (ii) high
alignment accuracy of the discriminative DNN classifier.

In our recent work [11], we experimented with different
types of acoustic modeling techniques (primarily developed
for ASR tasks), such as GMM-HMM, SGMM-HMM, DNN-
HMM and its variants to generate better alignments when
building the UBM model. Also employment of a Language



Model (LM) to more reliably estimate phone posteriors at the
output of the ASR decoder was explored. Since the SRE per-
formance is related to the sparsity of the phone posteriors es-
timated at the output of ASR decoder, due to the violation
of the Gaussianity assumptions in LDA and PLDA space, a
countermeasure was proposed based on adjustment of differ-
ent scale factors involved in ASR decoding.

This section describes a state-of-the-art acoustic modeling
technique applied in ASR - Lattice-Free (LF) version of the
Maximum Mutual Information (MMI) criterion - to develop a
Time-Delay Neural Network (TDNN) based neural network.
The phone posteriors estimated using this network are then
used to compute sufficient statistics to build the TDNN-UBM
based i-vector system for NIST 2018 SRE task.

Similar to the original LF-MMI work [12], we used the
HMM topology allowing to traverse the HMM in one frame.
The transition probabilities are set to a constant value (0.5).
We used only 408 PDFs in the final tree, which makes the sub-
sequent UBM training fast. As the denominator in MMI crite-
rion, an un-pruned 4-gram phone-level LM is used. The sub-
sampled TDNN is used with a configuration specified in [12].
The input is composed by set of 13 dimensional MFCCs and
100 dimensional online i-vectors, followed by 1’024 dimen-
sional ReLU components. The output is interpreted as the log
of pseudo-likelihoods w.r.t. 408 PDF classes. The training
did not apply any speed-perturbation technique (i.e. to aug-
ment training data as proposed in [13]), as we used relatively
large amount of training resources. We also did not use high-
resolution features in the TDNN training.

3.1. Experimental setup and datasets

For acoustic modeling, we used 13 dimensional MFCCs,
standardly extracted every 10 ms using Kaldi framework [14].
The MFCCs were extended by 100 dimensional kaldi-online-
ivectors extracted at the same frame-rate. Estimated posterior
probabilities (obtained through a forward-pass) were con-
verted into the Kaldi alignment archives.

The second feature stream was used for UBM/T-matrix
computation. We used 20 dimensional MFCCs along with
delta and acceleration coefficients extracted every 10 ms us-
ing a window of 30 ms generated using HTK toolkit. The
60 dimensional MFCCs were further processed through a
short-term Gaussianization module [10] with a context of
300 frames. This type of MFCCs was shown to signifi-
cantly improve SRE performance although its use for ASR
acoustic model training is less efficient than conventional
MFCCs [11].

The male and female part of Fisher English Part I and
II data was used to train the TDNN model and subsequent
TDNN-UBM and T-matrix under LF-MMI criterion. Similar
to Section 2, estimated i-vectors using TDNN-UBM model
were projected using LDA and passed to the back-end classi-
fier (PLDA). Both LDA and PLDA parameters were trained

with the datasets similar to Section 2. Voice activity detector
to segment the development data was trained on Fisher En-
glish Part I.

The TDNN model was trained using a standard CMU dic-
tionary with around 42 K words.

4. X-VECTOR SYSTEM

This system is mostly based on the x-vector system described
in [15]. X-vector is an DNN embedding which models the
speakers in both frame and segment level. For sequence mod-
eling in frame level, this model uses a small temporal context
centered at the current frame. It assumes for deeper layers,
with splicing the output of the previous layers as input, that
this architecture can model the sequence of frames from the
larger context. In this structure after three layers, the total
context of 15 frames is observed. The number of hidden units
in each frame-level layer is 512, except layer 5 which is of zie
1’500. Layers 4 and 5 are fully connected layers and do not
use any temporal context. To reach segment-level layer from
the frame-level layers, statistical pooling is used which aggre-
gates all T frame-level outputs in the fifth layer, computing
the mean and standard deviation to reach the 3’000 dimen-
sion segment-level vector. Segment-level architecture con-
tains two fully connected layers with 512 hidden units follow-
ing the softmax layer with N dimension which corresponds to
the number of target speakers (i.e. in the training data). The
activation functions in this architecture are all rectified linear
units (ReLUs). Final x-vector is extracted before applying the
activation function in the first segment-level layer.

Similar to Section 2, the x-vectors obtained for each
speech utterance are centered, and projected using LDA [1].
LDA of dimension 150 was used, based on tuning the param-
eters on the training set. After the dimensionality reduction,
the x-vector representations are length-normalized [16] and
modeled by PLDA [17]. For score normalization, although
adaptive s-norm [18] showed significant improvement in
NIST SRE 2016 set [19], based on the result on development
set of NIST SRE 2018, s-norm was used as score normaliza-
tion method.

4.1. Datasets

Majority of training data is in English language which con-
sists of telephone, microphone, and audio from video record-
ings. All wide-band audio was downsampled to 8 kHz. For
training the x-vector model, Switchboard dataset (SWBD),
main NIST dataset (SRE), and Voxceleb dataset (VCELEB)
were used. SWBD contains Switchboard 2 Phases 1, 2, and
3 as well as Switchboard Cellular parts 1, and 2. In to-
tal, the SWBD dataset contains about 28 K recordings from
2.6 K speakers. The SRE dataset consists of NIST SREs
from 2004 to 2010 along with Mixer 6 and contains about
63 K recordings from 4.4 K speakers. VCELEB contains data



from Voxceleb 1, and 2. Both datasets consist of videos from
celebrity speakers. Voxceleb 1 consists of 153’516 utterances
from 1’251 speakers and Voxceleb 2 consists of 112’8246
utterances from 6’112 speakers.

To increase the amount and diversity of the existing train-
ing data, SRE and SWBD datasets were augmented with ad-
ditive noise and reverberation. For reverberation and noise,
RIR, and MUSAN datasets were used, respectively. RIR is
the collection of room impulse responses measured in the dif-
ferent room sizes. The MUSAN dataset, consists of over
900 noise samples, 42 hours of music from various genres
and 60 hours of speech from twelve languages. Both MU-
SAN and RIR datasets are freely available1. The strategy for
augmenting the data is similar to the ideas mentioned in an
original x-vector paper [15]. In addition to clean speech sam-
ples, the augmented version of the speech samples mixed with
some noise, randomly chosen from four different categories,
is added to the dataset. These noise categories contain babble,
music, noise, and reverb which are speech, music, noise, and
room impulse response, respectively. In the first three cate-
gories, the selected noises from MUSAN dataset are added to
the original speech in different SNR levels. In the last cate-
gory the training recording is artificially reverberated via con-
volution with simulated RIRs.

4.2. Experimental Setup

After down-sampling the speech data to 8 kHz, 23 dimen-
sional mel frequency cepstral coefficients (MFCCs) were ex-
tracted with 25 ms window of speech data with 10 ms frame-
shift. Band-pass filtering was applied between 20 to 3700 Hz.
Log of energy was added to the feature vector and these fea-
tures were mean-normalized over a sliding window of up to 3
seconds. Energy-based voice activity detection (VAD) was
used to removing the non-speech frames. For training the
x-vector, chunk size of speech frames were chosen between
200 to 400 frames. In extraction time, chunk size of 100 sec-
onds (10’000 frames) with minimum size of 250 ms was used,
while for longer utterances, the average x-vector from input
chunks was computed.

In these experiments, as the VCELEB dataset contains
more than 1.2 M utterances, we did not perform data aug-
mentation. The x-vector system was trained on combination
of VCELEB and augmented version of SWBD and SRE
datasets. The PLDA classifiers were trained on just aug-
mented version of SRE. In addition to the aforementioned
datasets, the unlabeled part of development set of NIST SRE
2018 was used for PLDA adaptation and score normalization.
The rest of the development set was used for initial evaluation
and selecting the score normalization method.

1http://www.openslr.org

5. EXPERIMENTS

In this section, we report our results on the part of the NIST
SRE 18 development set available for system optimization.
We also report the time taken to evaluate each trial on an av-
erage.

5.1. System performance

As mentioned above, all systems are evaluated on the test set
provided with NIST SRE 2018 development. The same test
set is used to tune the results, tune the fusion weights and cal-
ibrate our systems. The results are presented in Table 1. In
terms of EER, the GMM-UBM male system performed the
best on VAST condition and the x-vector system performed
the best on the CMN2 condition. In terms of minDCF, the
x-vector system performed the best overall. The systems are
fused at the score level. The fusion of all the individual sys-
tems provided the best results in terms of minDCF. However,
there was 0.8% absolute degradation in EER from the GMM-
UBM system on the VAST condition after fusion. The signif-
icance of this degradation is unclear as the size of the test data
is severely limited.

5.2. Performance and Processing Requirements

The infrastructure used to train x-vector and LF-MMI acous-
tic models contains 16 GPU GeForce GTX 1080 Ti with
11 GB memory per GPU. The i-vector extraction for en-
rollment and probing is done on CPU, Intel(R) Core(TM)
i7-5930K CPU @ 3.50GHz with a memory of 32 GB. The
average execution time for a single threaded when computed
on speech (i.e. without silence) was approximately 1.2s to
compute the i-vector for the UBM-GMM system. The execu-
tion time for the TDNN i-vector system is also approximately
1.2 s. It is to be noted that for the TDNN i-vector system the
posteriors were extracted on the GPU while the i-vector was
estimated on the CPU. For both systems, the maximum mem-
ory usage for modelling is related to the size of the i-vector
extractor, which is 81 MB for the TDNN i-vector system
and 501 MB for the UBM-GMM system. The time taken
for 10’000 trials in both cases is approximately 0.25 s. The
extraction of x-vector for enrollment and probing is done on
CPU, Intel(R) Core(TM) i7-7700K CPU @ 4.20GHz, with
a total memory of 32 GB. The execution time of x-vector
extraction process in a single thread when computed only
on detected speech is of 21.43 times faster than real time
(FRT). For the whole recordings including silence, it would
be 33.4 FRT using 2 GB of memory. x-vector averaging time
for enrollment and scoring time is negligible with respect to
the x-vector extraction time.



Table 1. Results on the development set of NIST SRE 2018 dataset for all systems presented as provided by the NIST toolkit.
EER: Equal Error Rate, minDCF: minimum Decision Cost Function.

System VAST CMN2
EER (%) minDCF EER (%) minDCF

GMM-UBM male 8.2 0.704 11.7 0.673
GMM-UBM female 11.1 0.67 15.1 0.83
DNN I-vector 12.8 0.815 13.5 0.737
x-vector 11.11 0.597 8.81 0.583
Fusion 9.05 0.630 7.7 0.537
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