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Abstract

The Generalised Command Response (GCR) model is a time-local model of intonation that has been
shown to lend itself to (cross-language) transfer of emphasis. In order to generalise the model to longer
prosodic sequences, we show that it can be driven by a recurrent neural network emulating a spiking
neural network. We show that a loss function for error backpropagation can be formulated analogously
to that of the Spike Pattern Association Neuron (SPAN) method for spiking networks. The resulting
system is able to generate prosody comparable to a state-of-the-art deep neural network implementation,
but potentially retaining the transfer capabilities of the GCR model.

Index Terms: Speech synthesis, prosody modelling, recurrent neural network, Fujisaki model

1 Introduction

We are interested in general in speech to speech translation, and specifically in transfer of paralinguistics
from one language to another. For instance, if a speaker expresses emotion or emphasis in an input
language, we would like those features to be present in the synthetic speech resulting from machine
translation of speech recognition output. In previous work with colleagues [1], we studied a model
of prosody (actually intonation, F0) based on the Command-Response (CR) model of Fujisaki [2]. By
contrast to the CR model, this Generalised CR (GCR) model can be extracted easily from an intonation
contour using a matching pursuit algorithm [3]. The time-local nature of its constituent atoms was
shown (by design) to lend itself to transfer of emphasis. In particular, sections of intonation contours can
be replaced with others that carry different meaning, all whilst retaining naturalness.

In this work, we report on an investigation into how to use GCR to generate longer intonation contours
for more general contour models. Of course, such contours can be generated by any modern Text-to-
Speech (TTS) system (we use Merlin [4] to train a baseline system). However, we hope to retain the
transfer capability of the GCR. GCR also enables analysis of the underlying physiological process.

Given that GCR atoms approximate (groups of) muscle responses to neural spikes, it would make
sense to use a Spiking Neural Network (SNN) to generate these atoms. The generated spikes would be
filtered by muscle responses to generate the pitch contour. However, the choice of a spiking network
paradigm is not obvious. Rather, given the authors’ familiarity with conventional back-propagation based
deep learning algorithms and toolkits, we emulate a SNN. In this work we use a bidirectional Recurrent
Neural Network (RNN) which is capable of generating spikes, hence atoms, for a given text. This in turn
allows us to introduce a loss function for the training of spiking outputs which is inspired by losses in
SNNs. Furthermore, we explain how to weight the loss of different frames with respect to spike positions
and Voiced/Unvoiced (V/UV) decision to achieve good generalisation.We test the hypothesis that prosody
generated by our neural model sounds natural, even though it might vary from the ground truth and that
generated by a baseline model.

In the following sections, we give a brief overview of the GCR model in the context of other work.
We go on to show that a bidirectional GRU based RNN can simulate the spikes that might be expected
to come from a biological spiking network. We generalise the Spike Pattern Association Neuron (SPAN)
algorithm [5] from the literature to construct a loss function from GCR atoms, and show that it can be
backpropagated to allow the system to generate natural prosody. We compare our model in terms of
objective and subjective measures with a strong baseline system (bidirectional RNN + post-processing)
which is trained to predict LF0 per frame.
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Figure 1 – Atom decomposition of Log-F0 (LF0) contour. Upper plot: Original LF0 contour (blue, solid),
reconstruction from atoms (orange, solid), phrase component (yellow, dashed). Lower plot: Atom im-
pulse responses with one colour per atom.

2 Relation to prior work

Numerous approaches to modelling prosody by the superposition of multiple F0 contours exist. The Tilt
model [6] describes the pitch contour as a sequence of events with specific shapes that can be auto-
matically extracted. The INSINT (INternational Transcription System for INTonation) model [7] allows
automatic parameter extraction of the Tone and Break Indices (ToBI) model [8] that divides prosody into
multiple tiers of linguistic focus. The General Superposition Model of Intonation [9] models the pitch con-
tour through a decomposition of microprosodic segmental perturbations, an accent and a phrase curve.
The Superposition of Functional Contours (SFC) model [10] is a data driven approach that models the
pitch contour by a superposition of intonation prototypes. A common drawback of all models above is
that none of them is based on observations of the physiological production aspect. The proposed GCR
model is a physiologically based intonation model which has the same representative power as the CR
model of Fujisaki [2]. It generates the LF0 contour by a superposition of impulse responses to critically
damped second order systems modelling muscle responses (Figure 1). The impulse response of a critically
damped second order system is a gamma kernel

Gk,θ(t) =
1

θkΓ(k)
tk−1e−t/θ for t > 0 (1)

with k being the system order, Γ being the gamma function, and θ determining the length of the kernel.
For a critically damped second-order system as well as the CR model k = 2, however previous research
[11] has found that k = 6 gives better approximations of the original LF0 contour. A phrase additionally
consists of a phrase atom (phrase command in CR model) which models the general shape of the contour
and is correlated mainly to the physics of the speakers’ lung volume (dotted line in upper plot of Figure
1). Experiments have shown that the proposed model is capable of producing good representations and
can transplant emphasis from one language to another [12].

The work closest to our approach is that of Hojo et. al. [13] where the CR model is represented
by a constrained HMM, and a Neural Network (NN) predicts the posteriori probability of its states. A
Viterbi-like algorithm extracts the most probable sequence based on the posteriors. The LF0 generation
based on the sequence is then straight forward and has been done before [14].
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3 Atom Prediction

3.1 Spiking Neural Network

Rather than use an explicit spiking paradigm such as leaky integrate and fire (LIF), we instead emulate
such a network using a conventional backpropagation network. This is achieved using a bidirectional
RNN as described in [15]. Rather than use LSTMs with peepholes as in that paper, we use the GRU of
[16] where peepholes are moot. The error is defined using the learning rule described in the following
section.

3.2 Atom Loss

For a regression task which targets spiking output of varying amplitudes the commonly used Mean-
Squared-Error (MSE) is not an appropriate loss function as it does not consider any temporal information
of spikes. The problem breaks down to measuring the distance between two spike trains. Various methods
exist to compute such a distance such as the Victor-Purpura metric [17], the Van Rossum Similarity
Measure [18], the Schreiber et al. Similarity Measure [19], the Hunter-Milton Similarity Measure [20],
Event Synchronization [21], Stochastic Event Synchrony (SES) [22], and the modulus- and max-metrics
[23]. In general we are interested in a learning rule that uses such temporally-aware measurements to
compute losses during training. We have not found a suitable learning rule in the literature for feed-
forward NN or RNNs but instead in the field of SNNs. The closest precedent to the learning rule we
propose is the SPAN method [5]. In SPAN, each spike is convolved with an “alpha” kernel which adds
temporal information of the spike to all surrounding/succeeding frames. On the resulting continuous
output MSE can be used as the learning rule. The authors of the SPAN method state that other kernel
functions are possible as Gaussian, linear and exponential kernels [24] . The choice of kernel in the
literature is driven by the supposed shape of the post-synaptic potential of neurons in the human brain.
However, the spikes we are interested in represent muscle impulses with responses modelled by a gamma
kernel as described in 2. We therefore use the gamma kernel as the kernel function. The length θ of the
kernel is by no means obvious. While the desired length of correctly placed spikes is known, no ground
truth is available for incorrectly placed spikes. We found that a single short kernel with θ = 0.01 for all
convolutions adds the required temporal information to each spike.

Let us define the matrix G which has the coefficients of the gamma kernel on its leading and above
leading diagonals with size (T × T) where T is the number of frames in a training sample. Further define
yo as the output of the NN and yd as the desired output each of size (T × 1). All spikes can be convolved
independently from each other with the kernel function by diag(y) · G = Y (compare Figure 2). We

yo (1× T)

diag( )

yd (1× T)

diag( )

·



0 · · · 0
0 0 · · · 0
...

. . .
...

0 · · · 0 0
...

. . .
0 · · · 0



G (T × T)

=



0 · · · 0

· · · 0 · · ·

0 · · · 0 0

· · · 0 · · ·



Yo (T × T)



0 · · · 0
0 0 · · · 0

· · · 0 · · ·



Yd (T × T)

Figure 2 – Frame-wise convolution of NN output yo and desired output yd.

denote ỹd as the desired enveloped output given by the sum of all rows of Yd which corresponds to a
superposition of envelopes. The error at each time step t is computed by

errt =

t+∆t∑
i=t

(Yo,t,i − ỹd,i)
2 (2)
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with Yo,t,i being the t-th row and i-th column of Yo, and ỹd,i being the i-th entry in ỹd. ∆t is given by
the length of the gamma kernel used to convolve each spike and represents the number of frames where
a spike takes effect. To limit the interval of the sum to [t, t+∆t] is critical so that the error is not affected
by succeeding parts of the sequence where the spike cannot take effect. To compute the sum efficiently
we define the matrix S of size (T × T) which is the same matrix as G but with ones at non-zero entries of
G and zero otherwise. By utilizing the Hadamard product E = S ⊗ YE, with YE = square[Yo − 1ỹd] and
square[ ] being the element-wise square operation, entries outside the [t, t+ ∆t] interval are zeroed. The
error at time step t is given by the squared norm of the t-th row of E.

errt = ‖Et‖2
2 (3)

Note that the error is computed frame-wise without the superposition of the enveloped NN output, which
means that neighbouring spikes cannot interfere. When allowing the interference of spikes two problems
arise:

• The NN learns to represent a single target spike by multiple smaller spikes.

• The NN predicts many spikes with opposite amplitude which cancel out.

The former problem is an acceptable variation to our model when assuming that a muscle response is not
triggered by a single nerve impulse but multiple ones. However, the latter problem gives clearly unin-
tended and physiological implausible behaviour. Therefore we use the frame-wise atom loss hereafter. A
NN trained with the above learning rule gives an activation around each spike position and thus requires
a post-processing step to identify the peaks.1

3.3 Amplitude Prediction

For any atom the prediction of position, amplitude and length θ is required. A single position flag trained
with atom loss introduced above in section 3.2 gives good estimates of the position of spikes (yd,t ∈
{−1, 0, 1}) but cannot predict amplitude and length at the same time. Unfortunately, we were not able
to train a NN to predict a θ value directly. Instead, besides the position flag, the NN is trained with
MSE to predict one amplitude per θ for a fixed set of θs. The set of θs needs enough values to allow an
approximation of the target LF0 contour with low error, but is limited which corresponds to the limited
number of articulators in the human larynx. When training on amplitude spikes the problem of a highly
unbalanced training set arises (>99.8% of all frames are zero). A network trained with MSE will therefore
uniformly predict zeros and achieve a >99.8% accuracy. The problem can be solved by small adaptations
to data and loss. First each amplitude spike is convolved by a normal distribution in time with a window
of 51 frames. Secondly the loss of frames which are non-zero in the desired output are increased while
all others are decreased resulting in a Weighted Mean-Squared-Error (WMSE).

3.4 Voiced/Unvoiced Prediction

The network also predicts a flag for V/UV LF0 where values >0.5 are mapped to voiced frames. The
target V/UV flag is used to decrease the weight of both losses (atoms and amplitudes) by 0.5 on unvoiced
frames. The value of 0.5 was confirmed by a heuristic search. By this the network spends less effort on
improving parts which are silent after synthesis.

4 Experiments

In running experiments, we mean to test the hypothesis that the basic procedure described above is a
plausible approach to generate natural sounding intonation. The system is preliminary. A-priori we do
not expect it to generate state-of-the-art intonation contours; rather, we simply aim to validate that the
approach merits further research.

1We use the scipy.signal.find peaks cwt function.
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Figure 3 – Synthetic features on a temporal scale of 5 ms per frame. Plot descriptions from top to
bottom: 1: Nine amplitude outputs (one per θ). 2: Spike position flag before post-processing. 3: Atom
spikes generated from spike position and amplitude max/min, V/UV flag (unvoiced frames grey). 4:
Target atom spikes and target V/UV flag (unvoiced frames grey). 5: LF0 (without phrase component)
NN reconstruction (blue, solid), target reconstruction (red, dotted), original (green, dashed) and target
V/UV flag (unvoiced frames grey).

4.1 Experimental Setup

We test our proposed model on the speech database released for the 2008 Blizzard Challenge [25] on a
subset (carroll, arctic, theherald 1,2,3) of the native English Voice A (Roger) of about 6.5 hours on a 16
kHz sampling rate. We only use those samples which can be represented by a single phrase atom. 5% of
all samples are set aside for testing which corresponds to approximately 20 minutes.

Festival [26] is used to obtain phone sequences from text which are force-aligned by context-independent
HMMs with the help of Merlin [4]. Merlin is used again to characterise phones with 416 text-derived
binary and numerical features such as quin-phone identities, part-of-speech, positional information relat-
ing to syllables, words, and phrases, which are normalised to [0.01, 0.99]. These questions are used as
input for all systems.

The WORLD vocoder [27] (D4C edition [28]) is used to extract 60-dimensional Mel Frequency Cep-
stral Coefficients (MFCC), one band aperiodicity (BAP), and fundamental frequency (F0) on log scale at
5-ms frame step. Dynamic features are also computed but are only used in the baseline system. LF0 is
interpolated before training and a binary V/UV flag is used to capture voicing information. The acoustic
features are mean-variance normalised.

From the extracted LF0 atoms are computed by matching pursuit as proposed in [1] including a single
phrase atom. Atom amplitudes are mean-variance normalised. The length of an atom is limited to nine
discrete values θ ∈ {0.01, 0.015, 0.02, . . . , 0.05} which were found to be able to model the LF0 contour
with low error in previous research [11].

4.2 Network Topologies

The baseline system is similar to the one used in [29] following the usual approach by predicting acoustic
features plus their dynamic components. It consists of two feed-forward RELU layers of 1024 nodes, three
bi-directional GRUs with 512 nodes each, and a final linear output layer with 187 nodes. The model is
trained with Adam [30] on 35 epochs (learning rate 0.002).

The model we propose consists of three feed-forward RELU layers with 128 nodes, two bi-directional
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GRUs with 64 nodes each, two feed-forward RELU layers with 128 nodes, and a final linear output layer
with 11 nodes. It predicts one V/UV flag, nine amplitudes (one per θ), and a spike position flag. The
model is trained with Adam on 55 epochs (learning rate 0.0002). In both cases we use β1 = 0.9,β2 =
0.999, ε = 10−8 for Adam.

4.3 Synthesis

For all tests the original durations, MFCCs, and BAPs are used as we are only interested in the impact of
different LF0s on naturalness. For the baseline system LF0 is improved by maximum likelihood parameter
generation (MLPG) [31] using variances computed from the training data. The waveform is synthesized
by the WORLD vocoder.

In our proposed model, the spike position flag is post-processed to identify its peaks which results in a
value of {−1, 0, 1} per frame. Atoms are constructed by taking the maximum of the nine predicted ampli-
tudes for positive spikes and the minimum for negative spikes respectively. The θ value is implicitly given
by the index of the selected amplitude within the nine outputs. LF0 is reconstructed by superposition of
all predicted atoms and the original phrase atom (Figure 3). We plan to predict the phrase atom as well
in the future.

4.4 Objective Results

To objectively compare the models we compute the Root-Mean-Squared-Error (RMSE) of F0 on all frames
which are voiced either in the target data or in the network prediction, and the V/UV error rate. Our
model preforms slightly worse than the baseline system (compare Table 1) but certainly close enough to
validate our hypothesis that the approach is plausible.

Model F0 RMSE V/UV
baseline 44.46 Hz 5.43 %

atom 49.89 Hz 5.94 %

Table 1 – Objective results.

Figure 4 – Subjective score of MUSHRA into-
nation test. Medians as orange lines. Sample
averages as green triangles. Outliers as circles.

4.5 Subjective Results

We measured the naturalness of the synthesised speech by a MUSHRA test2 (Figure 4) where we com-
pared our model (atom) and the baseline (baseline) with the speech produced by the vocoder with the
original acoustic features (reference). We randomly selected a subset of 20 samples from the test set ex-
cluding those where the speaker takes a breath half way through as those samples require further phrase
atoms. 17 non-native but fluent English speakers participated in the test. Each of them was asked to
listen to 5 randomly selected samples from that subset and rate them on a scale from 0 to 100. They
were told to focus on prosody only and ignore minor fuzzy/buzzy artefacts. As the most natural prosody
is found in the reference sample, we excluded 18 results where the listener rated the baseline or the atom
system more than 10 points higher than that reference. A two-tailed paired t-test on the individual rat-
ings for the baseline and atom system gives a p-value of p = 0.12 > 0.05 supporting our assumption that
the two system are not significantly different on a difference level of 0.05. The two-tailed paired t-tests
show that both systems are significantly different to the reference. The p-value for baseline – reference is
p = 1.39e−9, and for atom – reference: p = 2.54e−12.

2Listening test are designed with the BeaqleJS toolkit [32].
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5 Conclusions

We have shown that the combination of an emulated spiking network, a dictionary of atoms representing
muscle responses, and a SPAN-inspired training algorithm can generate reasonable intonation contours.
Although “reasonable” is open to interpretation, the algorithm produces subjective results that are not
significantly different from an accepted baseline. The proposed training algorithm for spiking targets
enables the use of DNNs in other research fields currently dominated by SNNs. Future work includes the
prediction of phrase atoms, exploiting the capabilities of the GCR model to produce / transfer affect, and
reduce the number of heuristics identifying hyper-parameters.
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[24] F. Ponulak and A. Kasiński, “Supervised learning in spiking neural networks with resume: sequence
learning, classification, and spike shifting,” Neural computation, vol. 22, no. 2, pp. 467–510, 2010.

[25] V. Karaiskos, S. King, R. A. Clark, and C. Mayo, “The blizzard challenge 2008,” in
Proc. Blizzard Challenge Workshop, Brisbane, Australia, 2008. [Online]. Available: http:
//www.festvox.org/blizzard/bc2008/summary Blizzard2008.pdf

[26] A. Black, P. Taylor, R. Caley, and R. Clark, “The festival speech synthesis system,” 1998. [Online].
Available: http://www.cstr.ed.ac.uk/projects/festival/

[27] M. Morise, F. Yokomori, and K. Ozawa, “WORLD: a vocoder-based high-quality speech synthesis
system for real-time applications,” IEICE TRANSACTIONS on Information and Systems, vol. 99, no. 7,
pp. 1877–1884, 2016.

[28] M. Morise, “D4C, a band-aperiodicity estimator for high-quality speech synthesis,” Speech Commu-
nication, vol. 84, pp. 57–65, 2016.

[29] S. Ronanki, O. Watts, and S. King, “A hierarchical encoder-decoder model for statistical parametric
speech synthesis,” Proc. Interspeech 2017, pp. 1133–1137, 2017.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[31] K. Tokuda, T. Yoshimura, T. Masuko, T. Kobayashi, and T. Kitamura, “Speech parameter genera-
tion algorithms for hmm-based speech synthesis,” in Acoustics, Speech, and Signal Processing, 2000.
ICASSP’00. Proceedings. 2000 IEEE International Conference on, vol. 3. IEEE, 2000, pp. 1315–1318.

[32] S. Kraft and U. Zölzer, “BeaqleJS: HTML5 and javascript based framework for the subjective
evaluation of audio quality,” in Linux Audio Conference, Karlsruhe, DE, 2014. [Online]. Available:
https://github.com/HSU-ANT/beaqlejs

8


