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ABSTRACT

Robustness of extracted embeddings in cross-database scenarios is one of the main challenges in
text-independent speaker verification (SV) systems. In this paper, we investigate this robustness
via performing structural cross-database experiments with or without additive noise. This noise
can be added from the seen set, where the noise type is similar to the noise which is used in data
augmentation for training the SV model, or unseen set, where distribution of additive noise in train
and evaluation sets are different. For extracting the robust embeddings, we investigate applying the
time dilation in the ResNet architecture, so-called dilated residual network (DRN). Dimension and
number of segment level layers are tuned in this architecture. The proposed model with time dilation
significantly outperformed the ResNet model and is comparable with the state-of-the-art SV systems
on Voxceleb1 dataset. In addition, this architecture showed significant robustness in out of domain
scenarios.
Language mismatch is part of domain mismatch which recently is one of the main focuses of
research in SV systems. Similar to image recognition field, we hypothesize that low-level convolu-
tional neural network (CNN) layers are domain-specific features while high-level CNN layers are
domain-independent and have more discriminative power. For adapting these domain-specific units,
combination of triplet and intra-class losses are investigated. The adapted model on the evaluation part
of the CMN2 dataset, relatively outperformed the DRN and x-vector SV systems without adaptation
with 8.0 and 20.5 %, respectively in equal error-rate.

Keywords Speaker verification · Dilated residual network · DRN · Speaker embedding · Domain adaptation.

1 Introduction

For several years, the segment level vector that represents the speech signal, called i-vector, with probabilistic linear
discriminant analysis (PLDA) backend, had dominated the text-independent SV research field [1]. In recent years, deep
neural networks (DNNs) have shown successful results in several fields including computer vision, speech recognition,
or natural language processing [2–4]. Similar to the mentioned fields, DNN-based models successfully have been
applied to text-independent SV systems [5–8].

Applying deep learning methods for SV can be done on both frame- or segment-level of the input speech signal.
Extracting DNN-based bottleneck features [7], or computing Baum-Welch statistics from DNN for training i-vector [5]
represent two frame-level solutions of SV systems. Applying DNN-based non-linear mapping and backend classifier on
fixed-length representations (typically i-vectors) is a sample of segment-level solutions for DNN-based SV systems [9].
DNN-based architecture for training the embedding extractor, called semi end-to-end approach, is another segment level
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solution. In this case, the extracted embeddings can be used for training the back-end classifier (e.g., PLDA) [8, 10], or
directly training the speaker-specific classifier [11]. For training the embedding extractor model, recent DNN-based
architectures e.g., ResNet with triplet and intra-class loss can be applied [12]. Speaker specific classifier can be trained
in a fully end-to-end manner, where “siamese DNNs” are used to approximate the posterior probability of the presented
utterances belonging to the same speaker [13].

In many cases, having access to the large high quality in domain dataset is not feasible. Because of this reason, training
a robust model is one of the main focuses of research in SV field. Here, we investigate this robustness via performing the
structural cross-database experiments with or without additive noise. For additive noise, two conditions are considered
(1) where the noise type is similar to the noise which is used in data augmentation for training the SV model, seen set,
and (2) where distribution of additive noise in train and evaluation sets are different, unseen set. Time-delay neural
networks (TDNNs) showed significant improvement in the performance of speaker verification systems [8, 14]. This
time dilation can be applied to convolutional neural network (CNN) architectures where spectrogram is used as input
features. In this paper, for extracting the robust embeddings, we investigate applying the time dilation in the ResNet
architecture, so-called dilated residual network (DRN). Number and dimension of segment level layers are tuned in
this architecture. As extracting the embeddings with linear activation showed improvement in speaker verification
performance [7, 15], bottleneck embedding features (when dimension of the extracted embedding is smaller than the
surrounding layers) are extracted after a layer with a linear activation function. For making the verification decision,
this extracted embeddings can be used for training the back-end classifier (e.g., PLDA) or directly computing the cosine
distance between enrollment and trial embedding vectors. The proposed model significantly outperformed the ResNet
model and is comparable with the state-of-the-art SV systems on Voxceleb1 dataset. In addition, this architecture
showed significant robustness in out of domain scenarios.

One of the recent challenges in speaker recognition field is domain compensation. In the recent NIST SRE evaluations,
language mismatch was one of the main focuses of evaluation. Recently, for alleviating the language mismatch problem,
some domain adaptation techniques were proposed [16–19]. In face recognition field, it is shown that high level CNN
layers are potentially domain independent and can be used for extracting the embedding and modeling the target
identities [20]. On the other hand, low-level CNN layers are domain-specific features and adaptation of these domain-
specific units (DSUs) allows to map from the target to the source domain. It is shown that applying the intra-class loss
has significant effect on robustness of the triplet loss with respect to noise and intra-class variabilities [12]. In this
paper, for adapting the DSUs combination of triplet and intra-class losses is investigated. We investigate the adaptation
performance on CMN2 dataset with increasing the number of adaptation layers. As development set of CMN2 dataset
is relatively small, adapting the first layer showed the best performance. Based on equal error rate (EER) performance
measure, the adapted model relatively outperformed the DRN and x-vector SV systems without adaptation with 8.0
and 20.5 %, respectively. In addition, t-SNE visualization and analysis of heatmap of first CNN layer showed the
effectiveness of the proposed method for adaptation. After adaptation, intensity of high frequencies are more similar to
the original spectrogram. In addition, represented features from the adapted model shows more similarity for modeling
the harmonies and fundamental frequencies.

The rest of this paper is organized as follows: Related works for extracting the DNN-based segment level features and
domain adaptation are shown in Section 2. The proposed approaches are discussed in Section 3. Experiment setup and
results are discussed in Section 4. Finally, conclusions and future works are shown in Section 5.

2 Related Works

DNN-based architecture for extracting the frame-level embeddings for text-dependent speaker verification was shown
in [21]. The average of these frame-level features makes the speaker-specific feature vector, called d-vector. The
extracted d-vector from each trial utterance was compared to the d-vector of the enrolled speaker to make a verification
decision. The end-to-end system based on d-vector for discriminating between same-speaker and different-speaker pairs
was introduced in [22]. However, this end-to-end approach requires a large amount of data to be effective. Feed-forward
DNN-based architecture which connects the frame-level and segment-level layers with statistics pooling layer was
shown in [23]. This statistics pooling layer computes the concatenation of mean and standard deviation of frame-level
layers to be used as an input for segment-level layers. With capturing the long-term speaker characteristics, this
architecture can be trained from variable-length speech segments. In [10], siamese architecture was used for training
the segment-level embeddings extractor. For improving the robustness of the extracted embeddings, called x-vector [8],
the architecture from [23] was trained with data augmentation. Combination of triplet loss and intra-class distance
variance regularization for extracting the robust segment-level embeddings was investigated in [12]. In this paper,
ResNet architecture with statistical pooling for extracting the segment-level embeddings from spectrogram with two
or three seconds chunk size was used. In [24], VGG structure with statistical pooling was used for extracting the
segment-level embeddings. In this paper, for training the embedding extractor, combination of softmax and center loss
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was used. In [15], Shon et al. investigated the discriminability power of frame-level embeddings that are extracted from
each hidden layer of CNN-based architecture. They showed that embeddings can be extracted efficiently with linear
activation in the embedding layer. Similar to Shon et al., in this paper, we extract embeddings with linear activation
in the embedding layer. However, for robustness and effective modeling the sequence of input data, we applied time
dilation in the ResNet architecture.

For alleviating the domain shift problem, several domain adaptation approaches have been proposed. In [25], for
inter-dataset variability compensation (IDVC) nuisance attribute projection (NAP) was used. In this case, as an i-vector
pre-processing step, NAP was used to remove the subspace that represents all variabilities in different datasets. For
alleviating the i-vector mismatch across different domains, a domain adversarial technique (DAT) is proposed in [26].
In this paper, for learning a shared feature extractor and two classifiers, multi-task learning framework was used. In
this structure, domain-invariant and discriminative features are extracted using a gradient reversal layer in the domain
classifier. Different transfer learning strategies when intrinsic neutral/physical mismatch exists between train and
evaluation datasets were investigated in [19]. An adversarial method for unsupervised discriminative domain adaptation
was proposed in [16]. For reducing the domain mismatch in i-vector and x-vector SV systems, semi-supervised nuisance
attribute network (SNAN) was introduced in [17]. In this paper, instead of computing the domain variability from the
dataset means, maximum mean discrepancy (MMD) was used as part of the loss function. Our proposed method for
domain adaptation is similar to transfer learning method in [19], however in our method, instead of triplet loss, the
combination of triplet and intra-class losses is used. In addition, similar to [20] for adapting the DSUs from target to the
source domain, low-level CNN layers are investigated.

3 Proposed approaches

The novelty of this paper contains enhanced DNN-based architecture for extracting the embeddings and domain
adaptation technique for alleviating the language mismatch. The proposed DRN architecture is shown in Section 3.1.
Domain adaptation using triplet and intra-class loss is explained in Section 3.2.

3.1 Dilated Residual Networks

Modeling the sequence of speech frames is a fundamental issue in training the DNN-based models in the majority
of speech processing related fields including speaker verification. Using time dilation in CNN, with a fixed size of
parameters, discriminative speaker characteristics can be modeled from a larger sequence of speech frames which causes
faster convergence time and needs a smaller set for training. DRN architecture was introduced in image classification
field for conserving the spacial structure of the scene of the input image in the low dimensional feature map [27].
Although this architecture is capable of modeling the sequence of speech frames, because of keeping the dimension of
feature map resolution in inner layers similar to the input layer, in the majority of average size public speech datasets,
this architecture will overfit on the training set. Because of this reason we used the original ResNet architecture with
dilation in the time domain. The architecture of ResNet which is used in this paper is shown in Figure 1.

Spectrogram from 300 speech frames with 512 FFT resolution was used as input to this architecture. In this condition,
the dimension of input for training the DRN model will be 300x257. For applying time dilation, we realized that using
a smaller filter size in the first layers will improve the performance of the verification system. Because of this reason,
convolution layers with filter size 16, and 32 were used in the first two CNN layers. For modeling the sequence of
speech frames, the window size of the first two CNN layers was set to 5 in the time domain. Time dilation was applied
on the second and third CNN layers before starting the residual blocks. In these layers, the dilation step was set to 2 and
3, respectively. Similar to [12], the max-pooling layer was applied only on the time domain. Residual blocks follow the
same definition in [28]. Using skip connection, fine-grained information of spectrogram can be passed directly to the
deeper layers. 3, 4, and 6 residual blocks with 64, 128, and 256 filter size were used, respectively. The dimension of
the represented feature in the frequency domain was decreased to 1 using two CNN layers with kernel size 9 in the
frequency domain. In these two layers, 256 and 512 were used as filter size, respectively. Mean and standard deviation
of represented features was concatenated as statistical pooling layer to create 1024 dimension feature vector as an input
to segment-level layers. Similar to [24] for regularization, two dropout layers were used before and after the bottleneck
embedding layer. As extracting the embeddings with linear activation showed improvement in speaker verification
performance [7, 15], bottleneck embeddings are extracted from the layer with a linear activation function. In the end,
using one fully connected layer, the dimension of output features will reach to the number of speaker labels in the
training set. Cross-entropy on softmax of output features is used as the loss function. All CNN layers are followed
by batch normalization and rectified linear unit (ReLU) activation function. Kernel size of all CNN layers in residual
blocks is 3x3 with 1x1 stride and padding. The extracted embeddings are used for training the PLDA backend.
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Figure 1: Dilated residual network architecture for training the embeddings extractor. Conv, s, d, fc, and DSUs are
convolution layer, stride, dilation, fully connected layer, and domain-specific units, respectively. Embeddings are
extracted from the fc1 layer. DSUs are updated from the initial layers.

3.2 Domain adaptation using triplet and intra-class loss

Features that are closer to the input signal (called low level features) assumed to be domain-specific features [20].
On the other hand, features that are closer to the output of DNN architecture are considered to be more task specific
and carry more discriminative power. For formalizing this hypothesis, given Xs = {x1, x2, ..., xn} and Xt =
{x1, x2, ..., xm} being a set of samples from source Ds and target Dt domains, with theirs set of corresponding
labels Ys = {y1, y2, ..., yn} and Yt = {y1, y2, ..., ym}, respectively. All parameters of pre-trained CNN-based feature
detector from Ds, denoted with θ, can be splitted to domain dependent θt and domain independent θs parameters,
where P (Yt|Xs, θ) = P (Yt|Xt, [θs, θt]). These domain dependent parameters θt are called domain-specific units.
For analyzing the hypothesis that these DSUs are set of low-level features that are correlated to the input signal,
we performed the set of experiments on CMN2 dataset. Generic pseudo-code for updating the DSUs in the CNN
architecture is shown in Algorithm 1. Position of CNN layers which contains DSUs are shown in Figure 1.

The proposed DRN architecture was used for adaptation. This architecture batch normalizes the signal for every layer.
This batch normalization can be defined as:

h(x) = βi +
g(Wi × x) + µi

σi
, (1)
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where β is the batch normalization offset, W is the kernel of CNN layers, g is the non-linear function which is applied
to the convolution, usually ReLU, µ and σ are the accumulated mean and standard deviation of the current batch. In the
back-propagation step, two variables W and β are updated.

Algorithm 1: Training Strategy Given a Pre-trained CNN-based Model θ, Loss Function L and the Number of Layers
to be Adapted nlayers. θt is Split Between the CNN Kernel parameter W and the Batch Normalization Offset β
Data: θ, L, nlayers
Result: θt
θt = θ[: nlayers]; // Domain Spec. Units
θs = θ[nlayers :]; // Domain Indep. Units
while has_data do

batch = get_batch() ;
∂L
∂θt

= forward_backward(batch, θ, θt, L) ;
θt[β] = θt[β]− η ∂L∂θt [β] ;
θt[W ] = θt[W ]− η ∂L∂θt [W ] ;

end

For updating the DSUs combination of triplet and intra-class losses was used. Formally, triplet loss can be defined as:

Lt =
1

|T |

∑[
d(f(xa), f(xp))− d(f(xa), f(xn)) + α

]
+ (2)

where T is the set of all possible triplets of the training set, d is the Euclidean distance in the embedding space, xa,
xp, and xn are anchor, positive, and negative samples in training set, respectively. f(.) is the mapping function for
extracting the embeddings and α is the margin for computing the triplet loss. For robustness of the triplet loss to noise
and intra-class variability, intra-class loss was added to the triplet loss.

Intra-class loss function can be defined as:

Lc(c) =
∑

xi,xj/yi=yj=c

[d(f(xi), f(xj))− γ]+
n2c

, (3)

where xi and xj are the samples from the same class c, nc is the total number of samples in the current class, and γ is
intra-class loss margin. The final loss function can be defined as:

L = Lt +
λ

K

∑
c

Lc(c), (4)

where λ is intra-class loss weight and K is total number of classes in the current batch.

4 Experimental Setup and Results

The experiments consist of in-domain and domain mismatched experiments. In the in-domain experiments, the train,
development, and evaluation sets are selected from the same dataset. For investigating the robustness of the trained
model, we performed a series of domain mismatched experiments. Domain mismatch experiments include experiments
with and without language mismatch. For investigating the more challenging conditions in experiments without
language mismatch, various types of noise with different signal to noise ratios (SNRs) from different datasets can
be added to the development or evaluation sets of the target datasets. Finally, the proposed adaptation method was
investigated on a more changing dataset with language mismatch. In many cases, having access to the large training
datasets is not feasible, because of this reason we focused on experiments with moderately small training sets1.

4.1 In domain experiments

The in-domain experiments consist of training the proposed DRN model for extracting the bottleneck embeddings and
training a PLDA classifier using these embeddings. We performed some experiments for tuning the dimension and
number of segment level layers. In the end, we investigate the effect of applying time dilation and data augmentation on
the ResNet architecture.

1All experiments are reproducible and public repository will be distributed upon acceptance of the manuscript
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4.1.1 Training the proposed DRN model

The test set in our experiments is the test set of Voxceleb1 dataset. Voxceleb1 consists of 153,516 utterances from 1,251
speakers where 40 speakers were used as a test set. Train set of Voxceleb1 was used for training the DRN model. One
session for each of 1,211 speakers, totally 7,494 utterances, was used as a validation set. On 16-bit single-channel
audio streams, spectrograms were generated in a sliding window fashion using a Hamming window of width 25ms and
step 10ms. Dropout rate on two dropout layers before and after the embedding layer was set to 20%. The model was
trained for 60 epochs and learning rate was set to 1e-3 with decreasing factor of 10 on epoch 30. For all in domain and
domain mismatch experiments, RMSprop with weight decay of 1e-4 was used as gradient descent optimizer. Pytorch
was used for training and model was trained on GPU GeForce GTX 1080 Ti with 11 GB memory. The extracted
embeddings dimension was reduced to 200 after LDA (if the embedding dimension is more than 200), followed by
mean subtraction and length normalization before being scored using PLDA classifier. This PLDA training system
was implemented using Kaldi toolkit. Equal error rate (EER) and minimum decision cost function (minDCF) with
ptarget = {0.01, 0.001} were used as performance measure.

4.1.2 Experiments for tuning the dimension of segment level layer

Investigation of the performance of the proposed system with different embedding dimension using cosine and PLDA
scoring on the Voxceleb1 test set is shown in Table 1. Based on EER, embeddings with 60 and 128 dimensions show
the best performance with PLDA scoring system. However, based on minDCF, embeddings with 128 dimensions show
the best performance. Because of this reason, we chose 128 as an optimal embedding dimension.

Table 1: Performance of the proposed system with different embedding dimension on the Voxceleb1 test set.
Scoring Dim EER (%) minDCFp=0.01 minDCFp=0.001

Cosine 60 6.1 0.58 0.69
PLDA 60 5.8 0.61 0.74
Cosine 128 5.9 0.56 0.66
PLDA 128 5.8 0.58 0.73
Cosine 200 6.4 0.57 0.72
PLDA 200 6.4 0.58 0.76
Cosine 300 6.5 0.57 0.73
PLDA 300 6.0 0.57 0.70
Cosine 512 6.6 0.58 0.73
PLDA 512 6.3 0.58 0.76

4.1.3 Experiments for tuning the number of segment level layers

Some of recent speaker verification architectures used two segment-level layers when the embeddings can be extracted
from the first [8] or second [15] layer. We investigate increasing the number of segment-level layers when the last
segment-level layer was used for extracting the embeddings. Result of this investigation is shown in Table 2. Based on
these results, increasing the number of segment-level layers will not improve the performance of the speaker verification
system.

Table 2: Investigation of increasing the number of segment-level layers on performance of speaker verification system
on the Voxceleb1 test set. Dim1 and Dim2 are the dimension of first and second segment-level layers, respectively. (-)
in Dim1 is the system with one segment-level layer.

Scoring Dim1 Dim2 EER (%) minDCFp=0.01 minDCFp=0.001

Cosine 128 128 7.1 0.64 0.74
PLDA 128 128 6.5 0.65 0.79
Cosine 256 128 7.5 0.66 0.85
PLDA 256 128 6.7 0.65 0.88
Cosine 512 128 7.1 0.66 0.81
PLDA 512 128 6.8 0.64 0.81
Cosine - 128 5.9 0.56 0.66
PLDA - 128 5.8 0.58 0.73
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Comparison of the structure of some recent speaker embedding approaches is summarized in Table 3. Similar to [10] in
our embedding extractor architecture, spectrogram with a fixed length of three seconds was used as input for training.
This chunk of spectrogram was normalized using cepstral mean-variance normalization (CMVN). However, the number
of parameters for training the model is reduced to 23M and time dilation was used in 2d-CNN. In contrast to other
architectures, in the proposed architecture, except output softmax layer, one fully connected segment-level layer was
used. The dimension of the embedding layer was set to 128. Using this small dimension as the bottleneck layer,
with decreasing the number of training parameters, in addition to faster convergence, this architecture will prevent
over-fitting on the training set. Similar to [15], linear activation function was used before the embedding layer. Global
mean subtraction, LDA, length normalization, and PLDA were used as backend processing.

Table 3: Comparing the structure of some recent speaker embedding approaches.

x-vector [8] VGG [10] fl-emb [15] Ours

Input for training MFCC Spectrogram
with fixed length (3sec)

MFCC
with fixed length (2sec)

Spectrogram
with fixed length (3sec)

Input normalization CMN CMVN CMN CMVN
Structure TDNN 2d-CNN (VGG-M) 1d-CNN 2d-CNN with time dilation

Parameters 4.4M 64M 13M 23M
Global pooling Statistics Average Statistics Statistics

Embedding layer First fully connected layer Last fully connected layer Last fully connected layer Last fully connected layer

Non-linearity All layers All layers All layers except
before embedding layer

All layers except
before embedding layer

Embedding dimension 512 1024 600 128
Backend

Processing
Zero-mean norm.+LDA
+length norm.+PLDA

Euclidean Distance
with Siamese network

Zero-mean norm.+LDA
+length norm.+PLDA

Zero-mean norm.+LDA
+length norm.+PLDA

4.1.4 Investigation of applying time dilation and data augmentation

To increase the amount and diversity of the existing training data, Voxceleb1 dataset was augmented with additive noise
and reverberation. For reverberation and noise, similar to [8] RIR, and MUSAN datasets were used, respectively. RIR
is the collection of room impulse responses measured in the different room sizes. The MUSAN dataset consists of
over 900 noise samples, 42 hours of music from various genres and 60 hours of speech from twelve languages. These
datasets are freely available2. For data augmentation, the clean version of speech samples mixed with some noise,
randomly chosen from four different categories. These noise categories contain babble, music, noise, and reverb which
are speech, music, noise, and room impulse response, respectively. In the first three categories, the selected noises from
MUSAN dataset are added to the original speech in different SNR levels. In the last category, the training recording has
artificially reverberated via convolution with simulated RIRs. In average, for each clean sample, two noisy samples
were generated and the proposed system is trained using this augmented dataset.

For investigation of the effect of adding time dilation to the ResNet architecture, we performed some experiments
with the proposed ResNet architecture without time dilation. These experiments are done with and without data
augmentation. The comparison of the performance of the proposed systems with some recent speaker verification
systems on the test set of Voxceleb1 dataset is shown in Table 4. Including the time dilation to the ResNet architecture,
relatively outperformed the ResNet model with 4.9% when data augmentation is not included to the train set. With data
augmentation, DRN model outperformed the ResNet model with 4.0%, relatively. Based on EER, the proposed DRN
method outperformed the recent methods in speaker verification. The difference between minDCF of the proposed
method and recent systems is negligible. According to the observed results, including the time dilation to the ResNet
architecture will improve the performance of the speaker verification system and the performance of this architecture
can be comparable with current DNN-based speaker verification methods.

4.2 Domain mismatch experiments without language mismatch

For investigation of the robustness of the proposed method, the performance of the pre-trained model was investigated
in cross-database scenarios. The list of selected datasets and the number of speakers and utterances for each of training,
development, and evaluation subsets are shown in Table 5. For this experiment, Voxforge3 and Mobio4 datasets were
selected. VoxForge was set up to collect transcribed speech to use with free and open source speech recognition engines
and Mobio database consists of bi-modal (audio and video) data taken from 152 people to use with biometric systems.
The speech in Voxforge dataset is cleaner than Mobio dataset. Two subsets of Voxforge dataset, when 10 or 100 speakers

2http://www.openslr.org
3http://www.voxforge.org/home/downloads
4https://www.idiap.ch/dataset/mobio
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Table 4: Comparison of the performance of speaker verification systems on the Voxceleb1 test set. Systems trained with
data augmentation are labeled with *. RN and DRN are the proposed ResNet and Dilated ResNet models, respectively.
All baseline systems are reported from the mentioned references except an i-vector system as a reproducible baseline.

System EER (%) minDCFp=0.01 minDCFp=0.001

i-vector 5.4 0.45 0.63

i-vector* [15] 5.5 0.48 0.61
VGG [10] 7.8 0.71 -
Pretrained+Intra. [12] 7.9 0.72 0.95
x-vector [15] 7.1 0.57 0.75
x-vector* [15] 6.0 0.53 0.75
fl-emb [15] 5.9 0.50 0.62
fl-emb* [15] 5.3 0.45 0.63
VGG+center. [24] 4.9 - -

RN 6.1 0.6 0.67
RN* 5.0 0.53 0.71
DRN 5.8 0.58 0.73
DRN* 4.8 0.51 0.78

Table 5: Number of speakers and utterances for each selected datasets: training, development, and evaluation.
Dataset Train (#spkrs/#utts) Dev (#spkrs/#utts) Eval (#spkrs/#utts)

Enroll Trial Enroll Trial

Voxforge 10 10/3148 10/1304 3000 10/1509 3000
Voxforge 100 100/12886 100/1000 231700 100/1000 245900
Mobio male 37/7881 24/240 60480 38/380 151620
Mobio female 13/2769 18/180 34020 20/200 42000

were selected in each of train, development, and evaluation sets, were used in this experiment. The Mobio dataset was
split based on the gender of speakers. For investigation of the robustness of the proposed method, in addition to clean
sets, some experiments with additive noise from seen and unseen datasets were done.

4.2.1 Cross-database experiment using clean sets

In this experiment, the performance of the pre-trained model was compared with some speaker verification methods
when these models were trained using the train set of the selected datasets. In this experiment, GMM-UBM, Ivec-Cosine,
and Ivec-PLDA were used as some baseline speaker verification systems. The goal of this experiment is to investigate
the performance of the proposed method on cross-database scenarios when databases with various type and size were
used. As selected datasets are moderately small sets, cosine similarity was used as a scoring measure between extracted
embeddings from enrollment and probe trials. In the case of multi-segment enrollment, the average of extracted
embeddings was used as the enrollment feature vector. For this cross-database experiment, Bob signal-processing and
machine learning toolbox was used5. The result of this investigation on the clean cross-database scenario is shown in
Table 6.

Based on minDCF performance measure, the proposed DRN method outperformed the baseline systems on all selected
datasets. Based on EER performance measure on Voxforge 10 dataset, DRN model significantly outperformed the
baseline systems. However, with increasing the size of the training set to 100 speakers, GMM-UBM method showed
better performance. Even in this condition, the result of the proposed method is comparable with the baseline systems.
In Mobio male dataset, the proposed system significantly outperformed the baseline systems on both development and
evaluation sets. Based on EER performance measure, on the development set of Mobio female dataset, DRN method
significantly outperformed the baseline systems. Although the result of DRN method is comparable with the baseline
systems on the evaluation set of this dataset, GMM-UBM method showed better performance. Based on these results,
the performance of the proposed DRN model is comparable with the baseline systems in cross-database scenarios.

5https://www.idiap.ch/software/bob
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Table 6: Investigation of the robustness of the proposed system in clean cross-database scenario without language
mismatch.

Dataset System Dev Set Eval Set
EER (%) minDCFp=0.01 minDCFp=0.001 EER (%) minDCFp=0.01 minDCFp=0.001

Voxforge 10 GMM-UBM 1.9 0.08 0.08 1.9 0.32 0.66
Voxforge 10 Ivec-Cosine 5.3 0.57 0.64 14.5 0.79 0.79
Voxforge 10 Ivec-PLDA 10.0 0.98 0.99 13.6 0.93 0.93
Voxforge 10 DRN 0.6 0.02 0.02 1.5 0.09 0.09

Voxforge 100 GMM-UBM 2.3 0.37 0.74 2.8 0.43 0.85
Voxforge 100 Ivec-Cosine 3.1 0.30 0.60 2.8 0.40 0.75
Voxforge 100 Ivec-PLDA 6.1 0.73 0.97 5.8 0.76 0.98
Voxforge 100 DRN 2.6 0.21 0.49 3.0 0.23 0.39

Mobio male GMM-UBM 18.2 0.96 0.98 11.5 0.91 0.98
Mobio male Ivec-Cosine 13.6 0.88 0.97 10.7 0.80 0.95
Mobio male Ivec-PLDA 18.8 0.98 0.98 13.2 0.96 0.99
Mobio male DRN 7.3 0.68 0.81 8.3 0.76 0.92

Mobio female GMM-UBM 21.4 0.93 0.98 15.6 0.98 0.99
Mobio female Ivec-Cosine 19.3 0.98 0.99 19.0 0.98 0.99
Mobio female Ivec-PLDA 23.3 1.00 1.00 25.7 1.00 1.00
Mobio female DRN 7.7 0.76 0.89 16.4 0.94 0.97

Table 7: Investigation of the robustness of the proposed system in cross-database scenario with additive noise from seen
sets without language mismatch.

Dataset System Dev Set (with/without noise on enroll) Eval Set (with/without noise on enroll)
EER (%) minDCFp=0.01 minDCFp=0.001 EER (%) minDCFp=0.01 minDCFp=0.001

Voxforge 10 GMM-UBM 9.0/8.7 0.62/0.59 0.68/0.60 9.6/14.6 0.66/0.55 0.66/0.79
Voxforge 10 Ivec-Cosine 19.3/17.3 0.91/0.81 0.97/0.81 23.3/25.3 0.95/0.91 0.95/0.91
Voxforge 10 Ivec-PLDA 25.3/24.0 0.99/0.97 0.99/0.97 24.6/26.0 0.98/0.98 0.98/0.98
Voxforge 10 DRN 1.0/1.2 0.15/0.16 0.30/0.37 2.6/3.2 0.25/0.26 0.35/0.33

Voxforge 100 GMM-UBM 11.6/10.9 0.88/0.78 1.0/0.96 12.6/11.1 0.92/0.79 1.0/0.98
Voxforge 100 Ivec-Cosine 11.6/11.1 0.82/0.77 0.95/0.95 11.7/12.7 0.83/0.84 0.97/0.98
Voxforge 100 Ivec-PLDA 18.1/18.1 0.99/0.99 0.99/0.99 19.1/19.6 0.99/0.99 0.99/0.99
Voxforge 100 DRN 3.8/3.7 0.39/0.35 0.66/0.63 4.5/4.6 0.38/0.36 0.62/0.58

Mobio male GMM-UBM 27.9/25.1 1.0/0.99 1.0/0.99 26.0/20.6 1.0/0.98 1.0/0.99
Mobio male Ivec-Cosine 24.0/22.6 0.99/0.96 0.99/0.99 20.7/20.4 0.97/0.95 0.99/0.99
Mobio male Ivec-PLDA 27.7/25.5 1.0/0.99 1.0/0.99 24.5/22.4 0.99/0.99 0.99/0.99
Mobio male DRN 10.4/9.9 0.84/0.92 0.96/0.82 11.6/11.1 0.80/0.82 0.94/0.97

Mobio female GMM-UBM 28.1/25.8 0.99/0.98 0.99/0.99 29.0/23.4 0.99/0.99 0.99/0.99
Mobio female Ivec-Cosine 25.9/24.9 1.0/0.99 1.0/0.99 26.9/25.8 0.99/0.99 0.99/0.99
Mobio female Ivec-PLDA 35.3/31.2 1.0/1.0 1.0/1.0 33.4/31.9 1.0/1.0 1.0/1.0
Mobio female DRN 12.6/10.0 0.85/0.82 0.96/0.94 22.3/19.4 0.97/0.96 0.97/0.97

4.2.2 Cross-database experiment using additive noise from seen sets

For investigation of the robustness of the proposed method on more challenging sets, development and evaluation set
of the selected datasets were augmented with random noise from MUSAN set. For each clean sample in these sets,
randomly one, two, or three samples from one of background music, or noise subsets with a random signal to noise ratio
(SNR) level (5-15 dB SNR) was added to the clean signal. These selected samples from MUSAN set are different from
the samples which are used for creating the data augmentation set for training the proposed model. Because of adding
noise from the same set, we performed the separate experiments for investigation of the robustness of the proposed
method using additive noise from the seen sets. The result of this investigation is shown in Table 7.

For this investigation, two experiments were done: using clean or noisy enrollment data. In this experiment, the
performance of the proposed method for all datasets significantly outperformed the baseline systems. On Voxforge 10
dataset, adding noise significantly deteriorate the performance of the baseline systems. However, for DRN system, this
additive noise slightly deteriorates the performance of the system. The same pattern was observable for Voxforge 100.
However, with increasing the training size of the datasets, baseline systems show more robustness to the additive noise.
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4.2.3 Cross-database experiment using additive noise from unseen sets

For investigation of robustness of the proposed method using additive noise from unseen sets, development and
evaluation set of the selected datasets were augmented with random noise from DEMAND set.6 DEMAND is a
collection of multi-channel recordings of acoustic noise in various environments. For each clean sample in development
and evaluation set of selected datasets, randomly one or two samples from one of background metro, car, bus, river,
washing, or park subsets with random SNR level (0-15 dB SNR) was added to the clean signal. The result of this
investigation is shown in Table 8.

Table 8: Investigation of the robustness of the proposed system in cross-database scenario with additive noise from
unseen sets without language mismatch.

Dataset System Dev Set (with/without noise on enroll) Eval Set (with/without noise on enroll)
EER (%) minDCFp=0.01 minDCFp=0.001 EER (%) minDCFp=0.01 minDCFp=0.001

Voxforge 10 GMM-UBM 9.6/13.0 0.72/0.67 0.79/0.68 14.6/17.0 0.84/0.72 0.96/0.72
Voxforge 10 Ivec-Cosine 18.0/17.6 0.93/0.87 0.93/0.87 22.9/25.6 0.99/0.98 0.99/0.98
Voxforge 10 Ivec-PLDA 24.2/25.3 0.98/1.0 0.98/1.0 23.6/29.6 0.98/1.0 0.98/1.0
Voxforge 10 DRN 2.0/3.2 0.19/0.39 0.47/0.40 4.0/5.3 0.23/0.45 0.23/0.58

Voxforge 100 GMM-UBM 13.0/15.1 0.86/0.87 0.95/0.98 13.3/15.8 0.91/0.87 0.97/0.98
Voxforge 100 Ivec-Cosine 11.7/13.5 0.81/0.88 0.96/0.98 12.5/15.2 0.80/0.87 0.96/0.98
Voxforge 100 Ivec-PLDA 19.1/23.9 0.99/0.99 1.0/0.99 19.1/24.6 0.99/0.99 0.99/0.99
Voxforge 100 DRN 4.4/6.1 0.44/0.49 0.7/0.78 5.3/7.2 0.44/0.50 0.67/0.69

Mobio male GMM-UBM 28.4/29.0 0.99/0.98 0.99/0.99 26.3/21.2 0.99/0.96 0.99/0.99
Mobio male Ivec-Cosine 22.1/21.4 0.98/0.97 0.99/0.98 18.6/18.9 0.97/0.91 0.99/0.99
Mobio male Ivec-PLDA 26.8/24.3 0.99/0.99 0.99/0.99 22.9/20.9 0.99/0.98 0.99/0.99
Mobio male DRN 10.5/11.5 0.93/0.91 0.97/0.97 11.7/13.2 0.87/0.90 0.96/0.97

Mobio female GMM-UBM 28.1/29.4 0.99/0.96 0.99/0.98 30.7/27.3 0.99/0.99 0.99/0.99
Mobio female Ivec-Cosine 26.8/23.8 0.99/0.99 0.99/0.99 27.4/26.9 0.99/0.99 0.99/0.99
Mobio female Ivec-PLDA 33.3/28.6 1.0/1.0 1.0/1.0 32.2/31.1 1.0/0.99 1.0/0.99
Mobio female DRN 13.4/13.6 0.90/0.93 0.93/0.96 22.0/23.0 0.97/0.97 0.97/0.97

Similar to Section 4.2.2, experiments with clean and noisy enrollment data were done and similarly, the performance of
the proposed method for all datasets significantly outperformed the baseline systems. With respect to additive noise
from the seen sets, additive noise from the unseen set will slightly deteriorate the performance of the DRN system. In
this condition, using noisy enrollment data will improve the performance of the proposed method.

4.3 Domain mismatch experiments with language mismatch

For investigation of the robustness of the proposed system in cross-database scenario with language mismatch, the
performance of the DRN system was investigated on CMN2 dataset. CMN2 is part of NIST SRE 2018 which contains
conversational telephone speech in Tunisian Arabic language. For handling the sampling rate mismatch between train
and evaluation sets, models are trained with both 8 and 16 kHz. In the 16 kHz experiments, telephone speech data are
up-sampled to 16 kHz. For mapping the target domain to the source domain, DSUs in the initial layers are updated
using combination of triplet and intra-class losses on the extracted embeddings from the DRN model. For adaptation,
labeled part of development set of CMN2 dataset was used. In this experiment, α, γ, and λ were set to 0.2, 0.2, and
1e-3, respectively. The batch size was set to 60 with 10 unique speaker labels per batch. The model was trained for 90
epochs and learning rate was set to 1e-3 with decreasing factor of 10 on every 30 epochs. In this experiment, the effect
of increasing the number of adaptation layers (from one layer to three layers) is investigated. For a fair comparison
with the baseline system, x-vector was trained using augmented train part of Voxceleb1 dataset. Investigation of the
robustness of the proposed systems in cross-database scenario with language mismatch on the evaluation set of CMN2
dataset is shown in Table 9

Because of using the relatively small English set for training the models, with respect to other experiments, language
mismatch experiment is more challenging. For eliminating the sampling frequency mismatch, 8 kHz models outper-
formed the 16 kHz ones, however, these models will not generalize well in the language mismatch scenario. Without
adaptation, the proposed DRN model outperformed the x-vector model in both 8 and 16 kHz experiments. Updating the
DSUs improved the performance of DRN system, however increasing the number of adaptation layers did not further
improve the performance. Shortage of labeled data in development set of CMN2 dataset is one of the reasons for this
observation.

6https://zenodo.org/record/1227121
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Table 9: Investigation of the robustness of the proposed systems in cross-database scenario with language mismatch
on the evaluation set of CMN2 dataset. Systems are trained using the augmented train part of the Voxceleb1 dataset.
-16k and -8k are experiments that performed on 16 and 8 kHz samples, respectively. -1layer to -3layers are adaptation
systems with updating the DSUs from one to three layers, respectively.

System EER (%) minDCFp=0.01 minDCFp=0.001

x-vector-16k 34.4 0.98 0.99
DRN-16k 30.1 0.99 0.99
DRN-16k-1layer 28.1 0.96 0.97
DRN-16k-2layers 29.6 0.98 0.98
DRN-16k-3layers 29.6 0.98 0.99

x-vector-8k 30.1 0.98 0.99
DRN-8k 26.0 0.97 0.98
DRN-8k-1layer 23.9 0.96 0.97
DRN-8k-2layers 25.8 0.96 0.98
DRN-8k-3layers 26.6 0.97 0.99

For analyzing the effect of updating the DSUs on domain adaptation, we visualized the extracted embeddings from
evaluation set of 8 kHz version of CMN2 and Voxceleb1 datasets. This visualization is done before and after adaptation
of the first CNN layer. For dimensionality reduction, t-distributed stochastic neighbor embedding (t-SNE) technique
was applied. The 2D visualization is shown in Figure 2. For this experiment, 1000 samples from evaluation sets of
Voxceleb1 and CMN2 datasets were randomly selected. For CMN2 dataset, samples are selected from target trials.
Based on the observed patterns, for both source and target datasets, intra-speaker distance for extracted embeddings is
smaller than inter-speaker distance. The embeddings from each target speaker, create a cluster in the low dimensional
t-SNE space. In addition, we can observe that after adaptation, extracted embeddings from Voxceleb1 and CMN2
datasets are closer to each other.

(a) Before adaptation (b) After adaptation

Figure 2: t-SNE visualization of extracted embeddings from Voxceleb1 and CMN2 datasets, before and after adaptation.

For further analysis, we plot the heatmap [29] of represented features from the first CNN layer, before and after
adaptation. Comparison of the heatmap of represented feature for a random sample “ihwwadns_sre18” from CMN2
dataset is shown in Figure 3. Because of using stride in the first CNN layer, dimension of the represented feature in
both temporal and spectral domains is half of the original spectrogram. After linear normalizing the extracted features,
similar to spectrogram, we plot the natural logarithm of the normalized features. From the plotted heatmaps, we can
observe that the trained DNN model for discriminating the speakers focuses on harmonies and frequencies with high
intensity. After adaptation, the intensity of high frequencies is more similar to the original spectrogram. In addition,
represented features from the adapted model show more similarity for modeling the harmonies.
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(a) Before adaptation (b) After adaptation (c) Original spectrogram

Figure 3: Heatmap of first CNN layer before and after adaptation for a sample from CMN2 dataset. The region for
comparing the intensity of high frequencies and harmonies are shown with bold rectangles.

5 Conclusions and Future Works

In this paper, we investigated applying the time dilation in the ResNet architecture for SV systems. Dimension and
number of segment level layers were investigated in this architecture. For investigating the robustness of the proposed
method, organized cross-database experiments were performed with additive noise from seen or unseen sets. The
proposed model on Voxceleb1 dataset relatively outperformed the DRN and x-vector systems with 4.0 and 20.0 %,
respectively in EER. In addition, this architecture showed significant robustness in out of domain scenarios.

One of the main focuses of research in SV field is domain adaptation for reducing the language mismatch. Similar
to image recognition field, we hypothesized that low-level CNN layers are domain-specific features while high-level
layers are domain-independent and have more discriminative power. For adapting these domain-specific units, we
investigated transfer learning method with combination of triplet and intra-class losses on extracted embeddings from
DRN architecture. The adapted model on evaluation part of CMN2 dataset, relatively outperformed the DRN and
x-vector SV systems without adaptation with 8.0 and 20.5 %, respectively in EER. In addition, t-SNE visualization
and analysis of heatmap of the first CNN layer showed the effectiveness of the proposed method for adaptation. Based
on initial experiments, updating the DSUs from initial layers was more effective than updating them from the final
layers on the current DNN architecture. In the future, we will investigate the effect of adaptation on each layer of
DNN architecture. In addition, investigation of combination of supervised and unsupervised methods for cross-lingual
adaptation in SV systems can be direction of research in this field.
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