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ABSTRACT

Idiap has made a submission to the conversational telephony
speech (CTS) challenge of the NIST SRE 2019. The submis-
sion consists of six speaker verification (SV) systems: four
extended TDNN (E-TDNN) and two TDNN x-vector sys-
tems. Employment of various training sets, loss functions,
adaptation sets and extracted speech features is among the
main differences of the submitted systems. Domain adapta-
tion is represented by a supervised method (developed using a
limited data) with transfer learning of the batch norm layers.
Mean shift and covariance estimation of batch norm allows to
map the target domain to the source domain, alleviating the
problem of over-fitting on the adaptation data. The back-end
of all the systems is represented by the conventional Linear
Discriminant Analysis (LDA) projection followed by Proba-
bilistic LDA (PLDA) scoring for inference. The PLDA was
also adapted unsupervisedly using the unlabelled part of the
NIST SRE 2018 set. In addition, training the LDA and PLDA
using in-domain data was investigated. The entire system was
built around the Kaldi toolkit.

1. INTRODUCTION

Our systems are developed based on the x-vector frame-
work [1]. The back-end remains the same across all the sub-
mitted systems. Two versions of x-vector where five or ten
frame-level layers are applied before the statistical pooling
layer are developed [2]. Here we call these two architectures
TDNN and E-TDNN, respectively. In this report, we intro-
duce new supervised adaptation method for limited amount
of in-domain data. Under this condition, instead of transfer
learning of all the weights, batch norm layers will be adapted
to the target domain. Two parameters of the batch norm
and +y shift the mean of the represented features and estimate
the covariance of the data to map the limited target domain
to the source domain. For increasing the discriminability
of the extracted features, some SV systems employ additive
margin softmax (AMSoftmax) [3]. Applying feature normal-
ization [4] is investigated in one of the E-TDNN SV systems.
Short-time gaussianization (STG) [5] for feature extraction is
investigated in another E-TDNN SV system.

Applying AMSoftmax on E-TDNN architecture is de-
scribed in Section 2. Domain adaptation using batch norm

transfer learning is described in Section 3. E-TDNN SV
system with feature normalization is shown in Section 4. E-
TDNN SV system with STG features is given in Section 5.
The results on the development and evaluation sets are pro-
vided in Section 6.

2. SVSYSTEMS WITH AMSOFTMAX

Here, two SV systems using AMSoftmax are developed. The
systems are mostly based on the x-vector implementation de-
scribed in [1] and [2].

The large margin softmax loss can be written as:
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where cos(6;) is the angle between j-th column of weights in
the output layer and the input of the last layer, s is the scal-
ing factor which causes convergence, and (,,) is an angle
function which is defined as:

Y(0y,) = cos(m18,, +ma) —ms3, )

where, m1, mo, and ms are individual coefficients for
angular softmax (ASoftmax), additive angular margin soft-
max (ArcSoftmax) and additive margin softmax (AMSoft-
max) losses, respectively [3].

Here, we performed some experiments with ArcSoftmax
and AMSoftmax with different margins. For regularization,
Lo regularization was applied on each CNN layer. The x-
vectors obtained for each speech utterance are centered, and
projected using LDA [6]. LDA of dimension 150 was used,
based on tuning the parameters on the development set. After
the dimensionality reduction, the x-vector representations are
length-normalized [7] and modeled by PLDA [8]. For score
normalization, although adaptive s-norm [9] showed signifi-
cant improvement in NIST SRE 2016 set [10], based on the
result on development set of NIST SRE 2018, S-norm was
used as score normalization method.

2.1. Datasets

Majority of training data is in English comprising telephone,
microphone, and audio from video recordings. All wide-band



audio recordings were downsampled to 8 kHz. For train-
ing the x-vector model, Switchboard dataset (SWBD)', main
NIST dataset (SRE)?, and Voxceleb dataset (VCELEB)? were
used. SWBD contains Switchboard 2 Phases 1, 2, and 3 as
well as Switchboard Cellular parts 1, and 2. In total, the
SWBD dataset contains about 28 K recordings from 2.6 K
speakers. The SRE dataset consists of NIST SREs corpora
from 2004 to 2010 along with Mixer 6, which gives in to-
tal about 63 K recordings from 4.4 K speakers. VCELEB
contains data from Voxceleb 1, and 2. Both datasets con-
sist of videos from celebrity speakers. Voxceleb 1 consists
of 153’516 utterances from 1’251 speakers and Voxceleb 2
consists of 1°128°246 utterances from 6’112 speakers.

To increase the amount and diversity of the existing train-
ing data, SRE and SWBD datasets were augmented with ad-
ditive noise and reverberation. For reverberation and noise,
RIR, and MUSAN datasets were used, respectively. RIR is
the collection of room impulse responses measured in the dif-
ferent room sizes. The MUSAN dataset, consists of over 900
noise samples, 42 hours of music from various genres and 60
hours of speech from twelve languages. Both MUSAN and
RIR datasets are freely available*. The strategy for augment-
ing the data is similar to the ideas mentioned in an original x-
vector paper [1]. In addition to clean speech samples, the aug-
mented version of the speech samples mixed with some noise,
randomly chosen from four different categories, is added to
the training dataset. These noise categories contain babble,
music, noise, and reverb which are speech, music, noise, and
room impulse response, respectively. In the first three cate-
gories, the selected noises from MUSAN dataset are added to
the original speech in different SNR levels. In the last cate-
gory, the training recording is artificially reverberated via con-
volution with simulated RIRs.

2.2. Experimental Setup

After down-sampling the speech data to 8 kHz, 23 dimen-
sional mel frequency cepstral coefficients (MFCCs) were ex-
tracted with 25 ms window of speech data with 10 ms frame-
shift. Band-pass filtering was applied between 20 to 3700 Hz.
Log of energy was added to the feature vector and these fea-
tures were mean-normalized over a sliding window of up to
3 seconds. Energy-based voice activity detection (VAD) was
used to removing the non-speech frames. For training the x-
vector, chunk size of speech frames were chosen between 200
to 400 frames. For training the model from extracted features,
the Tensorflow code was applied®. Here, in the network archi-
tecture, instead of TDNN layers, CNN layers were applied.
Because the number of parameters in TDNN architecture is

'LDC2018E48

2Including LDC2009E10 and LDC2012E09

3http://www.robots.ox.ac.uk/ vgg/data/voxceleb

“http://www.openslr.org

SPartially the code from https:/github.com/mycrazycracy/tf-kaldi-
speaker was used in this implementation

smaller than E-TDNN one, we did not applied dilation in this
architecture and kernel size of the first three layers was set
with values of 5, 5, and 7, respectively. However for E-TDNN
architecture, similar to [2], dilation was set to 2, 3, and 4 in
the third, fifth, and seventh layers, respectively. For tuning the
margin of AMSoftmax and ArcSoftmax, we performed some
experiments with 0.1, 0.15, and 0.2 margins. Based on the
initial results, 0.15 margin indicated the best performance. In
extraction time, chunk size of 100 seconds (10’000 frames)
with minimum size of 250 ms was used, while for longer ut-
terances, the average x-vector from input chunks was com-
puted.

In these experiments, as the VCELEB dataset contains
more than 1.2M utterances, we did not perform data aug-
mentation. The x-vector system was trained on combina-
tion of VCELEB and augmented version of SWBD and SRE
datasets. First, we trained the PLDA classifiers on augmented
version of SRE and for adapting to the target domain, we per-
formed PLDA adaptation using Bayesian maximum a poste-
riori (MAP) estimation on test part of evaluation set of SRE
2018. However, we realized that training the LDA and PLDA
with in domain data which is augmented version of evalua-
tion set of SRE 2018 will perform better on development set
of SRE 2018. The development set of SRE 2018 was used for
initial evaluations, selecting the score normalization method,
and calibration.

3. DOMAIN ADAPTATION USING BATCH NORM
TRANSFER LEARNING

Recently, for alleviating the language mismatch problem, sev-
eral domain adaptation techniques were proposed [11, 12, 13,
14]. In face recognition field, it has been shown that high
level CNN layers are potentially domain independent and can
be used for extracting the embedding and modeling the target
identities [15]. On the other hand, low-level CNN layers can
be seen as domain-specific features and adaptation of these
domain-specific units (DSUs) allows to map from the target
to the source domain.

In our work, TDNN and E-TDNN architectures were used
for adaptation. In these architectures, batch normalization is
applied after every CNN or dense layer. This batch normal-
ization can be defined as:

(Wi x x) —

h(z) = B + 7.2 : 3)
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where £ is the batch normalization offset, - is batch normal-
ization scale, W is the kernel of CNN layers, g is the non-
linear function which is applied to the convolution, usually
ReLU, p and o are the accumulated mean and standard devi-
ation of the current batch. In the back-propagation step, two
variables 7 and §3 are updated.



Algorithm 1: Training Strategy Given a Pre-trained
CNN-based Model 6, Loss Function £ and the
Number of Layers to be Adapted njqyers. 0: is
Split Between the CNN Kernel parameter W and the
Batch Normalization Parameters Including Offset /3
and Scale 7.

Data: 0, £, njayers

Result: 6;

0, = 0[: nyayers); // Domain Spec.

0s = O[niayers :]; // Domain Indep.

while has_data do

batch = get_batch() ;

gT[i = forward_backward(batch, 0, 0;, L) ;
0:[6] = 0:+[8] — 77376[5] ;
0.7 = 0:7] — 5] ;

end

Units
Units

3.1. Datasets

For pre-training the TDNN and E-TDNN models, similar
datasets as in the Section 2 were used. As adapting the DSUs
is the supervised adaptation method, CMN?2 part of the eval-
uation set of NIST SRE 2018 was used as development set.
This set contains 188 unique speakers with 13’451 segments.
For increasing the variability of the adaptation set, data aug-
mentation was applied. The method for augmentation was
similar to the Section 2, however for increasing the size of
adaptation set, we did not sub-sample from the augmented
data. In this condition, the adaptation set contains 67°255
segments.

3.2. Experimental Setup

The experiment setup for training the TDNN and E-TDNN
models were similar to the Section 2. For adaptation, last
layer of the pre-trained model was replaced by fully con-
nected layer with output size of the number of speakers in
the adaptation set. For regularization, dropout layer with 40%
dropout rate was applied before the final output layer. For in-
vestigating the effect of adapting the DSUs, first we adapt all
the W, 3, and «y parameters. In this condition, just adapting
the first layer slightly improved the performance and adapting
more layers caused over-fitting on the small adaptation set®.
In addition, adapting from the first layers indicated better per-
formance with respect to adapting from the last layers. This
observation satisfied the hypothesis that low-level CNN layers
are domain-specific. For alleviating the over-fitting problem
on limited adaptation data, we adapt the 3, 7, and combina-
tion of 5 and  parameters. Adaptation of the combination of
[ and ~y parameters showed the best performance and adapt-

The best results are reported here. Layer-by-layer adaptation results can
be shared if requested

ing the first four layers showed the best result. In this con-
dition, with mean shift and scaling the covariance, the rep-
resented features of the target domain mapped to the source
domain. Based on these results, language mismatch between
source and target domains is more complex to be modeled
in one single input layer, however for modeling the language
mismatch, deeper input layers are more informative than the
final layers. In addition, mean shift and covariance estimation
will help to adapt the target domain with limited amount of
data.

Similar to Section 2 LDA and PLDA are trained using
evaluation set of SRE 2018. The development set of SRE
2018 was used for selecting the score normalization method
and calibration.

4. E-TDNN SYSTEM WITH FEATURE
NORMALIZATION

As a competing system to previously described E-TDNN, we
developed E-TDNN exploiting feature normalisation. Similar
to the NIST SRE 2019 baseline, TDNN of Snyder et al. [2]
was used for extracting x-vectors.

4.1. Datasets

For E-TDNN-FM, we used VoxCeleb 1 and 2 datasets [16,
17] for training. During training, each utterance was aug-
mented, considering various samples (music, noise, babble
and room impulse response). Furthermore, we did not dis-
card any augmented sample through sub-sampling.

4.2. Experimental Setup

We normalized the length of features in penultimate layer
of TDNN to 100 because it improved the validation accu-
racy. We experimented with two scheme for training back-
ends. First, we trained LDA and PLDA backends with aug-
mented x-vectors of VoxCeleb dataset and adapted the PLDA
using evaluation set of NIST SRE 2018. In the other setting,
we trained the LDA and PLDA using x-vectors of CMN2 part
of NIST SRE 2018 evaluation set. Given that there are 188
unique speakers in CMN2 evaluation set of NIST SRE 2018,
we decreased the dimensionality of the LDA and PLDA from
250 to 188 in second set of experiments.

5. E-TDNN SYSTEM WITH STG FEATURES

Another competing system considers E-TDNN architecture
with STG features.

STG had been consistently shown to alleviate channel ef-
fects in i-vector based speaker verification systems. Thus, we
experimented with training a E-TDNN system by applying
short-term Gaussianization (STG) on 20 dimensional MFCC



features [18]. Such features were earlier used in our experi-
ments in [19, 20].

5.1. Datasets

The following datasets were used to train the E-TDNN sys-
tem: Fisher, SREO4 to 10 and SRE16 evaluation set. Only
speakers with 6 or more examples were included during train-
ing. The same set was used to train LDA and PLDA models.

5.2. Experimental Setup

The SRE18 evaluation set was used to adapt the PLDA mod-
els and score normalization parameters for AS-norm.

6. EXPERIMENTS

In this section, we report our results on the CMN2 part of
the development set of NIST SRE 2018 available for system
optimization. In addition, we report our fusion results on the
evaluation set of NIST SRE 2019. We also report the time
taken to evaluate each trial on an average.

6.1. System Performance

As mentioned above, all systems are evaluated on the test
set provided with NIST SRE 2018 development. The same
test set is used to tune the results, tune the fusion weights
and calibrate our systems. The results are presented in Ta-
ble 1. TDNN-AM and E-TDNN-AM are the systems when
AMSoftmax is applied on the TDNN and E-TDNN archi-
tectures. TDNN-AM-BNAD and E-TDNN-AM-BNAD are
the results from the proposed batch norm adaptation on top
of TDNN and E-TDNN systems, respectively. E-TDNN-FN
is the E-TDNN system result with feature normalization and
E-TDNN-STG is E-TDNN system result when STG features
were used in training. Based on the observed results except
min_C for E-TDNN-AM-BNAD, the proposed batch norm
adaptation technique significantly improved the SV perfor-
mance. In terms of Equal Error Rate (EER), the adaptation
models relatively improved the TDNN and E-TDNN SV by
9.8 and 7.0 %, respectively. In this condition, E-TDNN-AM-
BNAD showed the best performance in individual SV sys-
tems. Each SV system is calibrated before the final score fu-
sion. Linear combination was used for fusing the scores. For
evaluation set of SRE 2019, the fusion score is reported. In
this set, with respect to development set of SRE 2018, we ob-
served better EER and worse min_C performance. The reason
for this observation needs more investigation.

6.2. Processing Requirements

The infrastructure used to train TDNN and E-TDNN systems
contains 16 GPU GeForce GTX 1080 Ti with 11 GB memory
per GPU. The probing is done on CPU, Intel(R) Core(TM)

17-5930K CPU @ 3.50GHz with a memory of 32 GB. The
extraction of TDNN and E-TDNN x-vectors for enrollment
and probing is done on CPU, Intel(R) Core(TM) 17-7700K
CPU @ 4.20GHz, with a total memory of 32 GB. The exe-
cution time of TDNN x-vector extraction process in a single
thread when computed only on detected speech is of 14.43
times faster than real time (FRT). For the whole recordings
including silence, it would be 16.4 FRT using 1.5 GB of mem-
ory. For E-TDNN x-vector, processing in a single thread is
7FRT using 2 GB of memory. x-vector averaging time for
enrollment and scoring time is negligible with respect to the
X-vector extraction time.
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