
TROPER
NOITA CI

N
U

M
MOC

P AID I

DEEP LEARNING OF CHARISMA

Daniel Carron

Idiap-Com-03-2020

Version of MAY 13, 2024

Centre du Parc, Centre du Parc, Rue Marconi 19, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





TROPER
NOITA CI

N
U

M
MOC

P AID I

DEEP LEARNING OF CHARISMA

Daniel Carron

Idiap-Com-03-2020

AUGUST 2020

Centre du Parc, Centre du Parc, Rue Marconi 19, CH - 1920 Martigny
T +41 27 721 77 11  F +41 27 721 77 12  info@idiap.ch  www.idiap.ch





Deep Learning of Charisma

submitted on August 11, 2020

for the obtention of the title of Master in Artificial Intelligence
by

Daniel Carron

student number 14-863-070

Presented to:
Dr. Philip N. Garner, project supervisor
Alexandre Nanchen, company supervisor
Olivier Bornet, project coordinator

Copyright (c) 2020 Idiap Research Institute, Martigny - Switzer-
land, https://www.idiap.ch/





Preface
This project was motivated by personal interest into natural language processing and under-

standing, a predominant field nowadays if we consider the amount of textual information

being shared online on a daily basis. The subject of charisma is an interesting one to learn

about, even though it can be frightening to imagine what the effects of a charisma detection

system could do if deployed on a wide scale. It is better to view it as a tool that could help

people by improving their confidence, teaching them how to express their ideas clearly and

inspiring others.

On a technological level, it was a great opportunity to learn about state-of-the-art machine

learning methods and the various applications of attention. It has been an arduous task,

having no prior experience regarding machine learning, but a very satisfying one overall.

This would not have been made possible without the support and guidance of my supervisors

at the Idiap Research Institute and my office colleagues who took time to understand and

explain difficult concepts, as well as share their ideas with me.

Martigny, 15 June 2020 D. C.

i





Abstract
The study of charisma in the field of leadership studies has been steadily growing after it was

shown to be a good predictor of success in the workplace and political setting. In order to

study what charisma is, one must be able to define character traits that can be observed and

quantified. In this paper, we will take a look at elements of speech that are used to measure how

charismatic a speaker is. Modern studies have defined a total of nine Charismatic Leadership

Tactics with metaphors, lists or contrasts being a few of them. Until now, these elements of

speech were marked by hand by trained human annotators from transcribed speeches they

wished to analyze. This is a long and costly process that takes a toll on the person executing it

and is prone to bias.

Here, we propose some methods using machine learning to perform the classification of text

into these different classes. We explore state-of-the-art models and analyze their efficiency

in performing this classification task. We begin by building a simple classifier with recurrent

networks and linear projections which performs some amount of classification but can be

largely improved on. We then introduce the mechanism of attention which greatly improves

the performance by being able to focus on relevant words in the input sentence. Taking

advantage of attention by increasing the number of heads looking at the sentences doesn’t

have a noticeable effect on the results. Lastly, we use transformers which are said to attain

state-of-the-art performance in text processing tasks and see that a BERT model slightly

improves on our simple attention model.
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1 Introduction

In order to understand what charisma is and the impact it can have on our lives, we can

think of the outcome of political elections. In particular, we can take the case of the 2012 US

presidential election. At the time, an economic model augmented using charisma was able

to determine the victory of Barack Obama against Mitt Romney [1]. The same study has also

shown that a person with high charisma is more likely to attain key leadership positions and

affect the performance of the institutions they belong to. It is therefore a good predictor of

success.

Charisma is not a straightforward quantity to measure. Until recently, charisma has mostly

been evaluated using subjective and imprecise metrics, based on outcomes or antecedents

rather than being independent from its effects [2]. Newer measures of charisma are more

precise and define it as a values-based, symbolic, and emotion-laden leader signaling [3; 4; 5].

This consists in analyzing methods of symbolic communication (e.g., use of metaphors,

anecdotes, contrasts, lists etc.) as well as the substance of a vision (e.g., collective feelings,

values defended, goals communicated etc.). These markers are referred to as charismatic

leadership tactics (CLTs). Despite the fact that scientific literature made great progress in

that regard, it is difficult to execute large practical studies on the subject due to the way data

is collected. Annotating text with these labels is traditionally done by hand, which is time

consuming, costly and can suffer from cognitive bias on the annotator’s part. To address these

issues, we wish to develop a system capable of exacting these metrics automatically.

Approaching the problem from a machine learning perspective, this can be viewed as a text

classification task, where the input sentence can belong to none, one or multiple charismatic

tactics. Using the Bayesian approach, a conditional probability can be assigned to a class

membership depending on the sequence of words considered. This answers the question

"What is the probability that this sequence belongs to this class?"

In the field of natural language processing and speech processing, language modelling is

usually performed using word embedding techniques and recurrent neural networks (RNNs)

[6; 7]. The goal of word embedding is to map a continuous sequence into a high dimensional
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Chapter 1. Introduction

continuous vector space. An RNN model is able to learn long range dependencies in that vector

space, much better than traditional n-gram models. More recently, RNNs are being replaced

by transformers, which are stacks of encoder-decoder layers using attention mechanisms [8].

This attention is good at focusing on the relevant parts of the input sequence for each element

in the output.

State-of-the-art text classification relies mostly on the encoder of transformers in order to

express the input sentence as a single state vector. This in turn is used as the input of a

standard classifier such as a feed-forward network.

In this thesis, we test different models that can be used to classify sentences into the different

CLTs as described by Antonakis et al [1; 3]. The following sections give an overview of the

methods used to classify sentences and the dataset used. In chapter 4 and onward, each model

is then detailed and the results shown and compared. Finally, we conclude by exploring the

possibilities for future work in the field of classification of charisma.

1.1 Original setting

Thankfully, it was not necessary to build the system from the ground up as first system used to

classify sentences into their corresponding CLTs has been provided at the start of the project

[9] and a live demo showing its effectiveness has been shown at the Swisstext 2019 event. This

was used as a base onto which improvements could be made. Results of a baseline model

were also provided but not the model itself. We decided to create our own baseline model and

confirm the results, as well as those of the provided model to ensure the received data was

correct and to understand in depth how the system works.

1.2 Contributions

In the course of this project, numerous models have been implemented and tested to validate

our hypotheses. First, that the baseline model composed of a simple recurrent network fol-

lowed by a feedforward layer is able to perform some amount of classification of the sentences

into their corresponding CLTs. We observed the influence of punctuation on the performance

of the models. We then added an attention layer and show that it improves the performance

by focusing on relevant words for the class being tested. We tried using multihead attention

in order to improve the results by having multiple attention heads extract more information

from the sentences and see that it has no significant effect. Finally, we replaced our encoder by

a BERT model followed by an attention layer and observe a slight improvement in the results.

Various additions and fixes have been made to the original implementation, which are enu-

merated here:

• Verification and modification of the word embedding process

2



1.2. Contributions

• Addition of the Fasttext word embedding technique

• Addition of the multihead attention technique

• Possibility to perform a joint training of the classes

• Modifications to the files used to train the system on the computation grid

• Addition of the BERT model

3





2 Background

The aim of our system is to classify sentences into corresponding CLT classes based on their

content and meaning. A sequence of steps must be devised in order to achieve that goal. We

give here a general overview of the process which will be detailed in chapter 4, along with the

different model implementations.

2.1 Overview

2.1.1 Word embedding

Our model will need numerical values as input in order to perform operations on them,

compute the loss and output results after being trained. As the dataset is composed of

sentences in text form, they must first be transformed into numbers. This process is called

word embedding and consists in transforming a textual representation of a word into a high

dimensional vector containing numbers by using a language model.

2.1.2 Neural Network

The word embeddings go through a neural network that will try to learn how the sentences

relate to each class. Recurrent units are used as they are efficient at accumulating information

across sequences. Using a loss function that computes how similar the output of the model and

the reference labels from the dataset are from each other, the model will tune its parameters

to obtain better results after each iteration.

2.1.3 Classifier

Finally, the output of the model must be transformed to indicate whether the input sentence

corresponds to a particular class or not. A classifier composed of a feedforward layer trained

and a sigmoid function is used, that will output a probability for the sentence to belong to a

5



Chapter 2. Background

class. It is possible afterwards to threshold those values depending on the accuracy wanted

from the system.

2.1.4 Evaluation

Evaluation metrics are necessary to know how well the model performs. We have chosen to

use the receiver operating characteristic (ROC) curves, which are drawn using true and false

positive rates as they can be computed easily from our outputs and allow to produce graphs

that indicate whether the model is good or bad at first glance. An ideal curve representing

perfect classification would follow the left and top axis, whereas a random classification would

look like a diagonal curve. We compute the area under the ROC curve to have a numerical

value corresponding to our results, going from 0 to 1.

2.2 Implementation

A modular approach was adopted so that different parts of the system can easily be replaced

and improved without the need of changing others. For example, it is easy to change how the

data is loaded from the dataset or the design of the the model by replacing the corresponding

files without the need to modify the number of function parameters or return values in

other modules. This also allows for quick and easy parameterization of the model from a

configuration file. Appendix A.1 details the available configuration options.

2.2.1 Training the word embedding model

train_word_embedding.py takes care of training a word embedding model, generating

embeddings and saving them to a file that can be loaded back later. As the dataset is stored

into a .csv file, an iterator over that file is created to fetch the sentences and tokenize them.

Then, a pretrained word model can be loaded if one is available and has been specified. Using

a model that has been pretrained on a big dataset has the advantage of being more accurate

and faster to converge than simply training the model on our relatively small dataset. This

results in a dictionary of words and their corresponding vectors which is saved to be reused in

the other modules.

2.2.2 Creating the dictionary

compute_dictionary.py creates a structure that adds complementary information on the

words found in the dictionary. It starts by loading the embeddings generated previously. Then,

using an iterator over the datasets, it checks that all the words present in our sentences have

a corresponding embedding. As the embeddings have been generated using a pretrained

model and our training set it is possible that new words not seen previously are encountered,

for example in our test set or real-life situations. If that is the case, the vector is initialized

6



2.2. Implementation

Figure 2.1 – Representation of the inputs and outputs of train_word_embedding.py

Figure 2.2 – Representation of the inputs and outputs of compute_dictionary.py

randomly. Each word is assigned an index and has a count initialized to zero. The dictionary is

saved to be used later.

2.2.3 Training the deep charisma model

train_deep_charisma.py constitutes the main part of our system. For each sentence in our

dataset, we create a new dictionary containing the talk index, sentence index, the words of the

sentence, the corresponding embeddings and the target labels. The following process is then

applied for each epoch. The model is set in training mode and batches of embeddings are

given to it. Prediction scores are given in return, which indicate the probability for a sentence

to belong to a class. A loss function computes how similar these results are to the target labels

and the weights of the model are adjusted based on that loss. Once all training sentences were

given to the model, it is changed into evaluation mode and the process is repeated using the

evaluation set so that we can finetune the hyperparameters. The total loss is compared to the

one of the previous epoch and if it is lower, the model is saved, effectively keeping the best

model generated.

2.2.4 Evaluating the deep charisma model

check_model.py is the last step in the pipeline and allows us to see how the model handles

unseen data. The embeddings from the test set are fed through the model while in evaluation

mode, much like in the evaluation process but for a single epoch. Applying thresholds on the

7



Chapter 2. Background

Figure 2.3 – Representation of the inputs and outputs of train_deep_charisma.py

Figure 2.4 – Representation of the inputs and outputs of check_model.py

results control whether we consider the result to belong to the target class or not. Comparing

those thresholded results to the target scores allows us to compute true/false positive and

true/false negative rates, which are used to plot ROC curves and other useful metrics such

as the F1 score, precision and recall. The area under the ROC curve is used to evaluate how

well the model performs. Other visualization tools permit to combine the results for multiple

classes into a single file, average the results obtained across several trainings of the model in

order to show how reliable these are, as the neural network has a small element of randomness

to it. We can also plot the effect of the attention on the sentences.
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3 Dataset

Our dataset is composed of a random sample of 240 TED talk 1 transcriptions, with a total of

31600 sentences. All the talks were given in English, 130 of which were delivered in the United

States while the rest span across 18 countries. The sentences were labeled by three human

annotators that have been trained to recognize CLTs in speech.The talks have been randomly

split into train, validation and test sets of size 19446, 6311 and 5843 respectively.

Nine CLTs have been defined, which can be divided in two categories:

-Framing and creating a vision:

• Metaphors: simplify the message, trigger an image, make it easy to remember

• Rhetorical questions: create an intrigue and interest in knowing the answer

• Stories and anecdotes: trigger an image, create identification with the protagonists,

distill a message into a moral

• Contrasts: define the vision in terms of what it should or should not be and focus

attention on the mes- sage

• Lists: provide “proof”, focus attention, and show completeness

-Engendering substantive statements:

• Moral conviction: makes value systems clear and provides moral justification for the

mission

• Sentiments of the collective: putting into words and images what followers feel; shows

the similarities of the leader with the followers and closes the psychological distance of

the leader with the followers

1https://www.ted.com/
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Chapter 3. Dataset

• Expectations: shows leader ambition, aligns efforts towards the achievement of goals

• Confidence: raises self-efficacy belief, a key determinant of performance

Each annotator labeled the sentences with either 1 or 0 for each leadership tactic, indicating

whether the sentence belongs to a tactic or not. We consider that a sentence belongs to a class

if at least one of the three annotators defined it as such. Table 3.1 shows a few samples from

our training set.

talk_id id_sentence sentence R1_all R2_all R3_all R1_collective R2_collective R3_collective R1_contrast

1 107 What’s this? 1 1 1 0 0 0 0
1 108 This is not a transport[...]." 1 1 1 0 0 0 1
1 109 And I used to be bothered by [...] 0 0 0 0 0 0 0

Table 3.1 – Examples of dataset sample, showing only the first columns

The additional "all" columns indicate the number of labels each annotator defined per sen-

tence.

In this document, results often refer to classes by a number, which corresponds to the order by

which they appear in the dataset. Table 3.2 shows to which classes these numbers correspond

to, as well as the number of samples per class in the training set:

Class number Class name Count

0 Collective 547
1 Contrast 1976
2 Goal (Expectations) 395
3 Goals2 (Confidence) 509
4 List 4208
5 Metaphor 1933
6 Moral 615
7 Question 2502
8 Story 1884

Table 3.2 – Correspondence of class number to class name and sample count

We notice that the collective, Goal, Goals2 and Moral classes are under-represented compared

to the other ones. It is possible this will have an impact on the results as the model might not

have enough samples to learn from.

Appendix A.1 gives some more information about how the sentences have been labelled by

the annotators.
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4 Baseline model

First of all, we need to create a baseline model that represents what can be done with a typical

neural network. Our expectation with this model is not to obtain perfect accuracy but to have

a preliminary set of results that can be compared to our future improved models. It is also a

good way to check that all parts of the system work as intended. Namely, that the datasets

are loaded properly, the words are converted to embeddings, the model is able to train and

output results. We can also see if the data visualization tools are suited for the task and give us

meaningful information.

Architecture

We are first using a word embedding layer to transform the words of our sentences into a high

dimensional vector representation. This step is necessary as we need some kind of numerical

representation of our input to process.

We are first using Google’s word2vec1 [10; 11] to obtain embeddings. To understand how

word2vec works, two concepts must be explained.

A language model is a probabilistic representation over a sequence of words. In a grammat-

ically correct and meaningful sentence, it can be assumed that the probability of a word

to appear depends one the ones that are present before it in the sequence. Let’s take as an

example the sentence "The dog was running in the _". It is clear that the missing word depends

on the content of the preceding words "dog" and "running". This restricts which word is likely

to appear next. A dog running in a park or a garden makes sense, whereas "sky" or "tree" has a

very low probability to appear. These probabilities can be learned by analyzing an extensive

collection of texts. In an n-gram model, the probability of a word depends on the n words that

precede it:

P (xi |xi−(n−1), ..., xi−1) (4.1)

1https://code.google.com/archive/p/word2vec/
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Chapter 4. Baseline model

with x_i being an input word.

Word2vec has different ways of creating a language model. In the continuous bag of words

(CBOW) representation, the surrounding words are used to predict the missing word. In

the continuous skip-gram representation, it is the missing word that is used to predict the

surrounding words.

The second concept is that of negative sampling. Instead of trying to predict the missing word

using probabilities, we take the words and estimate whether they are neighbours or not. This

effectively turns the problem into a regression model, which is much faster.

The embeddings are first initialized randomly and are then trained using the language model

and negative sampling. As a result, embeddings with a close meaning align themselves in

similar dimensional spaces.

To be more efficient in the way we generate our embeddings, we augment them by using

a pretrained model that used the Google news database as a corpus. This allows for more

coherent word vectors and reduces the risk of encountering out-of-vocabulary words.

We use the word embeddings as inputs of a recurrent neural network. RNNs are good at

modelling sequential data. They differ from regular feed-forward networks by having a hidden

state that keeps some information about the previous state of the network. This means

that each state in the output sequence has some knowledge of the entirety of the previous

information, or in our case, the previous words in the sentence. In practice, a recurrent

network tends to forget information the longer the sequence is. This is the vanishing gradient

or short memory problem which is inherent to how back-propagation works. One way to solve

this issue is to add gates represented by tanh and sigmoid functions that regulate the flow of

information. Depending on the implementation, these are called LSTM [12] or GRU networks.

The recurrent network acts as an encoder that compresses the sentence into a sequence of

states representing the words by accumulating information as it "reads" the sentence. This

means that the hidden states will have some knowledge of the words that precede them in the

input sentence. That can be further enhanced by using bidirectional RNNs [13], that will also

read the sentence from the end and give some knowledge of what words follow the current

state. An output state of the bidirectional RNN is then the concatenation of the forward and

backward information.

The forward and backward states of the RNN then go through a classifier composed of a

fully connected layer and a sigmoid to obtain probabilities as output. The classes are trained

independently from each other, resulting in 9 different models. When loading the labels from

the dataset we consider the current class against the others, which is a binary classification

task. Therefore, the performance of the model would have to be greater than a random

classification of 50% in order to be useful.

Figure 4.1 shows a high level representation of the baseline model.
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Figure 4.1 – Diagram of the baseline model

For our experiments, we use the word2vec implementation from the gensim library2 with

the GoogleNews-vectors-negative300 pretrained model. The pytorch library3 is used for the

other parts of our model. Our recurrent network is a three layers deep, bidirectional LSTM,

although a GRU can also be used and performs just as well. Hidden dimensions of the input

correspond to those of the word embeddings, 300, and we define 64 dimensions as output,

which represent 32 forward and backward states concatenated together. We train the model

on batches of 10 samples, randomly selected from the training set. The training is done for a

duration of 50 epochs but only the epoch with the best results during evaluation is considered

when saving the model. Binary cross entropy is used to compute the loss and we chose Adam

with a dropout of 0.43 as the optimizer. These hyperparameters were chosen using grid search,

providing the best results. The same hyperparameters ared in the subsequent experiments

except if stated otherwise.

Each experiment is run ten times and the results averaged as there can be some variations in

the classification outputs used to compute our evaluation metrics.

2https://radimrehurek.com/gensim/
3https://pytorch.org/
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Chapter 4. Baseline model

Baseline results

Table 4.1 shows the results of the baseline model. It can be observed that simply using a

encoder of type LSTM and a feed-forward network as classifier is able to reach a rather good

performance. As can be expected, performance is class dependant. The best classified class

is the questions class. As the punctuation has been kept in the input of our system, we

are confident that the recurrent network is looking at the interrogation mark at the end of

sentences to help with the classification as that is the common element between them and

finds itself always at the same position. Furthermore, RNNs are better at keeping information

located at the end of sentences. Other punctuation such as commas might also help in the

classification, mainly of the list class.

Class number Class name Area under ROC

0 Collective 0.76
1 Contrast 0.80
2 Goal 0.77
3 Goals2 0.73
4 List 0.76
5 Metaphor 0.70
6 Moral 0.81
7 Question 0.99
8 Story 0.85

Table 4.1 – Results of the baseline model with punctuation

We are confident that punctuation such as question marks and commas have an impact on

the performance of the model. This begs the question, what is the performance on sentences

that have been stripped of their punctuation? This point is important and comes into play

if the system were to be used in real life deployment. In our current experimental setting,

the text has carefully been transcribed. This might not be the case in real life. Transcription

is an arduous and time consuming task that can be subject to interpretation. Therefore,

punctuation can be omitted either by accident or personal preference. On top of that, we

could imagine a situation where the input text has not been transcribed by a person but by

a speech-to-text system, which may or may not be reliable in regards to punctuation. That

is why conducting a second experiment using models trained on sentences stripped of their

punctuation might give another insight into the model’s performance, such as how much

lexical content is actually inferred.

Most of the results obtained in table 4.2 show only slight variations in performance, aside

from the list and questions class. This confirms our assumption that the recurrent network is

relying heavily on commas and question marks for these two classes, but also indicates that it

is able to learn some other information related to the meaning of the sentences.

14



Class number Class name Punctuation No punctuation

0 Collective 0.76 0.77
1 Contrast 0.80 0.79
2 Goal 0.77 0.75
3 Goals2 0.73 0.71
4 List 0.76 0.70
5 Metaphor 0.70 0.68
6 Moral 0.81 0.82
7 Question 0.99 0.88
8 Story 0.85 0.83

Table 4.2 – Comparison of the results of the baseline model with and without punctuation
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5 Original model

We now wish to find methods that would be able to improve the results of the baseline model.

Specifically, we wish to implement an attention mechanism and we hypothesize it will improve

the results, being able to focus more strongly on particular elements of the sentences that are

proper to each class.

Architecture

This first attention model has been provided at the start of the project. It is the same as the

baseline model but with an attention layer of the type described in [14] added between the

recurrent network and the classifier.

In the case of language processing, attention is a mechanism that indicates, for each word

in the sentence, which other words are related to it. As an example, let’s take the following

sentence:

The animal didn’t cross the street because it was tired.

It is clear to us that "it" refers to the animal because a street, in the literal sense, cannot be

tired. Therefore, when evaluating the word "it", a great importance is put on "animal", or in

other words we pay more attention to it.

We can compare this to how a search engine works. There is some data (the input of our

model) from which we want to extract samples that are relevant to our question (query). We

can ask "What is a metaphor?" and the search engine orders the results of the search so that

the first couple of samples returned answer our question.

This is a simple concept to understand, but the issue is that we don’t know how to ask a

question directly on embeddings, as they are a series of numbers that have no meaning to us.

The trick is to make the network learn what a metaphor is by showing it the results we expect,

the target labels. The query is therefore initialized randomly using a uniform distribution and

trained with the other model parameters in the hopes it will be able to formulate the question
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Chapter 5. Original model

we don’t know how to ask.

The attention works as a decoder on the encoded outputs of the recurrent network.

The decoder produces a sequence of outputs defined by

P (yi |y1, ..., yi−1,x) = g (yt−1, st ,c) (5.1)

where yt−1 is the output of the attention for the previous time step and si is a hidden state of

the decoder. c is called the context vector and is a weighted sum of the outputs of the encoder.

c =
Tx∑
j=1
αi j h j (5.2)

with α being the weight matrix. This weight matrix is defined by a softmax function

αi j =
exp(ei j )∑Tx

k=1 exp(ei k )
(5.3)

e defines the alignment model which indicates the relevant words in the input sentence for

each output state s:

ei j = a(si−1,h j ) = vT
a tanh(Wa si−1 +Uah j ) (5.4)

The alignment model with weight matrices va , Wa and Ua is represented by a feed-forward

network trained with the rest of the model.

The goal of our system is to know the relevant words to a particular class. Therefore, the output

of our the attention is not a sequence of states s of equal length as the input sentence but a

single vector representation.

The attention will output a vector of high dimension for each sentence, which corresponds

to the class we are training on. To get the probability for that sentence to belong to a class,

we train a linear classifier to reduce the number of dimensions to a single value, then apply a

sigmoid function.

Figure 5.1 shows a diagram of what this original model looks like.
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Figure 5.1 – Basic attention model
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Chapter 5. Original model

Results

The results obtained with a simple attention model confirm our hypothesis that it is able to

generally improve the performance. Table 5.1 compares the results of our attention model

with those of the baseline.

Class number Class name Baseline Attention

0 Collective 0.76 0.86
1 Contrast 0.80 0.86
2 Goal 0.77 0.84
3 Goals2 0.73 0.84
4 List 0.76 0.80
5 Metaphor 0.70 0.75
6 Moral 0.81 0.86
7 Question 0.99 0.99
8 Story 0.85 0.89

Table 5.1 – Comparison of the baseline and attention model with punctuation

On average the area under the ROC improves by 0.04 to 0.11 depending on the class.

We train the model again on sentences that have had their punctuation removed to see how

the attention handles this situation.

Class number Class name Baseline Attention

0 Collective 0.76/0.77 0.86/0.87
1 Contrast 0.80/0.79 0.86/0.86
2 Goal 0.77/0.75 0.84/0.85
3 Goals2 0.73/0.71 0.84/0.85
4 List 0.76/0.70 0.80/0.71
5 Metaphor 0.70/0.68 0.75/0.74
6 Moral 0.81/0.82 0.86/0.88
7 Question 0.99/0.88 0.99/0.87
8 Story 0.85/0.83 0.89/0.89

Table 5.2 – Comparison of the baseline model and the attention model with/without punctua-
tion

To have a better idea of how the attention is able to improve the results by focusing on relevant

words, we can plot the attention weights corresponding to a few sample sentences. Figure 5.2

demonstrates how the attention of the list class can focus on parts of the sentence containing

a repetition of commas and gives them more weight.

In sentences that aren’t lists such as in figure 5.3, the attention still focuses on punctuation

and joining words. This could explain why the accuracy of the list class is lower than we expect
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it as sentences could be misclassified.

Figure 5.2 – Plot of the attention scores for the list class with punctuation

Figure 5.3 – Plot of the attention scores for the list class on a sentence with no label, with
punctuation

21





6 Original model modified word2vec
embeddings

One concern with the provided model was that the embeddings might not have been generated

properly before going into the recurrent network. This was a great concern, as it might result

in classifications that are entirely erroneous. It was therefore decided that the code concerning

the generation of embedding would have to be looked at first.

Architecture

The word embedding process allows for a pretrained file to be loaded. We also need to add

the words present in our training set to the pretrained ones. The original way this process was

done is the following:

1. Train the word embedding model on the words from our training set

2. Load and add the pretrained embeddings, replacing the ones that are also present in

our training dataset.

This is done under the assumption that a pretrained model has vectors that are better than the

ones trained on our small set, so replacing our custom vectors with pretrained ones should be

more accurate. However, the process described has major flaw. By training the model before

loading the pretrained vectors, there is no guarantee that both sets of vectors are aligned in

the vector space.

To remedy that issue, the process has been changed to perform the following:

1. Load the words from our training set

2. Load and add the pretrained vectors

3. Train the word embedding model
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Chapter 6. Original model modified word2vec embeddings

This way, the training should align both sets of vectors in a manner that makes sense in the

vector space.

Results

It appears that this more correct way of computing word embeddings doesn’t have any real

effect on the results. This could be explained by the fact that the embeddings are mostly taken

from the pretrained model and very few are newly encountered in our dataset. In any case,

this method makes more sense and will be used from now on.

Class number Class name Original embeddings New embeddings

0 Collective 0.86/0.87 0.86/0.84
1 Contrast 0.86/0.86 0.86/0.85
2 Goal 0.84/0.85 0.84/0.84
3 Goals2 0.84/0.85 0.78/0.79
4 List 0.80/0.71 0.79/0.73
5 Metaphor 0.75/0.74 0.76/0.76
6 Moral 0.86/0.88 0.87/0.87
7 Question 0.99/0.87 0.99/0.92
8 Story 0.89/0.89 0.88/0.89

Table 6.1 – Comparison of the original embeddings and the new embeddings with/without
punctuation
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7 Original model with fasttext embed-
dings

Originally, the system only supported word2vec to generate word embeddings. It produced

acceptable results but other, more recent types of word embedding techniques might change

the way our network behaves and produce better results. It was decided to add the fasttext

method1, developed by facebook, to the list of available embedding techniques. Instead of

looking at whole words, fasttext reads sub-words, or character n-grams. For example, the word

"apple" using character 3-grams would be represented as <ap, app, ppl, ple, le>. This has the

advantage of being able to better handle rare and out-of-vocabulary words than word2vec is.

Architecture

The architecture is the same as in the previous section, only with the word embedding layer

using fasttext instead of word2vec, still from the gensim library.

As for the pretrained embeddings, we are now using a model trained on the English wikipedia2.

The disadvantage is that this model is significantly larger and slower to load than our previous

Google pretrained model.

Results

Fasttext results in a slight increase of the classification performance in most classes, but at the

cost of slower training of the word embeddings and bigger file sizes. We decide to keep using

word2vec embeddings for the following experiments as the results of fasttext are not enough

to make up for the disadvantages.

1https://fasttext.cc/
2https://fasttext.cc/docs/en/pretrained-vectors.html
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Chapter 7. Original model with fasttext embeddings

Class number Class name Word2vec embeddings Fasttext embeddings

0 Collective 0.86/0.84 0.85/0.89
1 Contrast 0.86/0.85 0.87/0.87
2 Goal 0.84/0.84 0.88/0.85
3 Goals2 0.78/0.79 0.85/0.84
4 List 0.79/0.73 0.80/0.75
5 Metaphor 0.76/0.76 0.78/0.79
6 Moral 0.87/0.87 0.89/0.88
7 Question 0.99/0.92 0.99/0.92
8 Story 0.88/0.89 0.90/0.90

Table 7.1 – Comparison of the word2vec and fasttext embeddings with/without punctuation
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8 Pytorch attention

At this point in our experiments, we noticed that we could modify the original code provided

to make extensive use of the pytorch library and be more efficient in how the model is trained.

Architecture

One of the biggest change in our code is the implementation of the attention layer. The

attention layer in the provided attention model from the beginning of the project was built

from the ground up and not using a dedicated library. This cause a great deal of confusion

as the comments were not very descriptive, the variable names not respecting the attention

paper notations and some tricks were necessary to obtain the correct matrix shapes. Since

that first model has been created, an implementation of the attention mechanism has been

added in Pytorch. In an effort to have reliable, efficient and clean code, it has been decided to

replace the custom attention layer by the Pytorch implementation. Pytorch doesn’t currently

contain a simple attention layer, but provides a multihead attention class. Multihead attention

is a technique used to try and learn higher-level information from the input sentences by

increasing the number of attentions looking at it. In this model, each attention applied is

called a head. It works by taking the inputs of the attention attention, meaning the output of

the LSTM and the query, projecting them linearly n times into different vector spaces, then

applying attention on these n different heads. Finally, the output of each head is concatenated

into a single matrix and linearly projected to the desired output shape.

Figure 8.1 shows how multihead attention works.
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Chapter 8. Pytorch attention

Attention

hidden
([6 X 32], [6 X 32])

Rnn output
[seq X 64]

RNN 
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Word embeddings
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Word embedding
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Sentence
[seq]

Concat + linear

Attention
Attention

Summary_1
[1 X 64]

Attention_1

Attention heads
n

Multihead attention

One context vector
inside each head,
Linearly projected

Summary_n
[1 X 64]
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Figure 8.1 – Multihead attention model
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For now, we only wish to use the regular attention to make sure we obtain the same results as

before. This is done by using a single head in the multihead model.

Another change was to properly pad the sentences in our input batches using dedicated

Pytoch functions, as that wasn’t being done before. This helps make the computation in the

LSTM more efficient. We also make use of the Dataloader class to get batches from our custom

datasets.

In addition, a few parameters that were fixed in the code are now loaded from the configuration

file and some minor bugs have been fixed.

Results

Seeing that the new implementation of the attention using pytorch perform just as well as our

previous model ensures that the changes we made make sense and don’t change the workings

of our system.

Class number Class name Custom attention Pytorch attention

0 Collective 0.86/0.84 0.84/0.87
1 Contrast 0.86/0.85 0.86/0.85
2 Goal 0.84/0.84 0.84/0.86
3 Goals2 0.78/0.79 0.83/0.80
4 List 0.79/0.73 0.80/0.75
5 Metaphor 0.76/0.76 0.79/0.76
6 Moral 0.87/0.87 0.88/0.85
7 Question 0.99/0.92 0.99/0.92
8 Story 0.88/0.89 0.89/0.89

Table 8.1 – Comparison of the custom attention and pytorch attention with/without punctua-
tion

Joint training

Instead of training all classes separately, we would like to perform a joint training of the classes.

This is motivated by the fact that we expect some amount of correlation between the classes,

charisma being a combination of multiple elements that might influence each other. Being

able to look at them at the same time might allow the network to establish relations that would

increase the results.

This is done by increasing the dimensions of the query vector to match the number of classes

and training the model on all classes rather than on the current target class against the non-

targets.
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Chapter 8. Pytorch attention

Results

Contrary to our expectations, the results are worse than previously obtained. The attention is

not as specialized as it used to be and has to adapt itself to maximize the classification results

across all classes. However, we could try performing a joint training of a smaller number of

classes at once. It would provide a better indication of class independence. This has not been

done as some amount of brute-forcing would be necessary and the computation time would

be too great to train all combinations of classes.

Class number Class name Individual training Joint training

0 Collective 0.84/0.87 0.66/0.69
1 Contrast 0.86/0.85 0.76/0.71
2 Goal 0.84/0.86 0.76/0.72
3 Goals2 0.83/0.80 0.71/0.66
4 List 0.80/0.75 0.74/0.66
5 Metaphor 0.79/0.76 0.63/0.66
6 Moral 0.88/0.85 0.80/0.77
7 Question 0.99/0.92 0.99/0.85
8 Story 0.89/0.89 0.76/0.81

Table 8.2 – Comparison of the individual training and joint training with/without punctuation

We will keep experimenting on single-class training as it appears to provide the best classifica-

tion results.
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9 Multihead attention

Now that multihead attention has been added to our system, we decide to take full advantage

of it. By increasing the number of heads, the attention should be able to gather more semantic

meaning from the sentences, resulting in a better comprehension of what constitutes a CLT

class. We expect a better classification output, especially in the more abstract classes such as

metaphors, morals and goals.

Architecture

Increasing the number of attention heads is similar as projecting the inputs of the attention

a certain number of times across different spaces, applying attention on each one of the

projections in parallel and concatenating the output.

We therefore set the number of heads in our attention module to some higher value and train

our model to see the evolution of the results.

Results

Increasing the number of heads in the multihead attention model doesn’t seem to have any

significant effect on the results. After further inspection of the model, it was found that we are

missing one step in order to apply multihead attention properly. This is explained in the next

section.
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Chapter 9. Multihead attention

Class number Class name 1 head 2 heads 4 heads 8 heads

0 Collective 0.84/0.87 0.83/0.85 0.86/0.81 0.82/0.79
1 Contrast 0.86/0.85 0.85/0.86 0.86/0.86 0.85/0.85
2 Goal 0.84/0.86 0.85/0.85 0.84/0.84 0.86/0.87
3 Goals2 0.83/0.80 0.85/0.80 0.79/0.82 0.77/0.82
4 List 0.80/0.75 0.80/0.75 0.81/0.76 0.81/0.75
5 Metaphor 0.79/0.76 0.78/0.78 0.77/0.77 0.77/0.76
6 Moral 0.88/0.85 0.87/0.86 0.86/0.87 0.86/0.86
7 Question 0.99/0.92 0.99/0.92 0.99/0.91 0.99/0.92
8 Story 0.89/0.89 0.89/0.88 0.89/0.89 0.89/0.89

Table 9.1 – Results of the Pytorch attention with different number of heads with/without
punctuation
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10 Multihead attention with duplicated
input

The reason why we only tested to set the number of heads to powers of two in the previous

model is due to an error showing up when using any other number of heads. Pytorch expects

the dimensionality of the model to be a multiple of the number of heads. In practice, it

takes the input and splits it n times, one for each head. A side effect of this is that each head

only works on a fraction of the available information. To be able to gather more information

about the sentences, it would make sense that each head would have access to the complete

information. We therefore take the output of the LSTM and duplicate it n times. This also

allows us to use any number of heads we wish to.

Architecture

The model is similar as in the previous section but the outputs of the LSTM are duplicated by

the number of heads along the hidden dimension. Changes are made in the definitions of the

multihead attention and classifier to accommodate a greater number of dimensions.

Results

Applying multihead attention on bigger vectors doesn’t seem to have much impact on the

results. It even looks like we obtain slightly worse ones when using more than five heads.

Our reasoning with this method was that each head could have access to the whole sentence.

After more research on the workings of multihead attention, we see that this is not the proper

way to use it. We address the correct way to apply multihead attention in the next experiment.
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Chapter 10. Multihead attention with duplicated input

Class number Class name 1 head 2 heads 3 heads 4 heads 5 heads 6 heads 7 heads 8 heads

0 Collective 0.84 0.85 0.80 0.84 0.82 0.80 0.80 0.85
1 Contrast 0.86 0.86 0.85 0.86 0.85 0.86 0.86 0.85
2 Goal 0.84 0.87 0.87 0.81 0.86 0.81 0.83 0.85
3 Goals2 0.83 0.81 0.79 0.74 0.80 0.80 0.80 0.80
4 List 0.80 0.80 0.80 0.79 0.80 0.80 0.81 0.80
5 Metaphor 0.79 0.79 0.79 0.77 0.78 0.79 0.77 0.76
6 Moral 0.88 0.85 0.88 0.89 0.88 0.82 0.87 0.88
7 Question 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 Story 0.89 0.88 0.88 0.89 0.85 0.87 0.89 0.87

Table 10.1 – Results of the Pytorch attention with duplicated inputs of the attention with
punctuation
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11 Multihead attention with linearly
increased input

Instead of duplicating the hidden dimensions, the proper method is to apply a linear projection

on the outputs of the recurrent network to obtain vectors of a higher dimension. One issue in

our simple multihead attention model was that the 64 hidden dimensions were being divided

by the number of heads, meaning that each head would only have a very small amount of

information to work with as we add more of them.

Architecture

The duplication function from the previous model is replaced by a feedforward network of

dimension 64 to num_heads * 64, giving each head 64 dimensions to work with, no matter the

number of heads.

Results

The results are rather similar to the previous model, without much improvement. In general,

is seems that we are not able to improve on the basic attention model by using more attention

heads. We will next try to use more recent models that are said to be performing state-of-the-

art classification.
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Chapter 11. Multihead attention with linearly increased input

Class number Class name 1 head 2 heads 3 heads 4 heads 5 heads 6 heads 7 heads 8 heads

0 Collective 0.84 0.85 0.86 0.81 0.83 0.83 0.81 0.87
1 Contrast 0.86 0.85 0.85 0.85 0.87 0.87 0.85 0.85
2 Goal 0.84 0.81 0.87 0.83 0.80 0.83 0.86 0.81
3 Goals2 0.83 0.79 0.79 0.82 0.80 0.79 0.79 0.78
4 List 0.80 0.78 0.80 0.80 0.80 0.80 0.80 0.80
5 Metaphor 0.79 0.78 0.76 0.75 0.76 0.78 0.76 0.77
6 Moral 0.88 0.86 0.88 0.84 0.86 0.86 0.87 0.89
7 Question 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
8 Story 0.89 0.89 0.90 0.90 0.89 0.90 0.88 0.88

Table 11.1 – Results of the Pytorch attention with linearly projected inputs of the attention
with punctuation
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12 BERT model

Since the attention mechanism was first published and became wildly used in a variety of NLP

and speech tasks, new state-of-the-art models have been developed to take full advantage of

it. One such model is the transformer. Described for the first time in the aptly named paper

"Attention is All You Need" [8], the transformer gets rid of the recurrent network and relies

entirely on the attention mechanism. At a high level, it is still a encoder-decoder module that

takes an input sentence, creates a compressed representation of it and decodes it into another

sequence.

Architecture

The encoder and decoder of the transformer are actually composed of stacks of encoder and

decoders of equal number. Those are rather similar to each other. An encoder layer is made

of a multihead self-attention layer followed by a feed-forward layer. Self-attention is a bit

different from the attention we have been using until now. Instead of the query being a hidden

state of the decoder, it is a linear projection of the input. This implies that the output of the

attention is of the same length of the input sentence. The self-attention and feed-forward

layers possess residual connections used in layer normalization [15].

The decoder works the same way except for an added encoder-decoder attention layer after

the normalized self-attention layer. The output of the final encoder stack is used as input by

every encoder-decoder attention layer in the decoder.

Finally, a linear layer followed by a softmax creates the outputs of the transformer.

Here, we decided to use a particular implementation the the transformer called the Bidirec-

tional Encoder Representations from Transformers, or BERT. As the name states, it only uses

the encoder stack of the transformer. It is used to create dense representations of the the input

sentence, which are supposedly more effective than word2vec embeddings and usable in a

greater variety of tasks. Rather than a new model, it BERT is considered a learning strategy.

It is first pre-trained on data that doesn’t require labelling. We can then use this pretrained

37



Chapter 12. BERT model

model and fine-tune it to fit our application.

As was the case with the recurrent network in our previous models, the transformer returns

a sequence of length equal to that of the input that needs be reduced. To solve that, we take

the hidden state of the last layer of decoder and apply our previous attention on it to obtain a

single representation of the input. This again is used by the feed-forward and sigmoid layer we

used until now. BERT effectively replaces the word embedding layer as well as the recurrent

network.

We must also use the provided BERT tokenizer to ensure the inputs are in the same format

BERT was trained on and contains the proper start and end special tokens.

We use the default BERT implementation from the Huggingface1 library and the "bert-base-

cased" pretrained model and tokenizer.

Results

The BERT model performs noticeably better in every class, be it with or without punctuation,

with the exception of the collective class without punctuation.

Class number Class name Basic attention BERT

0 Collective 0.84/0.87 0.86/0.83
1 Contrast 0.86/0.85 0.89/0.88
2 Goal 0.84/0.86 0.88/0.88
3 Goals2 0.83/0.80 0.86/0.85
4 List 0.80/0.75 0.84/0.81
5 Metaphor 0.79/0.76 0.83/0.82
6 Moral 0.88/0.85 0.90/0.90
7 Question 0.99/0.92 0.99/0.97
8 Story 0.89/0.89 0.92/0.91

Table 12.1 – Comparison of the single head attention results and the BERT results with/without
punctuation

1https://huggingface.co/
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13 Conclusion

The hypothesis that metrics of charisma can be inferred using deep learning techniques has

been demonstrated. Attention only slightly improves the results but gives meaningful insight

into what constitutes some of the classes. Metaphors appear to be the most difficult to classify,

which can be explained by the fact that they carry information at a higher semantic level.

Surprisingly, all models have some difficulty recognising lists even when punctuation is used.

A concern with the dataset used was the under-representation of some classes, particularly

the collective, goals, goals2, and moral. However, the classification results are rather satisfying.

Having access to a different and bigger dataset would prove difficult, as annotating text is

very time consuming and costly. It also requires people that have been trained for the task of

recognizing CLTs.

Performing a joint training of the classes produces worse results than training the classes

separately. This could indicate the classes are not correlated and are robust building blocks

used to define the core of what defines charisma. The joint training has also been performed

for the multihead attention models but has been omitted in this document as the results

were similar as those in chapter 8. A joint training using the BERT model could prove to be

interesting but has not been done due to implementation and time issues.

The BERT model proved to be the most efficient at performing the task, whether it be in

the classification accuracy or the speed of the training. There is now a great number of

transformers released and it would be interesting to try more recent ones that might further

improve our model, such as RoBERTa [16], ALBERT [17] or XLNET [18].

The presented system is a precursor to a bigger charisma rating system. We are currently only

able to label classes according to the predefined CLTs but there isn’t any grading of the speaker

being done. This would require a discussion with the people involved with the research on

charismatic leadership as simply counting the number of CLTs present in a speech would

certainly not provide an accurate result.

During this project, we exclusively worked on transcriptions of speeches that were given orally.
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Chapter 13. Conclusion

As transcribed text is not the most convenient to work with in real-life situations, it has been

considered to add a text-to-speech module that would enable someone to speak and being

graded on the fly. Furthermore, recording speech would enable us to take into considera-

tion charisma indicators other than lexical information alone, such as pace, intonation and

pitch. Continuing on that line of thought, using video recording would let us capture posture,

mannerisms and facial expressions which would give further insight into the mechanics of

charisma.
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Appendix A. Appendix

Configuration name Type Description

Classes int, list of ints Classes to train
ClassName string Class name of the model, required for dynamic loading)
Dropout float Dropout
EmbeddingType string Type of word embedding, word2vec or fasttext
FasttextBin string Path to fasttext pretrained model
LearningRate float Learning rate
MinWordCount int Minimal number of instances of a word that must be found to keep it
ModelName string Name of the model
NbEpochs int Number of training epochs
NbThresholds int Number of thresholds for ROC curve
Num_Heads int Number of attention heads
Optimizer string Optimizer used
OutputAttentionWeights bool Dump the attention weights to a file during evaluation
OutputRnnOut bool Dump the output of the RNN to a file during evaluation
Param_HiddenSize int Number of hidden dimensions in the RNN
Param_LossFunction string Loss function used
Param_NbRNNs int Number of recurrent layers
Param_RNNType string Type of RNN used, LSTM or GRU
PlotEER bool Plot Equal Error Rates
PlotF1Score bool Plot F1 scores
PlotMaxPrecision bool Plot max precision
PlotMaxRecall bool Plot Max Recall
PlotNbCols int Number of columns in the pdf
PlotROC bool Plot ROC curves
Pretrained bool Indicates if we are using a pretrained model or not
TrainBatchSize int Batch size
TrainEpochs int Number of training epochs for the word embedding
UsePunctuation bool keeps or removes punctuation in the input sentences
WeightDecay float Weight decay
Word2VecBin string Path to word2vec pretrained model

Table A.1 – List of options in the config.ini file
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Figure A.1 – Complementary information about dataset labelling
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Figure A.2 – Results of the baseline model with punctuation
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Figure A.3 – Results of the baseline model without punctuation
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Figure A.4 – Results of the original attention model with punctuation
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Figure A.5 – Results of the original attention model without punctuation
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Figure A.6 – Results of the attention model with better embeddings and with punctuation
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Figure A.7 – Results of the attention model with better embeddings and without punctuation
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Figure A.8 – Results of the attention model using fasttext embeddings with punctuation
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Figure A.9 – Results of the attention model using fasttext embeddings without punctuation
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Figure A.10 – Results of the multihead attention model using a single head with punctuation
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Figure A.11 – Results of the multihead attention model using a single head without punctuation
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Figure A.12 – Results of the multihead attention model for joint training using a single head
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Figure A.13 – Results of the multihead attention model for joint training using a single head
without punctuation 57
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Figure A.14 – Results of the multihead attention model using 2 heads with punctuation
58



0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0
sc

or
e

F1 score, class #0
precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.85
ROC for Class #0
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

F1 score, class #1

precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.86
ROC for Class #1
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

F1 score, class #2
precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.85
ROC for Class #2
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

F1 score, class #3

precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.80
ROC for Class #3
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

F1 score, class #4
precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.75

ROC for Class #4
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0
sc

or
e

F1 score, class #5
precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.78
ROC for Class #5
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

F1 score, class #6
precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.86
ROC for Class #6
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

F1 score, class #7

precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.92
ROC for Class #7
random

0.0 0.2 0.4 0.6 0.8 1.0
threshold

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

F1 score, class #8
precisions
recalls
F1 score

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

area under curve: 0.88
ROC for Class #8
random

0 1 2 3 4 5 6 7 8
Class number

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

Score at equal error rate (EER)

0 1 2 3 4 5 6 7 8
Class number

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

isi
on

Max precision with recall > 0.2

0 1 2 3 4 5 6 7 8
Class number

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Max recall with precision > 0.2

Figure A.15 – Results of the multihead attention model using 2 heads without punctuation
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Figure A.16 – Results of the multihead attention model using 4 heads with punctuation
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Figure A.17 – Results of the multihead attention model using 4 heads without punctuation
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Figure A.18 – Results of the multihead attention model using 8 heads with punctuation
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Figure A.19 – Results of the multihead attention model using 8 heads without punctuation
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Figure A.20 – Results of the multihead attention model with duplicated input using 2 heads
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Figure A.21 – Results of the multihead attention model with duplicated input using 3 heads
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Figure A.22 – Results of the multihead attention model with duplicated input using 4 heads
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Figure A.28 – Results of the multihead attention model with linearly projected input using 3
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Figure A.35 – Results of the BERT model without punctuation
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