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Abstract
Matching of a test signal to a reference word hypothesis forms the core of many speech processing problems, including objective
speech intelligibility assessment. This paper first shows that the comparison of two speech signals can be formulated as matching of
two sequences of ”uncertain” or probabilistic latent symbols, in the same manner as string matching. Based upon that, we propose
a pathological speech intelligibility assessment approach that compares pathological speaker’s speech to control speaker’s speech in
phone space and articulatory feature space, and yields a score that is interpretable w.r.t. human listening test. Experimental validation
of the proposed approach on the UA-speech corpus yielded a Spearman’s correlation coefficient of 0.976 and a Pearson’s correlation
coefficient of 0.946.
Index Terms: String matching, Posterior features, Objective intelligibility Assessment, Pathological speech.

1. Introduction
Matching a reference word hypothesis with a test speech signal forms the core of many speech processing problems that focus on the
message component in the speech signal, such as speech recognition, keyword spotting, speech intelligibility assessment. The reference
word hypothesis can represented as: (a) speech signal(s) or (b) text. Depending on the choice of representation, we can broadly group
the approaches to match a reference word hypothesis with a test speech signal into: (i) instance- or template-based approaches e.g.,
dynamic time warping based approaches [1] and (ii) statistical sequence model-based approaches e.g., hidden Markov model based
approaches [2].

In recent years, posterior feature-based approaches for speech recognition [3–6] and speech assessment [7–9] have emerged, where
class conditional probabilities of phones or articulatory features [10] are used as features. An interesting aspect is that in the posterior
feature space, the instance-based and statistical sequence based approaches converge to a single formalism, where in both cases se-
quence of posterior probabilities are matched. Although posterior feature-based approaches have led to interesting developments, there
is a gap in understanding what these approaches are doing in a theoretical sense. This paper is a step towards explaining that.

Towards that, in Section 2, we first elucidate that string matching can be interpreted as comparison of two sequences of categorical
distributions. Based on that, we show that matching of two speech signals can be formulated as matching of two ”uncertain” latent
symbol sequences. Through theoretical links, we further show that the final matching score resulting from dynamic programming is an
estimate of log-likelihood ratio, and thus has the same discrimination capabilities as edit distance in string matching. That is, a decision
whether the reference word hypothesis and the test signal are same (word) or not can be made with low probability of error.

In Section 3, we validate the theoretical developments from Section 2 by applying it to pathological speech intelligibility assess-
ment. More precisely, we develop an approach where impaired speech utterances of a speaker are compared to control i.e. healthy
speakers’ speech in phone space and articulatory feature space, and speaker intelligibility is measured as the percentage of correctness,
similar to human listening tests. We demonstrate the effectiveness of the approach through a study on UA-speech corpus.

2. Probabilistic symbol sequence matching
This section establishes a link between string matching and matching of two speech signals.

2.1. Probabilistic interpretation of string matching

In computer science, it is well known that two strings that share the same symbol set can be matched by computing string edit dis-
tance [11]. One of the most commonly used string edit distances is Levenshtein distance [12], where the permissible edits are deletion
of symbols, insertion of symbols and substitution of symbols. Given two stringsE = (e1, · · · em, · · · eM ) andO = (o1, · · · on, · · · oN )
of lengths M and N , respectively, Levenshtein distance can be computed using dynamic programming as follows [11, 13]:

L(m,n) =


max(m,n) if min(m,n) = 0

min


L(m− 1, n) + 1

L(m,n− 1) + 1

L(m− 1, n− 1) + 1em 6=on ,

else
(1)

where em and on are categorical variables, {1, · · ·D} is the set of categorical values or symbols in this case, m ∈ {0, 1, · · ·M},
n ∈ {0, 1, · · ·N} and 1em 6=on = 1 if em 6= on else 0. L(M,N) yields the Levenshtein distance between the strings E and O.



The string edit distance computation can also be formulated in an information-theoretic manner as a comparison of two sequences
of D dimensional categorical distributions. In other words, by treating em and on as categorical random variables. To illustrate that,
the matching of string ABCD and string ACCDE is considered: If we use the English alphabet, then D = 26. The Levenshtein
distance between the two strings, as shown in Figure 1, can be equivalently computed by comparing two sequences of 26-dimensional
categorical distributions.
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Figure 1: Illustration of Levenshtein distance as comparison of sequence of categorical distributions.

In this case, em and on are described by categorical distributions ym = [P (em = 1) · · ·P (em = d) · · ·P (em = D)]T and zn =
[P (on = 1) · · ·P (on = d) · · ·P (on = D)]T, respectively. Since there is no ”uncertainty” about the symbols in both the sequences,
the categorical distributions are Kronecker delta distribution or 1-of-D encoding (probability distributions with zero entropy). This
yields two sequences of categorical distributions Y = (y1, · · ·ym, · · ·yM ) and Z = (z1, · · · zn, · · · zN ). These two sequences can
be matched using Eqn. (1), where the condition 1em 6=on is evaluated by hypothesis testing (i.e. two random categorical variables
em and on belong to the same category/symbol or not) using a measure of discrimination such as Bhattacharya distance [14–16],
Kullback-Leibler (KL) divergence [17, 18] to compare ym and zn and then thresholding the result. Formally,

1em 6=on =

{
0 if l(ym, zn) T ∆

1 else,
(2)

where l(ym, zn) denotes a measure of discrimination, ∆ denotes a threshold and T is the condition chosen to make a decision. For
example, if local score l(, ) is KL-divergence then ∆ = 0 and the condition to decide is =, as KL-divergence between Kronecker delta
distributions is either 0 (matching perfectly) or∞ (not matching). It can be shown that the same threshold and criteria are applicable
to Bhattacharya distance, too.

2.2. Matching of speech utterances through comparison of uncertain latent symbol sequences

We can extend the probabilistic interpretation of string matching to matching of two speech utterances through latent symbols (e.g.
phones) and verify whether those two utterances correspond to the same linguistic unit (e.g., word) or not. Let us suppose Esp andOsp

represent two speech signals. We can estimate a match between them by,
1. Defining a latent symbol set {a1, · · · aD};
2. Splitting the speech signal Esp into frames to yield a sequence of speech frames (esp1 , · · · espm , · · · e

sp
M ), and then for each

frame m ∈ {1, · · ·M} estimating yspm = [P (a1|espm ) · · ·P (aD|espm )]T. Finally, yielding sequence of categorical distributions
Y sp = (ysp1 , · · ·y

sp
M );

3. Splitting the speech signal Osp into frames to yield a sequence of speech frames (osp1 , · · · ospn , · · · o
sp
N ), and then for each

frame n ∈ {1, · · ·N} estimating zspn = [P (a1|ospn ) · · ·P (aD|ospn )]T. Finally yielding sequence of categorical distributions
Zsp = (zsp1 , · · · z

sp
N ); and

4. Matching the two sequences of categorical distributions Y sp and Zsp.
Matching Y sp and Zsp by applying Eqns. (1) and (2) would lead to a sub-optimal solution. As, unlike string matching, here we
have ”uncertain” or probabilistic symbols. In other words, the latent symbols are not directly observable from the speech signal. We
can only get a probabilistic estimate of the latent symbols leading to yspm and zspn with non-zero entropies, ∀m and ∀n. Computation
of 1espm 6=o

sp
n

amounts to early decision making, which can be error prone. The alternative is to delay the decision, i.e. estimate
l(yspm , z

sp
n ) through a measure of discrimination, e.g. KL-divergence, Bhattacharya distance and to not make a decision. Under this

condition, we can rewrite the dynamic programming in Eqn. (1) as,

Lsp(m,n) =


0 if m = 0 and n = 0

∞ else if min(m,n) = 0

l(yspm , z
sp
n ) + min[Lsp(m− 1, n),

Lsp(m,n− 1), Lsp(m− 1, n− 1)] else.

(3)

The match between Esp and Osp is finally given by Lsp(M,N).
Although ”local” decision making is skipped, Lsp(M,N) would still have the same properties of L(M,N) in string matching.

The reason being that KL-divergence [18] [19, Chapter 4], in more general sense J-divergence, Bhattacharya distance [15] are functions
of likelihood ratio. To be more precise, they can be interpreted or shown as an estimate of log-likelihood ratio. If we consider that,
then Lsp(M,N) is nothing but a sum of log-likelihood ratios. So, Lsp(M,N) can be regarded as a probabilistic or soft edit cost to
transform latent symbol sequence corresponding to Esp into latent symbol sequence corresponding to Osp and vice versa, like edit



distance in string matching is a cost to transform one string into another string. This leads to the hypothesis that, through Lsp(M,N),
we should be able to decide with a low probability of error whether Esp and Osp correspond to the same linguistic unit (e.g., word) or
not.

2.3. Validation study

We conducted an utterance verification study on Phonebook corpus [20] to validate the hypothesis presented in the previous section. We
adapted the 600 words speaker-independent task-independent ASR task [21]. The terms speaker-independent task-independent mean
that the speakers and the words in the training set, validation set and test set are entirely different. Table 1 provides an overview.

Table 1: Overview of the PhoneBook corpus.

Number of Train Cross-validation Test
Utterances 19421 7290 6598
Speakers 243 106 96

Words 1580 603 600

We used a multilayer perceptron to estimate yspm and zspn : A five layer MLP was trained to classify the latent symbols, i.e. 42
context-independent (CI) phonemes. The input to the MLP was 39 dimensional PLP cepstral coefficients with four frame preceding
and four frame following context (39× 9). The features were extracted using HTK with a frame size of 25 ms and a frame shift of 10
ms. The MLP was trained with cross entropy cost function using the Quicknet tool [22].

For the utterance verification task, we created (a) 150K positive pairs (i.e. pair of utterances containing same word) and (b) 150K
negative pairs (i.e. pair of utterances containing different words) on the test set data. We estimated path length normalized Lsp(M,N)
for each pair of utterances using symmetric KL-divergence (SKL) as the local score l(yspm , zspn ), and computed the area under curve
(AUC) of the receiver operator curve. The AUC is 0.998. This indicates that indeed with Lsp(M,N) we can decide whether two
speech utterances are the same word or not with low probability of error.

3. Application to Pathological Speech Intelligibility Assessment
A way to assess speech intelligibility of speakers with speech impairment such as dysarthria is to ask the speakers to produce a set of
words; perform a human listening test, and assess intelligibility in terms of percentage of recognized words. We could emulate such an
intelligibility assessment in an objective manner by building upon the discrimination capabilities of Lsp(M,N) in the following way:

1. Replace the human listeners by collecting utterances of those words from a set of control i.e. healthy speakers.
2. For each word, compare the speech utterance of the impaired speaker produced with each one of the control speakers utterance,

as described in Section 2.2, and take a majority vote based on Lsp(M,N) to decide if the speaker produced the word correctly
or not.

3. Compute the percentage of correctly produced words.
We investigate this approach through a study on the Universal Access (UA) speech database.

3.1. Database

We conduct our experiments on the UA speech database [23], consisting of 15 English-speaking cerebral palsy patients (11 males, 4
females) and 13 healthy speakers (9 males, 4 females). Each speaker has uttered 765 isolated words, 155 isolated words, repeated 3
times, the remaining 300 spoken only once. The subjective intelligibility scores of patients range from 2% to 95%. We consider the
recordings of the 5th channel for our evaluation. Furthermore, an energy-based voice activity detection using Praat ( [24]) is used to
extract speech segments only. Each subjects intelligibility score was obtained by letting five naive listeners transcribe the isolated words
and then calculating the average number of correct transcriptions.

3.2. Latent symbol space and yspm and zspn estimators

We considered two different latent symbol spaces, namely, phone space and articulatory feature space.
Phone space: We used 45 context-independent phonemes in UniSyn dictionary. We used an off-the-shelf multilayer perceptron

(MLP). The MLP is trained on 232 hours of conversational telephone speech to classify 44 English phonemes and silence, i.e., K = 45
output units. The MLP inputs are 39-dimensional perceptual linear predictive cepstral features with (frame size is 25 ms, frame shift
10 ms) a nine frame temporal context (i.e., four frames preceding and four frames following). The MLP was trained with the QuickNet
tool [22] by minimizing the frame-level cross entropy.

Articulatory feature (AF) space: There are different ways to represent phonemes as articulatory features such as binary fea-
tures [25] or multi-valued features [26]. In this work, we conducted studies with binary features and multi-valued AF representations:

• AFbinary: The Phonet toolkit [27] was used to extract binary AFs attributed to the manner of articulation. Phonet consists of
18 recurrent neural network-based binary classifiers. These classifiers have been trained on 17 hours of clean FM podcasts in
Mexican Spanish.

• AFmulti: We used an off-the-shelf CNN-based multi-valued AF features trained on AMI corpus with raw waveform as in-
put [28]. The multi-valued articulatory features were based on the previous work on automatic speech recognition [10]. There
are four CNNs corresponding to articulatory feature f ∈ {Manner,Place,Height,Vowel}.

In this case, yspm = [yspm,1 · · ·y
sp
m,f · · ·y

sp
m,F ] and zspm = [zspn,1 · · · z

sp
n,f · · · z

sp
n,F ] are stack of AF posterior distributions. F = 18 for

AFbinary and F = 4 for AFmulti.



3.3. Objective score estimation

To estimate dysarthric speaker’s speech intelligibility, we compute an objective score in the following manner:
1. For each word in the list, match the dysarthric speaker’s utterance of that word with each of the control speaker’s utterance of

that word as per (3). If the number of control speakers is C then this will yield C Lspc (Mc, Ndys) scores. Mc denotes the
number of frames in control speaker c’s speech utterance. Ndys denotes the number of frames in dysarthric speaker’s speech
utterance.

2. Get a majority vote based on the decision made with all of the Lspc (Mc, Ndys) scores that the utterance of dysarthric speaker
and control speaker are the same word or not (utterance verification). The underlying hypothesis is that the higher the score
Lspc (Mc, Ndys) is the more the dysarthric speech deviates from the healthy speakers’ pronunciation of the word, thus the word
is less intelligible.

3. Given the majority vote for each word, get the percentage of words correctly spoken as the objective intelligibility score for the
dysarthric speaker.

In order to decide whether the utterance of a dysarthric speaker and control speaker are the same word or not based on path length
normalized Lspc (Mc, Ndys). We investigate two different methods:

1. UV-based: From the control speakers utterances, we created same word utterance pairs and different word utterance pairs;
matching each of those pairs according to (3) and obtaining a histogram of match score for ”same word” and a histogram of
match score for ”different word”. To demonstrate the effectiveness of the approach, we created two decision boundaries: (i) one
at the intersection of the histograms as illustrated in Fig. 2, referred to as Thrinter and (ii) one at the center of the two means
of the histogram, referred to as Thrcen. The decision criteria was Lc(Mc, Ndys) ≤ Thrinter and Lc(Mc, Ndys) ≤ Thrcen to
make ”same word” decision, respectively.

0 1 2 3 4 5 6 7 8
SKL

0.0

0.2

0.4

0.6

0.8 Same-word
Different-word
Thrinter

Thrcen

Figure 2: Distribution of same-and different-word scores using SKL as cost function.

2. Posterior estimate-based: As discussed earlier, Lsp(M,N) can be regarded as an estimate of log-likelihood ratio. In such a
case, we should be able to decide by estimating the posterior probability of being the same word either as,

Pc(sw|Espc , Ospdys) =
2

1 + exp (Lspc (Mc, Ndys))
, (4)

or as

Pαc (sw|Espc , Ospdys) =
2

1 + exp (Lspc (Mc, Ndys)− α)
, (5)

where sw denotes the class ”same word”, Espc control speaker’s speech, Ospdys denotes dysarthric speaker’s speech and α is an
offset value.
Eqn. (4) presumes that, for probability of 1, Lspc (Mc, Ndys) should go to zero (i.e. perfect match). This happens in string
matching as there is no ambiguity or uncertainty about the symbols. However, in the case of matching speech utterances, we
are dealing with ”uncertain” or probabilistic symbols, as a consequence obtaining a perfect match is highly improbable. α in
Eqn. (5) tends to offset that bias or effect. α can be based on the ”same word” match score obtained on control speakers data in
UV-based approach. In this work, we simply took the minimum of those scores as α value.
The decision criteria then simply can be Pc(sw|Espc , Ospdys) ≥ 0.5 and Pαc (sw|Espc , Ospdys) ≥ 0.5, respectively.

Note that in all cases we are dealing with path length normalized Lspc (Mc, Ndys) scores. Furthermore, we use SKL as the local score
l(yspm , z

sp
n ).

3.4. Results and analysis

Table 2 shows the results obtained for the two proposed approaches: UV-based and posterior estimate-based in terms of Spearman’s
correlation coefficient ρ and Pearson’s correlation coefficient r. AFmulti−manner is the case where only manner of articulation of CNN



posteriors are used. Within the posterior estimate-based approach, we do not report for AFbinary and AFmulti, as it requires a new
implementation to estimate posterior probability for each AF f independently and combining them. This is part of our future work.
We also present results reported in the literature on the same data set. It can be observed that both UV-based and posterior estimate-
based approach are yielding high correlations, and perform comparable to or better than the approaches reported in the literature. In
terms of latent symbol space, phone space yields better intelligibility assessment than AF space. When comparing across AF space,
AFbinary which is based on manner of articulation performs better than AFmulti. If we only consider manner of articulation, i.e.
AFmulti−manner , the performances are comparable. We did not report p-values due to space constraint. The maximum p-value
obtained by the proposed systems is 0.0009. This indicates that our results are statistically significant.

Table 2: Pearson’s correlation and Spearman’s correlation between subjective and objective intelligibility.

Latent symbol space UV-based
Thrcen Thrinter
ρ r ρ r

Phone .909 .920 .957 .946
AFbinary .885 .914 .885 .919
AFmulti .806 .762 .819 .763
AFmulti−manner .894 .911 .885 .893

Posterior estimate-based
Pc Pαc

Phone .956 .831 .974 .902
AFmulti−manner .860 .787 .894 .914
Baseline systems
P-ESTOI [29] .94 .94
iVectors [30] - .91
Discriminant analysis [31] - .92
Temporal dynamics [32] 0.85 0.87

Figure 3 shows the Pearson’s correlation plot overlaid for different systems. It can be observed that the UV-based approach with
Phone space is predicting percentage correctness close to subjective correct percentage score in high intelligibility regions, while
AFbinary is predicting well very low intelligibility regions. This suggests that combining Phone space and AF space could have added
benefits. The posterior estimate-based approach is under-predicting the subjective correct percentage score. This issue can be addressed
by calibrating α or the threshold.

4. Conclusions
In this paper, we elucidated that string matching can be interpreted as a comparison of two sequences of categorical distributions.
Through that interpretation, we showed that matching two speech signals by comparing their sequences of class conditional probabilities
of latent symbols (e.g. phones, articulatory features) is equivalent to probabilistic string matching. Thus, the resulting match score
has similar discrimination capabilities to edit distance in string matching. We experimentally validated that through (a) an utterance
verification study and (b) through the development of a pathological speech intelligibility assessment approach that emulates a human
subjective listening test for intelligibility assessment.

Although, we have used neural networks to estimate posterior probabilities of latent symbols (yspm and zspn ), the developments in
Section 2 are applicable to other posterior probability estimators as well. In the same vein, there are several local scores other than
SKL that can be used to match sequences of posterior probabilities [33]. Finally, the developments in this paper apply equally to
KL-HMM [3, 4]. Our future work will build upon that for pathological speech assessment.
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