
TROPER
NOITA CI

N
U

M
MOC

P AID I

PLANNING AND CONTROL OF ROBOT
MANIPULATION TASKS

Jérémy Maceiras

Idiap-Com-01-2022

JULY 2022

Centre du Parc, Centre du Parc, Rue Marconi 19, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

Jérémy Maceiras

Planning and control of robot
manipulation tasks

Master Thesis

Idiap Research Institute, Martigny, Switzerland
Distance university of Switzerland

Supervision

Project supervisor: Dr. Sylvain Calinon
Company supervisor: Philip Abbet

June 2020
Copyright (c) 2020 Idiap Research Institute, Martigny - Switzerland,

https://www.idiap.ch/

Student ID: 5-878-895

Preface

Science does not have a moral dimension. It is like a
knife. If you give it to a surgeon or a murderer, each
will use it differently

Wernher von Braun
Aerospace engineer, father of the Apollo program

This work has been a great personal investment for me, and it is with the greatest
pleasure that I submit this report which concludes a great adventure.

This project has been possible by the support of the Idiap Research Institute through
their master’s degree in artificial intelligence program, and has been performed with
the robot learning and interaction group directed by Dr. Sylvain Calinon.

For all questions: maceiras.jeremy@gmail.com

i

Acknowledgements

All my gratitude goes to the Idiap Research institute for choosing me to be part of
this incredible journey that was this master’s degree in artificial intelligence. More
notably, I want to thank Olivier Bornet, head of the research and development team,
and principal manager of the Master AI, whos has always taken care of the well being
of students in this master program.

My special thanks go to Dr. Sylvain Calinon, head of the robot learning and interac-
tion group, and supervisor of my project, for his advice and trust all along with this
project. He shared his passion for robotics with me and made me work in an always
motivating environment. I also want to thank all members of the robot learning and
interaction group, in particular Teguh Santoso Lembono, and Emmanuel Pignat, for
their advice all along with this project.

I also want to thank all the professors and assistants who followed and instructed
me during this master. I also thank Philip Abbet, the company supervisor of my
project, for his disponibility.

Other special thanks go to Guillaume Clivaz, research and development engineer,
and laboratory roommate, for his advice during the development part of my project.

Finally, my thanks go to all the people around me that have helped me in one way
or another during this master. Dear classmates, friends, family, things would have
been more difficult without your support!

ii

Contents

Abstract ix

Nomenclature x

1 Introduction 1

2 Literature review 4
2.1 Notions of robotics . 4

2.1.1 End-effector representations 4
2.1.2 Robot kinematics . 9
2.1.3 Robot dynamics . 13

2.2 Linear Quadratic Tracking . 15
2.2.1 Batch formulation . 16
2.2.2 Dynamic programming formulation 17
2.2.3 Constrained LQT (Quadratic programming solution) 18
2.2.4 Performing LQT in a model predictive control way (MPC) . . 20
2.2.5 Applications of LQT . 22

2.3 Riemannian manifold . 25
2.3.1 Motivation . 25
2.3.2 Definition of Sd manifold . 25
2.3.3 LQT with Sd manifold . 27

3 Proposed approach 32
3.1 Planning approach . 33

3.1.1 Position planning . 34
3.1.2 Orientation planning . 35

3.2 Tracking approach . 37
3.2.1 Position tracking . 37
3.2.2 Orientation tracking . 39
3.2.3 Merge position and orientation control commands 39

4 Experiments 41
4.1 Simulator developments . 41

4.1.1 The simulator . 41
4.1.2 The Python module . 42

iii

4.1.3 Developments . 45
4.1.4 Conclusion of the simulator experiments 53

4.2 Real example . 54
4.2.1 Specifications and first analysis 54
4.2.2 Mechanical developments . 56
4.2.3 Temperature sensor development 61
4.2.4 Robotics developments . 63
4.2.5 Ongoing developments . 71

5 Conclusion 72
5.1 Discussion . 72
5.2 Further works . 73
5.3 Personal conclusion . 73

A Quaternion algebra 75
A.1 Addition . 75
A.2 Identity quaternion . 75
A.3 Conjugate . 75
A.4 Multiplication . 75
A.5 Inverse . 76
A.6 Rotation matrix to quaternion transformation 76

B Proof of QP formulation for LQT 77

List of Figures

1.1 Example of a task where a robot uses a pre-recorded motion to put
caps on top of plastic bottles. As long as the task does not change
(i.e., the same models of bottles and caps are used), the robot satisfies
the job correctly. Once the mission differs from the original (i.e., if
we want to produce bigger bottles), the robot can not fulfill the task,
and a problem occurs. 1

2
1.3 Example of task space and joint space representation of a robot. . . . 3
1.4 Example of the nullspace of a task where two joint configurations lead

to the same end-effector position. 3

2.1 Representation of the lack of measurability of Euler angles. The com-
puted error path is not the shortest. It is because when calculating
the error, we do not take into account that an angle of 0° is the same
as an angle of 360° (periodicity of the angle). 5

2.2 Representation of the end-effector pose with respect to the base frame.
p shows the end-effector position and {ex, ey, ez} represent the orien-
tation with respect to the base frame. 6

2.3 Representation of the gimbal lock: two gimbals are in the same plane,
which provokes the loss of one degree of freedom. 7

2.4 Section view of a three-dimensional sphere, where the two red crosses
represent two quaternions. You can see that using the Euclidean
distance to measure the error between two quaternions is wrong since
the resulting vector will not be part of the sphere. 8

2.5 Example of a 2D robot, di represents the distance between joint i and
joint i+ 1, it is used to compute Di. d0 and R0 are the position and
orientation of the robot in the world, they are used to compute H1

0. . 10
2.6 Example of revolute and prismatic joints. Since for a revolute joint,

the links of the robot are directly connected to a motor, we prefer to
talk about torques. 13

2.7 Example of a reproduced end-effector motion made with LQT/MPC.
The black curve corresponds to the reproduction. Color curves are
partial results obtained if we use all control commands instead of only
the first one. It shows that at the beginning of the horizon, it is not
absurd to assume that the system matrices are constant. 21

v

2.8 Generated motion and velocities of the problem. Constraining the
motion like this allows the system to correctly goes into the hole.
This kind of constrained motion can also be used in a grasping task
to ensure a correctly grasp of an object. 23

2.9 In this image, we use a constrained LQT to ask the two agents to
meet in the middle of their motion. From this LQT, we can retrieve
the corresponding motion for each agent (plotted in red and blue on
the figure). The result of this LQT will be given to another regulator
who would have to track the motion. 24

2.10 Visualization of the S2 manifold (a 3d sphere), where we project a
point y lying on the manifold into the tangent space of the point p. . 26

2.11 The easiest example of parallel transport could be a human walking
for a (very) long time in a fixed direction on earth (earth can be
assumed to be spherical, thus it can act like a S2 sphere). Sooner or
later, he will come back to its starting point, but if we take a look at
the evolution of its velocity vector during its journey, we notice that
the vector changed all along the way (the vector is presented in green
on the figure above), but from his point of view, his velocity never
changed. 26

2.12 Example of a planning task on the S2 manifold (simple integrator
system). The tilted blue line corresponds to the solution in the tan-
gent space of the initial point. The green point is a via-point in the
middle of the trajectory, and the red cross is the desired final state. . 29

2.13 Same example as figure 2.12 with the LQT/MPC solution in red.
As you can see, the LQT/MPC solution provides a better trajectory,
which is optimal for the whole motion. 31

3.1 Example of a planning problem, where we know the initial and target
state for the position and orientation, and a constraint. We want to
retrieve the intermediary states. 33

3.2 Chosen approach to oversample an orientation trajectory. 36

4.1 DOM schema of a standard URDF file. A robot is composed of one
ore more links and joints. 42

4.2 UML Class diagram of the LAL. 43
4.3 Sequence diagram which shows that an information about the robot

state is computed only if the robot state has changed. 44
4.4 The left image represents the orientation of the end-effector at time

step 0, and the right image the desired orientation at timestep T ,
since in this experiment, we only regulate the orientation of the end-
effector, its final position may not be the same as the one in the
right image. Basically, at the end of the motion, we want to have the
end-effector of the robot pointing in the direction of the table. 46

4.5 The left image represents the desired final orientation of the end-
effector frame, and right image represents the planning solution to
the final orientation of the end-effector frame. As you can see, these
two orientations are the same. This is a visual test to see if the
planning worked as expected. 47

4.6 The left image represents the resulting final orientation of the track-
ing, as yon can see, the orientation of the end-effector is similar to the
desired one presented in figure 4.4. To validate this first assumption,
the right image shows the tracking error evolving over time, with an
average error about 1e-4, we can assume that the tracking performed
as expected. 48

4.7 Tracking error over time for the operational space dynamics with an
identity matrix solution. As you can see, this trick allows to keep an
acceptable tracking error over time (even if it performs worst than
the IK solution). By modifying Λ the control command does not
respect the dynamics of the robot anymore, thus it adds a sawtooth
perturbation to the error signal, that can leads to the instability of
the regulator. 49

4.8 Result of the planning part, where a trajectory for each robot is gen-
erated. As you can see, the planner chooses a meeting point for the
two robots with a small distance to avoid collision. 51

4.9 Left image shows the tracking error for the LQT/MPC approach,
and right image shows the tracking error for the operational space
dynamics approach. 52

4.10 Visualization of the setup for the project. 55
4.11 Plan of the Panda gripper physical connector. 56
4.12 Image of the fondue bowl, as you can see the handle is not straight,

and it could lead to difficulties for correctly grasping it. 57
4.13 3D model of the left gripper. On the left image, you can see that the

top part of the gripper aims to grab the fondue bowl, by marrying
the shape of the handle. The bottom part of the gripper is a normal
gripper to grasp casual objects. 57

4.14 Test with the 3D printed left gripper, it can correctly grasp and lift
the bowl. 58

4.15 3D model of the right gripper. This gripper is made to grasp objects
horizontally or vertically. 59

4.16 Test with the 3D printed right gripper, where it grasp the wine bottle 59
4.17 Test with the 3D printed right gripper, where it grasps the spatula.

In this picture, you can also see the left robot maintaining the fondue
bowl. 59

4.18 3D model of the spatula support. 60
4.19 3D printed spatula support with the spatula and the robot that is

grasping it. 60
4.20 Schema on how the different parts of the sensor are connected together 61
4.21 Developed temperature sensor . 62

4.22 Accuracy of the temperature sensor (average error: 0.63 °C). 62
4.23 Real setup inspired by figure 4.10 . 63
4.24 Schema representing the architecture of ROS. 63
4.25 Architecture of libfranka, source: https://frankaemika.github.

io/docs/libfranka.html. 64
4.26 Minimalist class diagram of libfranka. 65
4.27 Tracking error on a real application. 68
4.28 Developed architecture for the FondueBot project. It is not specified

in the diagram, but all classes use Eigen (a linear algebra library) as
mathematical library. 69

4.29 Sequence diagram representing the execution of a task 70
4.30 Structure of the constraints of a task. 70
4.31 State machine of the FondueBot project. 71

Abstract

Nowadays, robots are used in a large number of industrial processes. Their use
speeds up the fabrication process and drastically decreases the cost of products.
These industrial robots are often used with pre-recorded motions, that allow them to
perform a task quickly, but adapting these robots for a new task is time-consuming.
It is done by recording another motion that respects the new task. If the task
changes again, the same time-consuming approach needs to be repeated, even if the
task differs only a bit from the programmed one.

The purpose of this project is to solve this problem by allowing robots to understand
the goal of their task and not actions that lead to it. To achieve this purpose, the
developed approach consists in finding an optimal trajectory that fulfills the task
and makes a robot tracks it.

In this project, a task is fully represented by the final position and orientation
of a robot end-effector, and by constraints that occur during the motion. These
constraints aim to specify a way to achieve the task for a robot. They are particularly
useful if we do not want a robot to go through a given position or want to specify
the approach to the task.

From this definition of a task, the developed methods, will find a task space trajec-
tory that respects the task, and make a robot tracks it with torque or joint velocities
commands.

Keywords: position and orientation planning, position and orientation tracking,
operational space control, Linear Quadratic Tracking (LQT), quaternions control,
spherical manifold

ix

Nomenclature

Symbols

ε Quaternion in a complex form
ε Quaternion in a vector form
b Vector
A Matrix
τ Torque vector
w Angular speed
St Desired state of the system at time t
Sd Spherical manifold of dimension d
TpM Tangent space of point p

Acronyms and Abbreviations

LQT Linear Quadratic Tracking
LQR Linear Quadratic Regulator
SDK Software Development Kit
OS Operational Space
IK Inverse Kinematics
QP Quadratic Programming
DP Dynamic Programming
LQT/MPC Linear Quadratic Tracking in a Model Predictive Control way
LAL Library Abstraction Layer

x

Chapter 1

Introduction

In the modern world, the use of robots in the industry is entirely democratized. It
is not surprising to see that our car [1], washing machine [2], computer [3], ... is
built on an assembly line mainly composed of robots. These robots serve a unique
task and perform it during their entire lifetime.
Often, these robots are programmed with pre-recorded motions, which allow them
to do a unique task quickly and precisely, but they do not offer generalization and
adaptivity abilities. As long the assignment of a robot does not change, it will
perform well. Once a modification occurs in the task, the manufacturer has to
reprogram it entirely to satisfy the modified task.

Figure 1.1: Example of a task where a robot uses a pre-recorded motion to put caps
on top of plastic bottles. As long as the task does not change (i.e., the same models
of bottles and caps are used), the robot satisfies the job correctly. Once the mission
differs from the original (i.e., if we want to produce bigger bottles), the robot can
not fulfill the task, and a problem occurs.

The purpose of this project is to solve this problem by specifying to a robot the goal

1

2

and not actions that lead to the goal. Actions are learned by the robot in function
of the task and its constraints.
A constraint is a duty for the robot that occurs at a time t of the motion. In this
context, a constraint can take two forms:

• Equality constraint: we want the state of the robot at a time t to be equal
to another state. They can be useful to plan a meeting between two agents
during the motion.

• Inequality constraint: we want the state of the robot at a time t to be greater
or equal to a specific limit. They can be useful if we do not want the robot to
be too close to a given object in the workspace.

Figure 1.2: Example of a planned
motion (in red) where an inequality
constraint is set to keep a distance
bigger than 5 centimeters between
the robot and the vase (to avoid a
contact between the robot and the
object), an equality constraint is
set to be sure that at a given time,
the robot is at the position of the
cap to grab it. In addition to the
constraints, the robot has to reach
the desired final state. In this case,
at the end of the motion, the robot
should be on top of the bottle in
order to put the cap.

The states referred previously are a set of quantities, which is enough to represent a
robot configuration at a time t. In robotics, states can be referenced in two possible
spaces:

• The joint space represents a robot configuration with information about its
joints (angular position and angular velocity of each joint).

• The task space represents a robot configuration with information about its
end-effector (position and velocity).

For a user, it is more convenient to specify a task in the task space instead of
the joint space. With this representation, we can directly determine the desired

Chapter 1. Introduction 3

Figure 1.3: Example of task space and joint space representation of a robot.

position of the end-effector at each time step. The problem with this representation
is that it does not correspond to a unique robot configuration, whereas the joint
space representation yes. When we work with redundant robots, an end-effector
position can be achieved with several joint positions. This information can be used
to construct the nullspace of the task, which can be used to perform other tasks
that do not perturb the execution of the main task.

Figure 1.4: Example of the nullspace of a task where two joint configurations lead
to the same end-effector position.

The developed approach solves this problem by breaking it into two steps, the plan-
ning, and the tracking. The goal of the planning is to determine a motion that
satisfies the constraints and the final state. The motion resulting from this step
will be given to the tracking part where the robot would have to track precisely the
movement.

Chapter 2

Literature review

This section aims to introduce and present the different tools used in the project.
These tools rely on the expertise of the laboratory and are widely used in the group.
Firstly, some notions of robotics will be briefly presented to fully understand the
next of the project. Afterward, the topics of planning and tracking of position and
orientation will be explained.

2.1 Notions of robotics1

The position of a robot can be fully represented by its joints position. In practice, it
is more interesting to represent the state of a robot in function of the position and
orientation of its end-effector (figure 1.3). However, when we work with redundant
robots (robots with more than six degrees of freedom, three translational and three
rotational), the position and orientation of the end-effector can be achieved with
different joints configuration (figure 1.4).

2.1.1 End-effector representations

Choosing a good representation for the end-effector has to respect some criterias, to
facilitate their planning and tracking:

• Uniqueness: the representation of orientation and position should be unique,
a representation xi should not be the same as a representation xj (e.g. an angle
expressed in radians is not unique 0 = 2π = 4π).

• Measurability: the error between two orientations xi and xj, represented in
the same way, should be measurable and calculable. Furthermore, the error
could be expressed in R3, since the orientation of a robot is controlled in task
space with an angular velocity, acceleration, or wrenches. With an error rep-
resentation in R3, each element of this vector should represent a modification
to perform on one axis to get the desired orientation.

1Everything presented in this section is a summary of the fundamental of robotics, more details
can be found in [4]

4

Chapter 2. Literature review 5

• Efficiency: it should be easy to convert an information given under a certain
representation to the other representation.

There is no problem to represent the position; we can use the three-dimensional
world coordinates of the end-effector. It is unique, measurable, and efficient. This
representation is already used natively in all robotics SDK, whereas representing the
orientation accurately is a more challenging problem.

Orientation

Campa & de la Torre [5], provide an interesting survey about the different manners
to represent the orientation of an end-effector. Here, only the Euler angles, rotation
matrices, and unit quaternions, also called Euler parameters (the one used in the
project), are presented.

Euler angles

It is the most natural orientation representation. It consists of a three-dimensional
vector representing the amount of rotation around each of the three world axis:

φ = [α, β, γ]>,

with α, β, γ representing the rotation around axis x, y, z respectively.
This representation is often present in all robotics SDK. It is efficient (as the repre-
sentation is given, there is no need to transform it), but it lacks measurability and
uniqueness.
Given two orientations represented in Euler angles φd and φt, the error

e = φd − φt,

is valid only for a local case where we assume that the two elements are relatively
close.

Figure 2.1: Representation of the lack of measurability of Euler angles. The com-
puted error path is not the shortest. It is because when calculating the error, we do
not take into account that an angle of 0° is the same as an angle of 360° (periodicity
of the angle).

6 2.1. Notions of robotics

To overcome this error, we have to make a particular transformation before using
these angles. For the same reason, the uniqueness of value is not guaranteed.
Due to these representation problems, most robotics SDK prefer to use the rotation
matrix presented below.

Rotation matrices

A rotation matrix represents the end-effector orientation by expressing its frame in
the world base frame. The three axes are stacked together to form a 3× 3 matrix.
It is also common to vectorize this matrix for a better representation.

Figure 2.2: Representation of the end-effector pose with respect to the base frame.
p shows the end-effector position and {ex, ey, ez} represent the orientation with
respect to the base frame.

R =
[
ex ey ez

]
In robotics SDK, the rotation matrix is often accessible through the homogeneous
transformation matrix (or pose matrix) of the end-effector, which combines the
position and orientation in one matrix,

Hee =

[
R p
0 1

]
.

The error between two rotation matrices Rd and Rt is given by:

R̃ = RdR
>
t ,

where R̃ ∈ R3×3 is the error rotation matrix.

Chapter 2. Literature review 7

To get the error represented in R3, [6] proposed the following definition:

e =
1

2

r̃32 − r̃23r̃13 − r̃31
r̃21 − r̃12

 ,
where r̃ij stands for the element in the i-th row and j-th column of R̃.
Rotation matrices are serious candidates to represent the orientation of the end-
effector as they respect all the criteria presented above. But for this project, it
has been chosen to use a representation based on unit quaternions. Section 2.3 will
motivate this choice.

Unit quaternions

Quaternions can be described as higher-dimensional complex numbers. They are
composed of a real and imaginary part:

ε = ε0︸︷︷︸
Real part

+

Imaginary part︷ ︸︸ ︷
ε1i+ ε2j + ε3k,

where i,j,k are imaginary units respecting:
i2 = j2 = k2 = −1,

ij = k, jk = i, ki = j,

ji = −k, kj = −i, ik = −j.
Quaternions are commonly used in computer science to represent spatial rotations,
they are more compact and quicker to compute than representations by matrices,
and unlike Euler angles, quaternions are not subject to "gimbal lock". This is why
they are widely used in computer graphics.

Figure 2.3: Representation of the gimbal lock: two gimbals are in the same plane,
which provokes the loss of one degree of freedom.

8 2.1. Notions of robotics

To facilitate the notation, it is common to represent a quaternion as a vector ε ∈ R4,
with

ε = [ε0, ε1, ε2, ε3]
>.

A unit quaternion is a quaternion that satisfies a unit norm condition (i.e: ε>ε = 1).
Thus, it can be seen as a point lying on the hypersphere S3 ⊂ R4, where the real part
mainly influences the angle of rotation, and the imaginary part mainly influences
the axis of rotation:

ε0 = cos(
θ

2
), Im(ε) = sin(

θ

2
)u,

where θ is the angle of rotation, and u is the unit rotation axis.
A problem that occurs with a representation of orientation with quaternions is that
the quaternions −ε and ε represent the same orientation.
Quaternions have their own algebra. Thus, we have to be prudent when we want
to manipulate them. [7] provides a good introduction to quaternion algebra, where
the main operations with their equivalence by considering a quaternion as a vector
are listed in appendix A.
Since a quaternion is a point lying on the spherical manifold S3 ⊂ R4, representing
the error between ε1 and ε2 may be a difficult challenge for the human mind, mainly
because it is difficult/impossible for a human to represent a four-dimensional sphere.
This is why, for a better understanding, we may prefer to represent a quaternion as
a point lying on the 3-dimensional unit sphere and adapt the algorithm to work on
S3.
The first idea that may come is to use the Euclidean distance between the two
quaternions as error. Even if this solution may work if the two are relatively close,
it is not accurate since the resulted error will not be part of the sphere.

Figure 2.4: Section view of a three-dimensional sphere, where the two red crosses
represent two quaternions. You can see that using the Euclidean distance to measure
the error between two quaternions is wrong since the resulting vector will not be
part of the sphere.

Instead of the Euclidean distance, we prefer to use the geodesic distance between
two quaternions (presented in green on figure 2.4). Figure 2.4 also shows that if
we bring closer the two points, the Euclidean distance will become more and more
similar to the geodesic distance.

Chapter 2. Literature review 9

Measuring this geodesic distance is not trivial, and the topic will be presented in
detail when the Riemannian manifold part will be presented. The manifold will
present some transformation that we can apply to quaternions to make them unique,
measurable, and efficient.

2.1.2 Robot kinematics

In the introduction of this thesis, the two most used state spaces in robotics were
briefly presented: the joint space and the task space. Robot kinematics is a set
of tools to connect these two spaces. We refer to forward kinematics, the task of
transforming a joint space configuration into a task space configuration. Similarly,
inverse kinematics is the action to transform a task space information into its corre-
sponding joint space information. The transformation between these two spaces is
fundamental. Since, in practice, we usually prefer to define a task in the task space,
whereas it is more convenient to control a robot in joint space.

Forward kinematics

Given the joint position q, and velocities q̇ in Rn (n is the total number of joints
of the robot), we are interested into finding the corresponding end-effector position
x, and velocities ẋ. Finding the end-effector position is quite straightforward, we
multiply each forward transformation matrix of each joint and we end up with the
homogeneous transformation matrix of the end-effector, which as mentioned above,
informs us about the position and orientation of the end-effector (see the rotation
matrix part of chapter 2.1.1).

Hee = H1
0H

2
1 . . .H

n
n−1,

with

Hi+1
i =

[
Ri Di

0 1

]
,

where:

• Ri, the rotation matrix of link i defined by the position of joint qi.

• Di, the position of joint i+ 1 view from the frame of joint i (= view from the
coordinate system of joint i).

• Hi+1
i , the forward transformation matrix to go from frame i to frame i + 1.

Frame 0 is the base frame, since no joints are attached to it, it is constant and
is used to know the position and orientation of the robot in the environment.

10 2.1. Notions of robotics

Figure 2.5: Example of a 2D robot, di represents the distance between joint i and
joint i+ 1, it is used to compute Di. d0 and R0 are the position and orientation of
the robot in the world, they are used to compute H1

0.

This is how a joint state information q ∈ Rn can be transformed to represent the
position and orientation of the end-effector. The problem of finding the end-effector
position and orientation corresponding to the joint positions of the robot can be
seen as a mapping function f , mapping the joint space to the task space:

f : Rn → R6,

x = f(q).

The task space is in R6 because, here, we assume that we use Euler angles to
represent the orientation of the end-effector, even if as said before, it is not the best
way to represent the orientation, their time-derivatives are probably the best way to
describe a change in the orientation, and we are still missing a tool for transforming
the joint velocities q̇ ∈ Rn into the task space velocities ẋ ∈ R6 (three translational
velocities and three rotational velocities). Deriving the equation above with respect
to time by using the chain rule, give us a way to link the first order derivatives of
the two spaces together:

d

dt
x =

d

dt
f(q).

ẋ =
∂f

∂q

∂q

∂t
(chain rule),

where ∂f
∂q

is the Jacobian matrix of the system, which aims to relate the first order
partial derivatives of the input to the first order partial derivatives of the output
and is defined as:

J =
[
∂f
∂q1

. . . ∂f
∂qn

]
=

∂x1
∂q1

... ∂x1
∂qn

...
∂x6
∂q1

... ∂x6
∂qn

 ∈ R6×n.

Chapter 2. Literature review 11

One important thing to notice is that the Jacobian changes in function of q (the
robotic arm’s current state). Indeed, a joint angles velocity command will not have
the same effect on the end-effector’s velocity according to the robot’s current state.
We will use J for notation convenience instead of J(q).
This Jacobian matrix can be computed exactly, but due to the increasing complexity
of robots nowadays, we prefer to compute it approximately (with an autograd tool
or by observing the changes in the task space position and orientation when applying
a small perturbation dq for each joint).
With the Jacobian we can relate a joint space velocity to a task space velocity with:

Jq̇ =

[
ẋ
w

]
,

where ẋ denotes the linear velocity, and w denotes the angular velocity, both in R3.
Before, we used ẋ to denote all the velocities (translation + angular), but from now,
we will separate them. Because we are not always interested in the full task space
velocities (sometimes we only want to deal with position or orientation). That’s why
we can shrink the Jacobian in two:

J =

[
JT
JR

]
,

where JT is the part of the Jacobian, which influences only the position (translational
Jacobian), and JR influences only the orientation (rotational Jacobian).

12 2.1. Notions of robotics

Inverse kinematics

Forward kinematics is used to represent a robot in the task space, which is more
convenient to define action on the robot. Once we analyzed the robot configura-
tion in the task space, we may want to return to the robot a control command to
correct/improve the actual robot configuration. The problem is that robots only
understand commands expressed in joint space since they are directly related to
their motors. That is where inverse kinematics comes, when we need to transform
a control command in task space into its corresponding joint space command.
From the forward kinematics equations

Jq̇ =

[
ẋ
w

]
,

we want to isolate q̇, such that

q̇ = J−1
[

ẋ
w

]
.

The problem is that the Jacobian matrix is not always invertible, its invertibility
depends on the number and configuration of the joints of the robot. Since for this
project we are working with redundant robots (number of degrees of freedom greater
than six), we can say that for our specific case, the Jacobian is never invertible, and
here, all the challenge of inverse kinematics is to find a good pseudo-inverse for the
Jacobian such that:

q̇ ≈ J†
[

ẋ
w

]
,

where J† denotes the Jacobian pseudo-inverse.
In [8], the author proposes several approaches for computing the pseudo-inverse, but
in this project, only the weighted pseudo-inverse of the Jacobian will be used:

J† = W−1J>(JW−1J>)−1,

with W ∈ Rn×n the weight matrix. For this project, the mass inertia matrix M will
be used as weight matrix. This matrix will be presented more in details when we
will speak about the dynamics of the robot.

Second order kinematics

It is also possible to link the second order derivatives of q (joint space acceleration)
and x (task space acceleration) by deriving the Jacobian equation:

d

dt
(Jq̇) =

d

dt
(

[
ẋ
w

]
),

J̇q̇ + Jq̈ =

[
ẍ
ẇ

]
.

Chapter 2. Literature review 13

And the corresponding second order inverse kinematics:

q̈ = J†(ẍ− J̇q̇),

where J̇ denotes the time-derivative of the Jacobian, [9] demonstrates a way to
compute it accurately by using the chain rule. It is the method used in the project.

2.1.3 Robot dynamics

Dynamics relate to the study of the forces and torques, which are responsible for
the motion, whereas, kinematics correspond to the study of the motion without
consideration of its causes. In this chapter, we will investigate how a dynamic
command (torque or force) applied to a joint will interfere in the motion.
In function of the kind of joint that we want to control, we will rather speak about
forces or torques. Indeed, torque would be more meaningful for a revolute joint,
and a force would be more accurate for a prismatic joint (basically, an electrical
cylinder). In modern robots, prismatic joints tend to disappear; thus when talking
about dynamic control of a robot, we will prefer to talk about torques instead of
forces.

Figure 2.6: Example of revolute and prismatic joints. Since for a revolute joint, the
links of the robot are directly connected to a motor, we prefer to talk about torques.

The joint space formulation of the robot dynamics can be described by using the
dynamic equation:

τ + τext = M(q)q̈ + C(q̇)q̇ + g(q),

where:

• τ ∈ Rn is the vector of torques to execute to get a joint acceleration of q̈.

• τext ∈ Rn is the vector of external torques measured by the robot (due to a
perturbation).

• M(q) ∈ Rn×n is a symmetric positive-definite mass inertia matrix.

• C ∈ Rn×n is the matrix containing information about the centripetal and
Coriolis forces.

14 2.1. Notions of robotics

• g(q) ∈ Rn is the gravity vector.

Often, we do not have to consider the full equation to control our robot in torque.
Some terms are of greater importance than others. For example, the Coriolis and
centripetal term is close to zero for small joint velocities, thus it is not absurd to
ignore it. Furthermore, we may encounter robots that automatically compensate the
gravity,thus g becomes null and it simplifies the dynamics. Sometimes, the robot
SDK does not give all the information needed to implement this equation, thus we
have no choices than do without these terms (it is often the case for τext, where the
cheapest robots do not have a torque sensor on each joint).

Operational space dynamics

Similarly to what has been made in the kinematics part, it is possible to translate
the dynamics equation from the joint space to the task space:

F = Λ

[
ẍ
ẇ

]
+ µ+ p,

with:
Λ = (JM−1J>)−1,

µ = Λ(JM−1Cq̇− J̇q̇),

p = ΛJM−1g,

where:

• F ∈ R6 is the vector of end-effector forces and wrenches to apply to get the
desired acceleration.

• Λ ∈ R6×6 is the mass inertia matrix reported to the end-effector.

• µ ∈ R6 is the Coriolis and centripetal term reported to the end-effector.

• p ∈ R6 is gravity term reported to the end-effector.

• ẍ ∈ R3 is the linear acceleration of the end-effector.

• ẇ ∈ R3 is the angular acceleration of the end-effector.

This equation allows us to perform everything in the task space, but as stated before,
a robot only understands commands expressed in joints space. We can transform
F into its corresponding formulation in the joint space by multiplying it by the
Jacobian transpose:

τ = J>F .

Chapter 2. Literature review 15

2.2 Linear Quadratic Tracking

The linear quadratic tracker is an extension of an LQR (Linear Quadratic Regulator)
problem, where we want to make an object modelized by a linear system track a
trajectory instead of one point. The base of this method is that our system can be
modelized as a linear system (in this case, discrete-time):

St+1 = ASt + But,

where:

• St ∈ RI is the state vector at time t.

• A ∈ RI×I is the system matrix.

• B ∈ RI×O is the input matrix.

• ut ∈ RO is the control command at time t.

Given a desired trajectory µ ∈ RIT composed of all desired states {Si}i=Ti=1 vec-
torized, the purpose of LQT is to find the optimal sequence of control command
u ∈ RO(T−1) (vectorized), which minimizes the cost function:

J = ||µ− x||2Q + ||u||2R,

where:

• Q ∈ RIT×IT is the precision matrix.

• R ∈ RO(T−1)×O(T−1) is the control weight matrix, which penalizes high values
of u.

• x is the trajectory generated by u, starting at S1 (vectorized).

This optimization problem can be solve in several ways that will be explored in this
project:

• With a batch formulation.

• A dynamic programming solution.

• A quadratic programming solution (if we want to constrain the cost function).

16 2.2. Linear Quadratic Tracking

2.2.1 Batch formulation

The main idea behind this formulation, is to solve the LQT as a least square problem.
For this, we need a way to formulate x in function of u and S1:

x = f(S1,u).

For this, we need to expand our discrete-time linear system equation:

x1 = S1,

x2 = Ax1 + Bu1 = AS1 + Bu1,

x3 = Ax2 + Bu2 = A2S1 + ABu1 + Bu2,

x4 = Ax3 + Bu3 = A3S1 + A2Bu1 + ABu2 + Bu3,

...
xT = AxT−1 + BuT−1 = AT−1S1 + AT−2Bu1 + AT−3Bu2 + · · ·+ BuT−1,

where xi is the prediction for Si. It shows that a sequence of states can be entirely
defined by its initial state and a list of control commands. Instead of computing
each xi iteratively as presented above, the set of equations can be vectorized to get
the predicted sequence of states in once:

x1

x2

x3

x4
...

xT

=

I
A
A2

A3

...
AT−1

︸ ︷︷ ︸

Sx

S1 +

0 0 0 . . . 0
B 0 0 . . . 0

AB B 0 . . . 0
A2B AB B . . . 0
...

...
...

AT−2B AT−3B AT−4B . . . B

︸ ︷︷ ︸

Su

u1

u2

u3

u4
...

uT−1

.

Since this notation is a bit heavy, we usually prefer to write it like this:

x = SxS1 + Suu.

We can insert this new expression for x in the cost function defined above:

J = ||µ− SxS1 − Suu||2Q + ||u||2R,
J = (µ− SxS1 − Suu)>Q(µ− SxS1 − Suu) + u>Ru.

If we solve for u and target a minimal cost (J = 0), we end up with:

û = (Su>QSu + R)−1Su>Q(µ− SxS1),

the least square solution for a LQT problem. This formulation has a strong peda-
gogical potential. Indeed, looking at this formulation, it is easier to understand that

Chapter 2. Literature review 17

a LQT is nothing more than a weighted Ridge regression, where R plays the role of
the Tikhonov matrix used in the Ridge regression. Also, with this formulation, we
can better understand the purpose of the weight matrix Q, which tells our algorithm
the desired precision for each state. We can also see the advantage of using a vector-
ized notation. Without vectorization, Q would only indicate the desired precision
of each state, but having everything vectorized allows us to not only specify the
desired precision for one state, but for all the variables of each state.

2.2.2 Dynamic programming formulation

Even if the batch formulation is pedagogically interesting, it involves multiplication
of large matrices, which can take an eternity to compute. The solution to overcome
this problem is to solve a LQT by using a dynamic programming approach. The
approach is described in [10] and consists in solving iteratively the LQT backward
in time:

Pt = Qt −A>(Pt+1B(B>Pt+1B + Rt)
−1B>Pt+1 −Pt+1)A,

dt = (A> −A>Pt+1B(B>Pt+1B + Rt)
−1B>)(Pt+1(ASt − St+1) + dt+1),

with the terminal conditions:

PT = QT & dT = 0,

where Qi ∈ RI×I , and Ri ∈ RO×O are respectively the precision and control weight
matrix for state Si and control command ui. The step of computing Pt (the solution
of a discrete-time Ricatti equation), and dt (the solution to a linear differential
equation) can be retrieved in the LQR problem. It shows us that the dynamic
programming solution of LQT consists in computing a discrete-time finite horizon
LQR between each state (see [11]).
From Pt, and dt we can commpute a feedback gain Kt, and a feedforward term ft,
that will be used to retrieve the control command ut for each timestep:

Kt = (B>PtB + Rt)
−1B>PtA,

ft = −(B>PtB + Rt)
−1B>(Pt(ASt − St) + dt).

Thus, the control command can be computed with:

ut = Kt(St − xt) + ft,

where xt is the current state of the robot.
Using the dynamic programming formulation instead of batch, reduces the com-
plexity of the problem from O(T 3IO2) (worst case scenario) to O(TI3). Another
advantage of using the dynamic formulation is that the system will compensate for
its tracking error (since the control command at a time step is computed in function
of the current tracking error).

18 2.2. Linear Quadratic Tracking

2.2.3 Constrained LQT (Quadratic programming solution)

The quadratic formulation of the cost, allows us to solve the LQT as a quadratic
programming problem. Quadratic programming refers to the process of minimizing
a quadratic cost function subject to linear constraints on the optimized variable. It
consists of minimizing a subset of a cost function where the constraints are respected.
The problem is stated as follow:

minimize
1

2
||u||2P + q>u,

subject to Gu ≤ h, (inequality constraint)
and/or Au = b, (equality constraint)

where the constraints can take two forms (equality or inequality). The challenge
here, is to transform the cost function of the LQT:

J = (µ− SxS1 − Suu)>Q(µ− SxS1 − Suu) + u>Ru,

into something similar to the cost function presented above. Furthermore, it would
be interesting to be able to constrain over a state and not a control command (proof
presented in appendix B):

minimize u> (Su>QSu + R)︸ ︷︷ ︸
P

u + (S>1 Sx>QSu − µ>QSu)︸ ︷︷ ︸
q>

u,

subject to ASS
uu ≤ bS −ASS

xS1,

where AS , and bS are the constraints exprimed in state space. The corresponding
P,q,A/G, and b/h are given to a QP solver to get the solution to our problem.
Using the constrained formulation of LQT, can be particularly interesting to solve
the planning problem. With this formulation, we can plan a trajectory that avoids
a specific state or forces the motion to pass through a via point at a given time. Its
time complexity makes it inefficient for a tracking problem (similar or worst than
the batch formulation).

Defining a constraint

Even if having a constraint defined in the command space could be interesting to
avoid our system to move too fast. For defining a task, it is more interesting to
constrain it in the state space (see chapter 1). In this chapter, the way to build the
corresponding AS matrix, and bS vector will be presented. The construction of the
constraint matrix and vector is the same for an inequality or equality constraint,
but here we will build them in the case of an equality constraint.
To understand how to create a constraint, lets say that we have:

µ = [S>1 S>2 S>3]> ∈ R3I ,

Chapter 2. Literature review 19

and we want S2 to be equal to an arbitrary state Sd ∈ RI . If we formulate our
constraint in the state space, we have:

ASx = bS ,

with x the vectorized predictions for each state, in function of u, and S1. The final
purpose of this constraint is to express the equality between x2, and Sd. So, we
have to build the constraint matrices with respect to the final condition:

x2 = Sd.

It can be done by constructing the matrices like:

AS =
[
0 I 0

]
,bS = Sd,

so we have: [
0 I 0

] x1

x2

x3

 = Sd,

which gives:
x2 = Sd.

Here we introduce a constraint over a whole state, but similarly, it is possible to
constrain multiple states or only some variable of a state. Generally, one constraint
corresponds to one row in the AS , and bS matrices.
Similarly to what has been made before, it is possible to constrain dynamically two
states together, if we take back our previous example, and we ask that state S1 is
equal to S3, the resulting matrices will be:

AS =
[
I 0 −I

]
,bS = 0.

It is particularly interesting, since we do not have to bother about the meeting state,
since it is computed by the QP solver.
Once we have calculated the corresponding state space constraint matrices, we can
transform them into their corresponding command space formulation with the equa-
tions presented above.

20 2.2. Linear Quadratic Tracking

2.2.4 Performing LQT in a model predictive control way (MPC)

The main limitation of the LQT is that it needs a linear system to work. If our
system is not linear, we can not directly apply LQT on our task. To take a robotics
example, if we define our states in the task space of the robot and we want to have
a command in the joint space (e.g. in joint velocities.), we have to introduce the
joint space to task space transformation inside the A, and B matrices:

xt+1 = I︸︷︷︸
A

xt + dtJ︸︷︷︸
B

q̇,

where xi denotes an end-effector position at time i, and dt denotes the time step of
our discrete-time system. The problem with this formulation is that it is not linear
since the Jacobian evolves in function of the state of the robot, it is not constant over
time. Thus, it is impossible to apply LQT directly on that system. The proposed
solution to overcome this issue is to perform the LQT in a model predictive control
way.

Basically, for each time step, we solve a LQT with a fixed horizon of µ (from t to
t + H), in which we assume that the A, and B matrices are constant. From this
LQT, we execute only the first control command.

Data: µ, a desired state sequence of length T , and h a window size.
t = 0 ;
while t not equal to T − 1 do
µpart = µ[t · nbStateVar:(t+ h) · nbStateVar];
µpart[0:nbStateVar] = robot.getCurrentState() ;
A, B = getSystemMatrices() ;
ctrl = LQT(A,B,µpart) ;
cmd = ctrl.getCommand(timestep=0) ;
robot.sendJointVelCommand(cmd) ;
t += 1 ;

end

It is not described in the algorithm, but when selecting the horizon of time step t,
we have to check if t+ h is not bigger than T . If yes, we crop it to get the sequence
till the end of µ.

An advantage of this technique is that it automatically compensates for the error
since, at each time step, the µpart vector is updated with the current state of the
system.

Chapter 2. Literature review 21

Figure 2.7: Example of a reproduced end-effector motion made with LQT/MPC.
The black curve corresponds to the reproduction. Color curves are partial results
obtained if we use all control commands instead of only the first one. It shows that
at the beginning of the horizon, it is not absurd to assume that the system matrices
are constant.

22 2.2. Linear Quadratic Tracking

2.2.5 Applications of LQT

Until now, the LQT and its different ways to solve it was presented in a really
mathematical manner, to the point of forgetting robotics for a while. In this chapter,
some robotics use of LQT will be presented and explained. Here, how to solve a
normal LQT is not important, the focus will be on how to use this brick to build a
robotics application.

Example of constrained LQT

As said during the constrained LQT introduction. This way of solving LQT can be
very interesting to solve a planning problem. Solving the planning problem means to
generate a trajectory µ, which respects all the constraints of the task. For example,
if the robot has to insert an object in a hole, it would be interesting to constraint
the last 25% of the motion to have a velocity only in the direction of the axis of the
hole, instead of constraining all the velocities from the 75% to the end of the motion
to be in the direction of the hole axis (it would be really heavy). It would be more
efficient to ask the robot to be on top of the hole at 75% of the motion. Doing so,
the resulting motion only needs to move in the direction of the axis. This ensures a
velocity in the desired orientation for the last part of the motion.
To do this, the states are expressed in the task space and the commands too (it
avoids a non-linearity problem, thus we can directly use LQT on the task). The
system is modelized as a double integrator system:[

xt+1

ẋt+1

]
=

[
I dt
0 I

] [
xt
ẋt

]
+

[
dt2
2

dt

]
ẍt,

where xt denotes the end-effector position at time step t. x75%, the position at 75%
of the motion should be equal to:

x75% = ST + d eh,

where:
• ST is the final position of the motion (a point in the hole).

• eh the unit norm hole axis vector.

• d the desired distance to the final position.
From the equation above, the corresponding AS matrix and bS vector are built and
used to solve the corresponding LQT problem. Before solving the LQT, we need to
pay attention to the Q matrix, since in this case we only know the initial and final
state of the trajectory, the diagonal of the LQT matrix should only contain ones
where the corresponding state is defined:

Q =

I 0 · · · 0 0
0 0 · · · 0 0
...

...
...

0 0 · · · 0 0
0 0 · · · 0 I

 ,

Chapter 2. Literature review 23

each element inside the definition of the Q matrix corresponds to a six by six matrix
to match the size of one state (three variables for the position, and three variables
for the velocity).

Figure 2.8: Generated motion and velocities of the problem. Constraining the mo-
tion like this allows the system to correctly goes into the hole. This kind of con-
strained motion can also be used in a grasping task to ensure a correctly grasp of
an object.

Multiple agents control

Until now, only the control of one agent with a LQT has been presented, but the
formulation of LQT allows to use the same regulator for multiple agents:[

x1,t+1

x2,t+1

]
=

[
A1 0
0 A2

] [
x1,t

x2,t

]
+

[
B1 0
0 B2

] [
u1,t

u2,t

]
,

where the first index of matrices and vectors denotes the agent in question, and the
second index denotes the time step of the variable, if not present, the variable is
assumed to be constant over the motion (N.B. in this formulation, xi,j denotes the
predicted state of agent i at time step j, it is not necessary (only) the end-effector
position). The challenge in the multiple agent formulations consists in correctly
instantiate the different variables of the LQT, from the linear system equation above,
we can infer that the desired state sequence vectorized µ should be constructed as
follow:

µ = [S>1,1 S>2,1 . . . S>1,T S>2,T]>.

The different agents do not need to have the same structure of A and B matrices
for the regulator to work. But in practice, we have no reasons to control different
agents in different manners, so if we are not using the MPC solution of LQT (i.e. we
have no information relative to the current robot state in the matrices), the system
matrices will be the same for the different agents.
A big advantage of having multiple agents in one LQT is that we can constrain the
agents together by using the QP formulation. For example, we can add a meeting

24 2.2. Linear Quadratic Tracking

point dynamically between the two agents at a defined time step. It is particularly
interesting if we want our robots to interact during their task.

Figure 2.9: In this image, we use a constrained LQT to ask the two agents to meet
in the middle of their motion. From this LQT, we can retrieve the corresponding
motion for each agent (plotted in red and blue on the figure). The result of this
LQT will be given to another regulator who would have to track the motion.

Chapter 2. Literature review 25

2.3 Riemannian manifold

In chapter 2.1.1, we discussed the difficulties of handling the end-effector orientation
in robotics applications. We ended up with the conclusion that the representation
by unit quaternion is the one chosen in this project, without really explaining why.
In this chapter, we are going to answer this question by presenting a way to track
the orientation of robots by relying on the Sd Riemannian manifold.

2.3.1 Motivation

The quadratic cost function of the LQT can be divided into two parts, the tracking
part, where we ensure that the predicted state sequence is close to the desired, and
the normalizing part, where we want to minimize the cost to go from a state to
another:

J = ||µ− x||2Q︸ ︷︷ ︸
Tracking part

+ ||u||2R︸ ︷︷ ︸
Normalizing part

.

In the tracking part, we measure the tracking error by assuming that the state space
is an Euclidean space (i.e., the difference between two states can be measured by
subtracting one state to another). As presented with the most common orientation
representations in robotics (chapter 2.1.1), none of them can accurately measure an
orientation difference with an Euclidean distance. Thus, it is impossible to track or
plan orientation by using a LQT.
It is where the Riemannian manifold comes. A Riemannian manifold is a smooth
and differentiable manifold, which locally behaves like an Euclidean space. In [12]
the author briefly presented some manifolds, which belong to the Riemannian family.
From this list, we will only consider the sphere manifold Sd [13] [14], which represents
all points lying on the manifold as points being on the surface of (d+1)-dimensional
sphere. Since unit quaternions can be seen as points lying on the hyper-sphere 2

S3, we can use the corresponding manifold to find a space, where all orientations
behave locally as an Euclidean space, and apply LQT on this manifold.

2.3.2 Definition of Sd manifold

For a point p lying on the manifold M, there exists a tangent space TpM, which
behaves locally as an Euclidean space. The action of projecting a point y ∈M into
the tangent space of p is called the logarithmic map. The reverse action is called
the exponential map.

2If you want to know, how a 4-d sphere looks like, i recommend this video: https://www.
youtube.com/watch?v=dy_MUfBuq2I (audio in French, but subtitles are available in English).

26 2.3. Riemannian manifold

Figure 2.10: Visualization of the S2 manifold (a 3d sphere), where we project a
point y lying on the manifold into the tangent space of the point p.

The advantage of projecting a point into the tangent space of another point is that
inside the tangent space, the difference between the two points can be computed by
using an Euclidean distance. Thus, we can apply LQT inside this tangent space.
Something important to notice is that a vector on the tangent space of p1 is not
equivalent to the same vector but expressed in the tangent space of p2. If a point
is moving at constant speed on the manifold, its velocity vector at time t will be
in the tangent space of the current position of the point, but if we are analyzing
the velocity vector at another time, it will not be the same as the previous one
(somehow, the vector will need to adapt to the curvature of the sphere). The action
of transporting a vector v from Tp1M to Tp2M is called the parallel transport of v.

Figure 2.11: The easiest example of parallel transport could be a human walking
for a (very) long time in a fixed direction on earth (earth can be assumed to be
spherical, thus it can act like a S2 sphere). Sooner or later, he will come back to its
starting point, but if we take a look at the evolution of its velocity vector during its
journey, we notice that the vector changed all along the way (the vector is presented
in green on the figure above), but from his point of view, his velocity never changed.

Chapter 2. Literature review 27

Mathematical notation

Now that all the different actions than can be performed on the manifold has been
presented, the different mathematical formulations for these actions will be pre-
sented. These formula work for the Sd manifold for d ≥ 1.
The exponential map of a point u ∈ TxM:

y = Expx(u) = x cos(||u||) +
u

||u||
sin(||u||).

The logarithmic map in the tangent space of x of a point y ∈M:

u = Logx(y) = d(x,y)
y − x>yx

||y − x>yx||
,

with d(x,y), the distance between x and y:

d(x,y) =

{
arccos(x>y)− π, x>y < 0

arccos(x>y), otherwise
,

The parallel transport of v ∈ TxM to TyM:

Γx→y = v − Logx(y)>v

d(x,y)2
(Logx(y) + Logy(x)).

2.3.3 LQT with Sd manifold

Now that we are more familiar with the Sd manifold. We will take a look on
how to use this tool in an orientation tracking or planning problem for a robotics
application. It exists two different manners to perform a LQT by relying on the
Riemannian manifold:

1. Solve the problem with only one LQT performed in the tangent space of the
initial state (it means that we project all parts relative to the orientation in
{Si}i=Ti=1 into TS1M).

2. A LQT/MPC solution where for each time step, we project a fixed horizon of
the motion into the tangent space of the current state.

Simple LQT solution

Given µ, the vector containing the desired state sequence with all states correspond-
ing to orientations expressed in unit quaternions and their corresponding angular
velocities (if we want to perform acceleration control on the system). We first need
to transform the angular velocities of each time step into quaternion derivatives, [15]
gives us a way to do this:

ε̇ =
1

2
H(ε)>w,

28 2.3. Riemannian manifold

with:

H(ε) =

−ε1 ε0 −ε3 ε2
−ε2 ε3 ε0 −ε1
−ε3 −ε2 ε1 ε0

 ,
and the inverse transformation:

w = 2H(ε)ε̇.

Something important to notice is that the velocity of a unit quaternion is a vector
lying in the tangent space of the current position (e.g., if you attach an extremity
of a string to a weight, and you use the other extremity to make the weight turn,
its velocity will always be tangent to the circle delimited by the string).
Now, the vector µ looks like:

µ =

ε1
ε̇1
...
εT
ε̇T

 ,
and Si is equal to [ε>i ε̇>i]>.
Now that the ground truth vector is defined only with information relatives to unit
quaternions. We can express this vector in the point of view of ε1. For this, we
project all {εi}i=Ti=1 into the tangent space of the first orientation, and we transport
all {ε̇i}i=Ti=2 from their tangent space to the initial tangent space (we start at i = 2,
because ε̇1 is already in the tangent space). It gives the following vector:

µ =

Logε1(ε1)
ε̇1

Logε1(ε2)
Γε2→ε1(ε̇2)

...
Logε1(εT−1)

ΓεT−1→ε1(ε̇T−1)
Logε1(εT)

ΓεT→ε1(ε̇T)

.

If we are interested in solving a planning problem, often, all states of µ are not
known, and we want to use a LQT to find them. These unknown states are filled
with zeros in the µ vector. Since we do not want these unknown states to interfere
in the cost function of the LQT, we have to hack the precision matrix Q with zeros
in its diagonal for the corresponding states. With the desired trajectory defined in
the tangent space of the initial point, all the states are part of an Euclidean space,
thus it can be solved with a double integrator LQT as seen before. The extraction
of the result is not the same if we are solving a tracking or a planning problem. For
a planning problem, we are only interested in the resulting trajectory and velocities.

Chapter 2. Literature review 29

The trajectory can be transformed back to the manifold by the reverse function of
Log, Exp.
Similarly, for the velocities, they can be transported to their original tangent space
with the parallel transport function. Thus, we end up with a full trajectory defined
with unit quaternions. For a tracking problem, the control command at time t is a
unit quaternion acceleration defined in the tangent space of the initial state. This
control command can be transported into its corresponding tangent space, but un-
fortunately, robots do not understand these kinds of commands. Before, a mapping
between quaternions velocities and angular velocities was presented. Similarly, in
a double integrator system, to send a command to the robot, we need a mapping
between quaternions accelerations and angular accelerations. It can be achieved by
deriving the previous equation with respect to time:

d

dt
(w) = 2

d

dt
(H(ε)ε̇),

= 2(Ḣ(ε)ε̇+ H(ε)ε̈).

Since H(ε) is nothing more than a matrix representation of the imaginary part of a
quaternion (conjugate), its time-derivative is then equal to:

Ḣ(ε) = H(ε̇),

and the resulting angular acceleration can be used as control command with the
help of the operational space dynamics.

Figure 2.12: Example of a planning task on the S2 manifold (simple integrator
system). The tilted blue line corresponds to the solution in the tangent space of the
initial point. The green point is a via-point in the middle of the trajectory, and the
red cross is the desired final state.

If you pay attention to figure 2.12, you can see that the resulting trajectory on the
manifold is not really optimal. A better solution would be to directly connect the

30 2.3. Riemannian manifold

three points with a line on the sphere. Unfortunately, the solution given by the
algorithm is optimal only from the point of view of the initial state. To improve
this solution, and have an optimal solution for the entire trajectory, a LQT/MPC
solution will be described in the next chapter.

LQT/MPC solution

As stated before, the problem with the single LQT on the manifold is that the
resulting trajectory or control commands are optimal only for the point of view
of the initial state. The main idea in this chapter is to use the LQT/MPC brick
presented in chapter 2.2.4 to find a better solution for the planning or the tracking
of orientation.
For this, at each timestep t, we project a fixed horizon H of µ into the tangent space
of the current state:

µt =

Logεt(εt)
ε̇t
...

Logεt(εt+H)
Γεt+H→εt(ε̇t+H)

 .

This horizon is only valid if all states are known, if we want to solve a planning
problem in which we know only the initial and final states, and a constraint, at each
time step we would have to consider the motion from the current state to the final
state and adapt the Q matrix and constraints matrices.
Now that the µt is correctly defined, we can solve a LQT and use only the first control
command. For a tracking problem, this control command can be transformed into
angular acceleration and sent to the robot with the formula presented above. For a
planning problem, we want to calculate the next state in function of this command.
It can be done with the discrete-time linear system equation presented in chapter
2.2:

xt+1 = ASt + But,

where St = [Logεt(εt)
> ε̇>t]> is the current state expressed in its tangent space,

and xt+1 = [a> b>]> is the next state expressed in TStM, which can be translated
to its corresponding quaternion state:

εt+1 = Expεt(a),

ε̇t+1 = Γεt→εt+1(b).

Chapter 2. Literature review 31

Figure 2.13: Same example as figure 2.12 with the LQT/MPC solution in red. As
you can see, the LQT/MPC solution provides a better trajectory, which is optimal
for the whole motion.

Even if this algorithm gives a good solution for the planning and the tracking of
orientation, its computation is quite expensive (especially if we want to solve a
planning problem and not all states are known), and sometimes the result is quite
similar to the single LQT method (in fact, if the trajectory is not constrained, both
ways give exactly the same result with an advantage for the first one, since the
computational cost is quite low).

Chapter 3

Proposed approach

Now that the different methods used in the project have been presented. The focus
of this chapter will be on how they are used together to fulfill the goal of this project.
As a recall of chapter 1, the purpose of this project is to make a robot fulfill a task
by specifying it the goal and not actions that lead to the goal. In the context of this
project, a task is fully defined by some entities:

• The duration of the task (in time step, since we use discrete formulation).

• The initial and final state (where we want to start, and where we want to end).

• One or more constraints (equality or inequality), which aim to inform our
system what should happen between the beginning and the end of the motion.

The constrained formulation of LQT needed to deal with the constraints of the
motion does not offer error corrections (whereas the LQT/MPC and dynamic pro-
gramming formulations yes), and is quite expensive to compute, thus we can not
use a single LQT to plan and track the motion. We have to break the problem into
two parts, the planning, and the tracking. The purpose of the planning part will be
to find an end-effector trajectory which satisfies the task, and the tracking part will
make the robot follows this trajectory by finding a sequence of control command in
joint space, which satisfies the planned motion.
Here, a state gives information about the position and orientation of the end-effector
at a given time step. If it is a single integrator system, only the position and ori-
entation will be used, but if we consider a double integrator system, at each time
step, a state will be defined by the position, orientation, and their time derivatives.
The main difference is the kind of control command used, a single integrator will
generate velocity commands, and a double integrator will generate acceleration com-
mand, more higher is the degree of derivatives that you use to control your system,
the more smoother the generated trajectory will be (therefore a motion generated
by acceleration commands will look more natural than one generated by velocity
commands). In this chapter, we will assume that we always use a double integrator
system, since they are more complex to handle, and once we understand a double
integrator system it is easy to formulate a task as a single integrator system.

32

Chapter 3. Proposed approach 33

Regarding the constraints, their definitions matrices are the same if we want to
create equality or inequality constraints (one time, it will just be Ax = b instead of
Ax ≤ b). Thus, here, we will assume that we are only using inequality constraints,
but if you want to use equality constraints or both, you can build the matrices in
the same way and give them to the QP Solver (most performant QP solvers accept
equality and/or inequality constraint).

3.1 Planning approach

In chapter 2, we have seen that it is not possible to use the same approach for
orientation and position. Thus, we have to plan them separately. Here we are
assuming that the orientation and position trajectories are constrained, therefore
we will use the quadratic programming formulation of the LQT in both cases (but
not in the same way).
As said before, the QP formulation of the LQT, is quite expensive to compute.
Solving a QP problem with more than one thousand time step could literally take
an eternity to compute (in practice, it is almost always the case, since we use a time
step of one millisecond, and a motion lasts longer than one second). Thus, it is
impossible to use it directly in a real-time scenario1.
To overcome this problem, the QP solver will solve a downsampled version of the
motion, and its result will be oversampled to match the desired length of the motion.
It allows a faster computation of the planning part.

Figure 3.1: Example of a planning problem, where we know the initial and target
state for the position and orientation, and a constraint. We want to retrieve the
intermediary states.

1Here, real-time means that we want to solve the planning at the beginning of each movement
of the robot.

34 3.1. Planning approach

3.1.1 Position planning

As seen before, dealing with the position is not a big challenge, since the position of
the end-effector is described in an Euclidean space, we do not have to make special
transformations to plan the position. Given an initial state S1, a final state ST , a
desired length T , a downsampling ratio D, and the constraints, we will define our
downsampled problem as:

minimize u> (Su>QSu + R)︸ ︷︷ ︸
P

u + (S>1 Sx>QSu − µ>QSu)︸ ︷︷ ︸
q>

u,

subject to ASS
uu ≤ bS −ASS

xS1,

with:
Si = [x>i ẋ>i]> ∈ R6,

µ =

S1

0
...
0
ST

 ∈ R
6b
T

D
c
,Q =

I 0 · · · 0 0
0 0 · · · 0 0
...

...
...

0 0 · · · 0 0
0 0 · · · 0 I

 ∈ R
6b
T

D
c×6b

T

D
c
.

Since we are solving a downsampled version of the motion, we have to adapt the
time step of the system. Thus, in case of a double integrator system, the system
matrices become:

A =

[
I dtD
0 I

]
∈ R6×6,B =

(dtD)2

2
dtD

 ∈ R6×3.

The constraint matrices are built with exactly the same logic than before, but the
number of columns of AS should be equal to the number of rows of µ. In practice,
it is better to choose a D that results in an integer number of downsampled states

(no need to floor
T

D
). Doing so, the downsampled time step dtD is exact.

Once that all the elements are computed, the different elements can be given to

a QP solver, which will return û ∈ R
3(b
T

D
c−1)

, the sequence of control commands
which minimizes the cost function. With this sequence, the downsampled motion
can be computed with:

x = SxS1 + Suû.

To retrieve the desired trajectory, the downsampled trajectory is upsampled by a
factor of D. Upsampling is made through two three-dimensional spline interpolation
(one for the positions, and one for the velocities). At the end of the upsampling, we
have a vector x ∈ R6T corresponding to the sequence of positions and velocities for
each timestep.

Chapter 3. Proposed approach 35

3.1.2 Orientation planning

As seen before, there are two different methods to deal with the orientation. Since we
are dealing with constrained trajectories, we will focus on the LQT/MPC solution,
which gives a more natural result of the trajectory (using the single LQT solution
is similar to the position planning except that we have to project everything in the
tangent space of the initial orientation). The planning approach for the LQT/MPC
solution has been briefly introduced during the description of the method. Since in
this case, only constraints, and the initial and the final state are known, the horizon
is not constant over time, and has to capture the rest of the motion at each time
step. As in the position part, we first solve a downsampled version of the motion
(by factor D):

µt =

Logεt(εt)
ε̇t
0
...
0

Logεt(εT)
ΓεT→εt(ε̇T)

∈ R

8(b
T

D
c−(t−1))

,Qt =

I 0 · · · 0 0
0 0 · · · 0 0
...

...
...

0 0 · · · 0 0
0 0 · · · 0 I

 ∈ R
8(b
T

D
c−(t−1))×8(b

T

D
c−(t−1))

,

with:
St = [Logεt(εt)

> ε̇>t]> ∈ R8.

Since the motion is downsampled, the A and B also have to be modified with the
downsampled time step dtD, and at each time step, the constraint matrices have to
be expressed from the point of view of the current state (basically, at each timestep,
we remove eight columns of AS , since a state is composed of eight variables). From
the result û, the first control command û0 is extracted (the first four elements of
û), and the next state is computed in the tangent space of the current state:[

Logεt(εt+1)
Γεt+1→εt(ε̇t+1)

]
= A

[
Logεt(εt)
ε̇t

]
+ Bû0,

and can be formulated in the manifold with the exponential map for the position, and
the parallel transport for the velocity. Once the previous steps have been repeated
for each time step, we end up with a planned downsampled orientation trajectory
that still needs to be upsampled.

Orientation oversampling

Upsampling orientation data is not as simple as upsampling position data. Since the
orientation at each time step is represented by a unit quaternion, and the represen-
tation is not part of an Euclidean space, it is impossible to use common interpolation
approaches (spline or cubic) with these data.
The approach chosen in this project is to compute the time scale (at which per-
centage of the motion a state occurs) of the downsampled and desired trajectory.

36 3.1. Planning approach

Afterward, for each state εt of the oversampled trajectory, we find two states εd and
εd+1 in the downsampled trajectory that occurs before and after the current time
step, respectively. With these information, we can compute if εt is closer to εd or
εd+1:

P =
Time(εt)− Time(εd)

Time(εd+1)− Time(εd)
,

having P close to zero means that εt is closer to εd than εd+1. We can use this
information to compute εt, and ε̇t in the tangent space of εd (see figure 3.2).

Figure 3.2: Chosen approach to oversample an orientation trajectory.

At first glance, this oversampling method could look to a linear interpolation between
two quaternions, but computing this interpolation in a tangent space leads to the
smoothing of it when pushing the information back on the manifold (thanks to the
shape of the manifold).

Chapter 3. Proposed approach 37

3.2 Tracking approach

Given the planned motions µP for the position, and µO for the orientation, the
challenge of the tracking part is to make the robot accurately follow these two
trajectories. It was not discussed in the planning part, but these two trajectories
may not be compatible, it could be impossible for a robot at time t to be at position
xt with orientation et. How to handle this problem will be discussed in section
3.2.3. We will first see how to track these two trajectories independently. In the
planning part, we assumed that we were using a double integrator system, and
that the single integrator system is a simplification of this system. Here, since the
number of derivative in the system will influence the way to control the robot (a
simple integrator system will be used to generate joint velocities, whereas double
integrator system aims to generate torque control commands), both cases will be
presented.

3.2.1 Position tracking

As discussed in chapter 2.2, there are several ways to perform a LQT. Some are
more suitable for the planning (batch, QP formulation), others are more suitable for
the tracking (DP, LQT/MPC formulation). Here, we will investigate two possible
methods to solve the position tracking method:

1. A LQT/MPC solution, that directly link the trajectory defined in the task
space, with control commands defined in the joint space.

2. A QP formulation of the LQT, that generate control commands in the task
space, which will be transformed in the joint space with inverse kinematics or
inverse dynamics (in function of how we want to control the robot).

The differences between these two approaches will be discussed in section 4, when
presenting a real world example.

LQT/MPC solution

As stated before, the advantage of a LQT/MPC formulation to control a robot is
that it directly links the task and joint spaces by overcoming the non-linearity in
the A and B matrices.

Case 1: simple integrator system

µP = [x>1︸︷︷︸
S1

· · · x>T︸︷︷︸
ST

]>,

xt+1 = I︸︷︷︸
A

xt + dtJt︸︷︷︸
B

q̇t,

with Jt, the translational part of the Jacobian.

38 3.2. Tracking approach

Case 2: double integrator system

µP = [x>1 ẋ>1︸ ︷︷ ︸
S1

· · · x>T ẋ>T︸ ︷︷ ︸
ST

]>,

[
xt+1

ẋt+1

]
=

I dtI +
dt2

2
J̇tJ

†
t

0 I + dtJ̇tJ
†
t

︸ ︷︷ ︸

A

[
xt
ẋt

]
+

dt22
JtM

−1

dtJtM
−1

︸ ︷︷ ︸

B

τt.

In this equation we assume that the robot is compensing the coriolis gravity and
external forces effects, so the dynamics equation of the robot becomes:

τ = Mq̈→ q̈ = M−1τ ,

and can be linked to the task space with:

ẍ = J̇q̇ + Jq̈ = J̇J†ẋ + JM−1τ .

These A and B matrices can be used with LQT/MPC (with a fixed horizon h), to
generate the control commands at time step t, q̇t or τt in function of the preferred
way to control the robot.

Operational space control solution

In this solution, only one LQT is used. This LQT is instantiated at the beginning of
the motion and solved with the DP formulation (better time complexity). It allows
to compute at each time step a control command in function of the tracking error
on the current state:

ut = Kt(St − Ŝt) + ft,

where Ŝt is the actual state at time step t.
This LQT is used to compute ẋt in case of a single integrator system, or ẍt for a
double integrator system. The control command is expressed in task space, thus it
needs to be converted into its joint space consideration:

Case 1: single integrator system

q̇ = Jt
†ẋ (inverse kinematics).

Case 2: double integrator system

τ = J>(Λ

[
ẍ
0

]
+ µ+ p) (operational space dynamics).

In this case, the control command is augmented with zeros, which correspond to the
desired angular acceleration (because it is not known at this point).

Chapter 3. Proposed approach 39

3.2.2 Orientation tracking

In chapter 2.3.3, we saw that there are two methods to plan or track orientation
data, even if the time complexity of the single LQT method is quite interesting, it
is a naive approach and must be forgotten.
It was not the case during the planning, but now the vector µO is not sparse anymore.
Thus we can use a fixed horizon H instead of windowing the vector from the current
state to the last state. It will speed up the process.
The choice of the horizon size is subject to interpretation. A small horizon will
speed up the process, but the advantages of using a MPC approach will be lost.
In a sense, the LQT/MPC solution provides a kind of anticipation in the tracking
by increasing the vision of the task at the current state, and with a small horizon
we will lose this advantage. A large horizon will be slower to compute, but we will
benefit from the anticipation capabilities of the formulation.
For orientation tracking, the priority should be put on the time complexity of the
problem, thus the considered horizon will be between ten and twenty time steps.
Furthermore, the benefit of anticipation for this use case is questionable, since the
planning ensures to have a smooth trajectory between ε1 and εT , there is no big
changes to anticipate.
To track the orientation, we use a single or double integrator system with a LQT/MPC
solution as presented in chapter 2.3.3.

Case 1: single integrator system
The control command at each time step is an angular velocity wt, and can be
transformed into joint angle velocities with:

q̇ = Jr
†w (inverse kinematics),

with Jr the rotational part of the Jacobian.

Case 2: double integrator system
The control command is an angular acceleration ẇ, and can be transformed into
torques with:

τ = J>(Λ

[
0
ẇ

]
+ µ+ p) (operational space dynamics).

This time time the zeros corresponds to the linear acceleration, that is unknown at
this point.

3.2.3 Merge position and orientation control commands

Until now, the position and orientation tracking were presented independently. How-
ever, there are only a few tasks in which we only need to control either the position
or the orientation. Thus we need to have a way to fuse together the different control
commands. This can occur at the task space level or at the joint space level.

40 3.2. Tracking approach

For the task space level, it is done by stacking together the position and orientation
commands in a vector. For example with inverse kinematics:

q̇ = J†
[

ẋ
w

]
,

we merge a task space linear and angular velocity into a joint angle velocity. By
doing this, q̇ is the joint space control command corresponding to the desired linear
and angular velocities. Similarly, with the operational space dynamics, we merge a
task space linear and angular accelerations into a joint space torque command.
For the joint space level, it is done by summing the position command with the
orientation command:

q̇tot = q̇pos + q̇orn,

or:
τtot = τpos + τorn.

It works because when computing the orientation or position command, we respec-
tively set to zero the part relative to position or the orientation. Or only information
about position or orientation is used (e.g., for the single integrator position or ori-
entation tracking, we use either the translational or rotational Jacobian).
Until now, we assumed that at time step t, the desired position and orientation are
compatibles together. But it is not always the case. Indeed, the task space of a
robot is quite huge, if we only look at the possible positions, but constraining the
orientation reduces a lot the size of the task space.
To overcome this problem, we need to prioritize either the position or the orientation.
It can be done by projecting the secondary task into the nullspace of the primary
task. To build the nullspace of a task, we use the Jacobian:

N = I− J†J.

Using the full Jacobian to build the nullspace will construct the nullspace of the
global task, however, in our case, we are interested in constructing the nullspace of
the position or the orientation only. For this, we can construct the nullspace from
the rotational or translational Jacobian only. For example, to prioritize the position
over the orientation:

q̇tot = q̇pos + Ntq̇orn,

where Nt is the nullspace of Jt.
The task determines which information should be prioritized. For example, in a
grasping task, we would prefer to track the position accurately over the orientation,
because having a bad position could lead to having an end-effector not at the position
of the grasped object, but if the orientation is not as expected, the robot is more
likely to still grasp the object.

Chapter 4

Experiments

In this chapter, the focus will be put on the experiments that have been developed
to show the feasibility of the proposed approach. We will firstly focus on simulator
experiments, and end this chapter with an example with real robots.

4.1 Simulator developments

The simulator aims to ensure that the developed algorithms and techniques are
feasible and can be implemented on real robots without taking the risk to break
them. It is why the experiments developed on the simulator will mainly be toy
examples without any real purpose to validate the proposed approach.
Even if simulators aim to model the real world, their modelization is not hundred
percent accurate, thus it is not because something work in the simulator that it will
work in practice. In robotics, reducing the gap between simulation and practice is
an active research topic, that is not solved yet1.

Every experiments presented in this chapter are available online through jupyter
notebooks : https://gitlab.idiap.ch/jmaceiras/simulator_demonstration.

4.1.1 The simulator

The chosen simulator for these experiments is the Pybullet physics simulator, which
aims to be an easy-to-use Python module for robotics simulations. The robot is
modelized through a URDF file, which is an XML format for representing a robot
model.

1See https://www.idiap.ch/en/scientific-research/projects/LEARN-REAL

41

42 4.1. Simulator developments

Figure 4.1: DOM schema of a standard URDF file. A robot is composed of one ore
more links and joints.

3D objects can be attached to the links of a URDF file to have a visual representation
of the robot in the simulator. The robot used in the simulator is the Panda robot
from Franka Emika, which is the one also used in practice. In [16], the author gave
us a way to compute the necessary information to build an accurate URDF model
of the Panda robot.

4.1.2 The Python module

A brief introduction to the simulator is available at [17]. By taking a closer look
to the architecture of the simulator, it is clear that this simulator contains a lot of
functionalities, but unfortunately, they are not optimized for a robotics application,
and their use are quite heavy. To solve this problem, it has been chosen to develop
a Library Abstraction Layer (LAL), which aims to:

1. Harmonize the use of a robot for a robotics application.

2. Simplify the modification of the environment (easily remove/add/change robots
or object).

3. Optimize the computation of some informations. By avoiding to recompute
information that did not change.

Chapter 4. Experiments 43

Figure 4.2: UML Class diagram of the LAL.

As pointed out by figure 4.2, the LAL breaks the simulator into four sub-parts:

1. AWorld class, which aims to assemble all functionalities of Pybullet that mod-
ify the simulation environment. It is the class that links everything together
and determines how the environment will be. It is responsible for the grav-
ity, the scene (basically the floor of the simulator), and is used to set up all
physical elements that will be part of the simulation environment.

2. A Robot class, which has for purpose to be the abstraction of a robot in the
simulator. The use of this class wants to be as close as possible of a normal
robotics SDK to get information relative to a robot state (e.g., robot.x() give
the end-effector position, robot.q() the joint angle positions,...).

3. An Object class, which is the abstraction of all phisical elements that are not
robots (e.g., tables, balls,...). These object are not controlable, thus only their
position in the world is interesting.

4. A Camera class, which allows to take images of the simulation. Cameras are
attached to a robot link, and can take several kind of pictures of the simulator(
depth image, RGB image, segmented image).

The Regulators package contains several regulators used in the project. They do not
strictly use PyBullet, but are inserted in the LAL to facilitate the control of robots
with it.
The main advantage of the LAL is that it is more friendly to use than the origi-
nal PyBullet simulator. To illustrate this with an example, if we want to get the
Jacobian of the robot, with only PyBullet the code is:

1 import pybullet as pb
2 import numpy as np
3

4 #===================================

44 4.1. Simulator developments

5 # Set up the simulator
6 #===================================
7

8 states_infos = np.asarray(pb.getJointStates(robot_id, np.arange(7).tolist()))
9 q = states_infos[0,:]

10 dq = states_infos[1,:]
11 Jt, Jr = p.calculateJacobian(
12 robotId, 7, ee_transform, q.tolist(),
13 dq.tolist(), np.zeros(7).tolist()
14)
15 J = np.vstack((Jt,Jr))

While with the LAL, the journey to get the Jacobian becomes:

1 import pandapybullet as pb
2

3 #===================================
4 # Set up the simulator
5 #===================================
6

7 J = robot.get_J()

As you can see, in pure PyBullet, to get one information, you need to pass to
the simulator, all information that influences it. That is why to get the Jacobian,
we need to give as parameters the joint angle positions and velocities (in theory
velocities are not needed, but the simulator asks for them). Computing all these
prerequisites is a waste of time. Thus, in the LAL these quantities are computed
only when a perturbation on the environment occurs (when a control command is
sent, or a collision occurs).

Figure 4.3: Sequence diagram which shows that an information about the robot
state is computed only if the robot state has changed.

Chapter 4. Experiments 45

After a while of development, the LAL interested other members of the RLI group,
who have joined the development of this library. The LAL is called PandaPybBullet
and can be found here: https://gitlab.idiap.ch/rli/pandapybullet. A note-
book presenting more in details the different functionalities of the library can be
found on the repository.

4.1.3 Developments

Orientation planning and tracking on the manifold

This experiment aims to show an example on how to plan and track the orientation
of the end-effector of a robot, the planning and the tracking are made through two
LQT/MPC on the manifold. Even if for this use case it is possible to complete the
experiment with only one LQT/MPC, which merges the planning and the tracking,
to better represent a real example, it has been chosen to solve these two separately,
because with only one LQT/MPC the time complexity to solve one time step would
be bigger than the real duration of one time step (because of the sparsity of the
definition of the task, the horizon of the controller would have to capture the rest of
the motion at each time step). Furthermore, in this example the planned motion is
not oversampled, since here, we only care about the orientation, we do not need to
have a planned orientation trajectory of the same size than the position trajectory,
and waiting a bit to compute the planning is not a problem in simulation.

J
The code of this experiment is available through two
jupyter notebooks on the gitlab of the simulator experi-
ments: https://gitlab.idiap.ch/jmaceiras/simulator_
demonstration/-/tree/master/notebooks, the notebook
Orientation_tracking_with_velocity_commands.ipynb
presents the inverse kinematics solution, and the notebook
Orientation_tracking_with_acceleration_commands.ipynb
presents the operational space dynamics solution.

In this experiments, a way to control the orientation in joint angle velocities and
torque are presented. The end-effector starts at an orientation ε1, and want to reach
the orientation εT .

46 4.1. Simulator developments

Figure 4.4: The left image represents the orientation of the end-effector at time step
0, and the right image the desired orientation at timestep T , since in this experiment,
we only regulate the orientation of the end-effector, its final position may not be the
same as the one in the right image. Basically, at the end of the motion, we want to
have the end-effector of the robot pointing in the direction of the table.

With the initial, and final orientation presented in figure 4.4, a task of duration
T = 100 time steps can be set up for the convenience of this example, we will
assume that no constraints are needed to perform the tracking. So, the task can be
defined with the sparse vector µ:

µ =

ε1
0
...
0
εT

 ∈ R4T ,

for a single integrator system, or:

µ =

ε1
0
0
0
...
0
0
εT
0

∈ R8T ,

for a double integrator system, where we want to track a desired position, and a
desired angular velocity. In the µ vector, the angular velocity is represented by the
quaternion time-derivative. That is why the dimension of µ is twice bigger for the
double integrator system.

Chapter 4. Experiments 47

Now that we have a very simple idea of our task, we need to fill the missing informa-
tion in the µ vector (currently, we know only the first and final state). For this, we
use a first LQT/MPC regulator, that will solve the planning problem by proposing
a trajectory to link the initial and final states.

In this case, it is difficult to visualize, the planned trajectory, since the orientation
is defined as a quaternion in R4. A possible way to visualize this trajectory is to
transform each orientation into a rotation matrix, and visualize the evolution of the
end-effector frame by plotting its axis in R3.

Figure 4.5: The left image represents the desired final orientation of the end-effector
frame, and right image represents the planning solution to the final orientation of
the end-effector frame. As you can see, these two orientations are the same. This is
a visual test to see if the planning worked as expected.

The method presented in figure 4.5 is a quick visual test to see if the planning
worked as expected, but it is subject to the visualization of the user. As a more
mathematical method, we can measure how much the predicted final state ε̂T is
similar to the desired final state εT with the distance function presented in chapter
2.3: d(εT , ε̂T), where a result close to zero means that the two orientations can be
assumed to be the same.

With the planning done, it is now possible to make the end-effector of the robot
track the desired orientation over time. For this, another LQT/MPC regulator is
used, since µ is not sparse anymore, the horizon of the regulator does not need
to capture the entire motion at each time step. Thus, with a smaller horizon, the
time to compute one time step will be reduced. The returned control command
will depend on the structure of the A and B, for a single integrator system, the
control command will be a quaternion velocity ε̇, and a quaternion acceleration ε̈
for a double integrator system. These control commands can be transformed into
angular velocity or acceleration with the formulas presented in section 2.3.

Similarly to what has been made to ensure the smooth running of the planning, to
validate the tracking, we can either visualize the resulting orientations or use the
distance function.

48 4.1. Simulator developments

Figure 4.6: The left image represents the resulting final orientation of the tracking,
as yon can see, the orientation of the end-effector is similar to the desired one
presented in figure 4.4. To validate this first assumption, the right image shows the
tracking error evolving over time, with an average error about 1e-4, we can assume
that the tracking performed as expected.

Figure 4.6 shows the tracking result with a single integrator solution (i.e., with
inverse kinematics to retrieve the corresponding joint angles velocities). The solution
using the operational space dynamics to retrieve the torque produces a bad result,
after some investigations, this bad result is due to the structure of the inertia matrix
reported to the end-effector Λ used in the equation:

F = Λ

[
ẍ
ẇ

]
+ µ+ p.

In chapter 2, F was presented as a vector of forces and wrenches occurring on the
end-effector, but this vector can clearly be decomposed into:

F =

[
F
T

]
,

with F ∈ R3 the forces applied on the end-effector, which are mostly responsible for
the change in position, and T ∈ R3 the wrenches applied on the end-effector, which
are mostly responsible of the change in orientation.
By visualizing Λ at a given time, the last third rows, which are responsible to create
T , contain value close to zero, thus the resulting wrenches are small, and does not
allow to correctly track the orientation with torque commands. A quick hotfix for
this problem is to replace Λ with an identity matrix. Thanks to the regulator it
works but gave worst results than the inverse kinematics solution.

Chapter 4. Experiments 49

Figure 4.7: Tracking error over time for the operational space dynamics with an iden-
tity matrix solution. As you can see, this trick allows to keep an acceptable tracking
error over time (even if it performs worst than the IK solution). By modifying Λ
the control command does not respect the dynamics of the robot anymore, thus it
adds a sawtooth perturbation to the error signal, that can leads to the instability of
the regulator.

Position planning and tracking

This experiment aims to show an example of how to plan and track the position
of the end-effector of two robots. The planning is made through a constrained
LQT, that will constrain the two robots to meet at the middle of their motion. For
the tracking, two solutions are explored, the LQT/MPC solution, which directly
returns a control command in torque, and a dynamic programming LQT, which
returns a Cartesian acceleration that has to be transformed into torque through the
operational space dynamics. In this experiment, only the double integrator case is
explored.

J
The code of this experiment is available through two
jupyter notebooks on the gitlab of the simulator experi-
ments: https://gitlab.idiap.ch/jmaceiras/simulator_
demonstration/-/tree/master/notebooks, the notebook
Position_tracking_MPC_solution.ipynb presents the LQT/MPC
solution, and the notebook Position_tracking_OS_solution.ipynb
presents the operational space dynamics solution.

In this experiment, robot one starts from a position x1,1 with zero speed and want
to reach position x1,T with zero speed, similarly robot two starts at x2,1 and ends

50 4.1. Simulator developments

at x2,T . At this point, the µ vectors for each robot are defined as:

µ1 =

x1,1

0
0
...
0

x1,T

0

,µ2 =

x2,1

0
0
...
0

x2,T

0

∈ R6T ,

with a state at a given time defined by the position and velocity (only linear) of the
end-effector. Since we want to control the two robots with one regulator, we have
to merge these two vectors:

µ =

S1,1

S2,1

0
...
0

S1,T

S2,T

=

x1,1

0
x2,1

0
0
...
0

x1,T

0
x2,T

0

∈ R2·6T ,

where Si,j denotes the position and velocity of robot i at time step j. Thus, the
state of the global system at time step t is given by:

St = [S>1,t S>2,t]>.

The advantage of building µ like this is that it makes easier the construction of the
A and B matrices for the global system. Given the linear system equations of the
two robots:

S1,t+1 = A1S1,t + B1u1,t,

S2,t+1 = A2S2,t + B2u2,t,

with A{1,2} and B{1,2} being the same for each robot (double integrator system).
The linear system equation for the global system becomes:

St+1 =

[
S1,t+1

S2,t+1

]
=

[
A1 0
0 A2

]
St +

[
B1 0
0 B2

] [
u1,t

u2,t

]
.

Similarly to what has been made in the previous experiment, a constrained LQT
will be used to plan the trajectories of the two robots, and force them to meet in

Chapter 4. Experiments 51

the middle of their motion. The meeting is defined by the equation:

S1,T/2 − S2,T/2 =

[
b
0

]
,

where b is a small distance to avoid a collision between the robots. In this constraint,
we are not interested in constraining the velocity, so we have to carefully build the
AS matrix and bS vector. With:

AS =
[
0 · · · I 0 −I 0 · · · 0

]
,

and:
bS =

[
b
0

]
,

we build a constraint such that:

ASx = bS → x1,T/2 − x2,T/2 = b,

with x a prediction of µ, and xi,j the position of robot i at time step j.
With these informations it is possible to build a constrained LQT to solve the
planning part, because of the sparsity of µ, the Q matrix of the regulator has to be
adapted to have ones in the diagonal only for defined states (i.e., ones in the first
and last twelve elements of the diagonal).

Figure 4.8: Result of the planning part, where a trajectory for each robot is gener-
ated. As you can see, the planner chooses a meeting point for the two robots with
a small distance to avoid collision.

In the experiment, the planner solves a downsampled version of the motion to fast up
the resolution of the problem. The upsampling is made through a multidimensional
cubic interpolation (in this example, a cubic interpolation was used instead of spline
by convenience).

52 4.1. Simulator developments

Now that the vector µ is fully defined, the robot will be able to track the motion. As
stated before, two different manners will be explored to track the desired position.
For the dynamic programming solution, we will reuse a double integrator system
for the A and B matrices, and get at each time step an acceleration command that
is built in function of the trajectory and the current tracking error. This control
command is transformed into torque with the operational space dynamics equation.
With this solution, we can think that we are doing exactly the same thing as in the
planning part, and therefore the planning and tracking can be made in one step,
with a single constrained LQT. But even if in theory it could be true, it is not the
case for two particular reasons:

1. The time to solve a constrained LQT is too high, if in the simulator robots
move only when you send them a control command. In practice, the robot
will expect a control command at a fixed rate, and if you do not give it to
them, they will generate an error and stop their motion. As a fix around to
this problem, we could imagine to send them several times the same control
command to match our downsampled constrained LQT, but from the personal
point of view of the author, it would be like riding a Ferrari at 50 km/h, it is
possible, but nobody wants to do it.

2. The biggest advantage of the LQT/MPC or the dynamic programming solution
of the LQT is that it automatically corrects the tracking error. With these
solutions, if you push a robot during its motion, the robot will try to come
back to the desired position, but with a constrained LQT, if you move the
robot during the motion, it will not realize and will continue its motion as if
nothing had happened.

With the LQT/MPC solution, we use the formulation presented in section 3, and
solve the problem over a fixed horizon for each time step. Since the regulator directly
returns a joint torque command, it can directly be sent to the robots.

Figure 4.9: Left image shows the tracking error for the LQT/MPC approach, and
right image shows the tracking error for the operational space dynamics approach.

As you you can see in figure 4.9, the tracking error with the LQT/MPC solution is
lower than the operational space dynamics solution (median error for LQT/MPC: 0.1

Chapter 4. Experiments 53

[mm], median error for OS solution: 7 [mm]). The perturbation on the LQT/MPC
plot between time step 2000 and 2500 is due to a bad configuration of the joints
of the robot at this moment (the robot is in a bad position, thus it can not move
its joints as desired by the controller, and the desired task space acceleration is not
guaranteed). The perturbation at the beginning of the OS solution error plot is due
to the fact that the DP solution of the LQT, works as a proportional regulator, and
if at one point the error is zero (which is the case at the beginning of the motion), the
control command will be close to zero and thus affect the accuracy of the regulator
at the beginning.
In this case, the horizon of the LQT/MPC solution is set to ten time steps. Since
in the simulator the robot is waiting for a control command, we do not have to
bother about the time complexity for one time step of the controller, but in practice,
we would have to find a good compromise between the time complexity, and the
accuracy of the regulator. With the general rule that the larger the horizon is, the
more the tracking will be accurate, and the more the time complexity to solve the
problem will increase.
By analyzing the result presented in figure 4.9, it is clear that for the simulator,
the LQT/MPC solution is probably the best. The median tracking error of the
operational space is too high to ensure that all tasks will be correctly performed.
Instead of vanishing the operational space dynamics solution, since the model of the
robot is only an approximation of the real one, it is preferable to keep this solution
and wait for the experiments on real robots to make a choice. Since the URDF
of the robot is only an approximation of its real model, we can not exclude that
something works or does not work, because of this approximation.

4.1.4 Conclusion of the simulator experiments

These experiments aimed to give a first validation for the approach presented in
section 3. To perfectly match the presented approaches an experiment of position
tracking with a single integrator is missing. It has been made on purpose since this
approach is almost the same as its orientation counterpart (except that we use the
translational Jacobian instead of the rotational Jacobian), and inverse kinematics
is a widely used technique, that is known to work well. At this point, there are no
approaches that are considered as unreliable, thus all of them will be tested in prac-
tice, and the result of the experiments made in practice will say which approaches
to choose.

54 4.2. Real example

4.2 Real example

During the development of this project, I had the opportunity to develop a real
robotics application proposed by «Les Fondues Wyssmüller», a famous Swiss fondue
maker. To surf on the buzz of the raclette robot2, they want to develop a project
with robots that cook a fondue. The overall purpose of this project is not to replace
the human work behind the preparation of fondue, but to increase the visibility of
the company during events, and by the way, promote the work of the robotics group
of the Idiap research institute.
That is why in this chapter, you will not only see the development on real robots
of the methods presented in chapter 3, but also other developments that are needed
for this project.
The development is made on the two Panda robots available at the Idiap Research
Institute, which allow to perform robotics bi-manual tasks.

4.2.1 Specifications and first analysis

As stated before, the purpose of the project is to make robots prepare a fondue,
preparing the fondue does not only mean make the cheese melt, but robots should
respect the recipe given by the producer:

1. Put wine in the fondue bowl (0.7 dl per person).

2. Warm the wine until it reaches 73 degrees (Celsius).

3. Add the cheese mix in the fondue bowl (200g per person).

4. Brew the fondue until the mix reaches 73 degrees (temperature at which the
cheese is assumed to be melted).

5. Serve the fondue.

For this project, robots will prepare each time a fondue for two persons, and should
not need the help of human interactions.
From the recipe presented above, a first analysis can be made. It is clear that the
temperature of the mix plays an important role in the preparation. A too high
temperature will burn the fondue, and add an undesirable taste, thus a waterproof
temperature sensor needs to be developed. Furthermore, during the task, robots
will grasp various objects with a really different shape, thus the grippers should be
adapted to the different objects that are present in the task.
At first glance, it would be impossible for a robot to put accurately 1.4 dl of wine
in the fondue bowl. Hopefully, the fondue producer has 1.4 dl white wine bottles
that he uses exclusively for the fondue, and fondue mix are sold in 400g packet, thus
robots do not have to measure any quantities.

2Avideopresentingtherobocletteproject:https://www.youtube.com/watch?v=
a6KpHR6jkSc

Chapter 4. Experiments 55

The description of the process above allows us to have a first idea of the project,
thus we can already imagine the setup of the project and the tasks of each robot.

Figure 4.10: Visualization of the setup for the project.

Figure 4.10 presents the imagined setup of the project. The position of each element
will influence which robot should perform which task. With the presented setup,
the tasks are gathered as follow:

1. Left robot is responsible to put the fondue mix in the fondue bowl, and to
maintain and move the fondue bowl.

2. Right robot is responsible to add the wine, and to brew the fondue with the
spatula.

With this division of labor, it is now possible to imagine specific grippers for each
robot, that will be helpful to perform their own tasks. In this setup, the temperature
sensor was not mentioned, after a bit of thinking, the best solution for this sensor is
to create a custom support that will be clipped in the fondue bowl by a robot. The
support will be inspired by the design of a hairpin to add and remove the sensor
from the bowl easily.

56 4.2. Real example

4.2.2 Mechanical developments

All the mechanical developments presented in this chapter are 3D Models made with
Autodesk Inventor, and 3D printed in PLA. Plans of the gripper connector for the
Panda robots are available online in the Panda Manual. The homemade grippers
will be connected to the robot through this connector.

Figure 4.11: Plan of the Panda gripper physical connector.

At the moment, not all pieces have been 3D printed or modelized, the focus has
been set on the robotics part of the project, thus only the mechanical vital parts of
the project have been created.

J
The 3D files are available in Autodesk or .obj format at https://
gitlab.idiap.ch/jmaceiras/fonduebot-3d-pieces.

Chapter 4. Experiments 57

Left robot gripper

As stated before, the left robot gripper has to grab the fondue mix and the fondue
bowl. These tasks are complete opposite, in the first one the robot has to grab the
mix enough to lift and serve it, but not too much, otherwise, the mix will not fall
into the fondue bowl. For the second task, the gripper needs to strongly grasp the
fondue bowl to displace or maintain it during the brew. Since the handle of the
fondue bowl is not straight, the task of grasping it correctly is more complicated.

Figure 4.12: Image of the fondue bowl, as you can see the handle is not straight,
and it could lead to difficulties for correctly grasping it.

The chosen approach was to design a hybrid gripper with one part that can correctly
grab the fondue mix, and the other part that can correctly grab the fondue bowl,
this part also will marry the shape of the handle to correctly grasp it.

Figure 4.13: 3D model of the left gripper. On the left image, you can see that the
top part of the gripper aims to grab the fondue bowl, by marrying the shape of the
handle. The bottom part of the gripper is a normal gripper to grasp casual objects.

58 4.2. Real example

Figure 4.14: Test with the 3D printed left gripper, it can correctly grasp and lift the
bowl.

Chapter 4. Experiments 59

Right robot gripper

The right robot gripper has to grab and serve the wine bottle, and to grab the spatula
to brew the mix. These tasks have the advantage of being compatible together, so
that a normal grasping gripper can be designed and used for both tasks. This gripper
should just be sufficiently big to grasp the wine bottle and the spatula correctly.

Figure 4.15: 3D model of the right gripper. This gripper is made to grasp objects
horizontally or vertically.

Figure 4.16: Test with the 3D printed right gripper, where it grasp the wine bottle

Figure 4.17: Test with the 3D printed right gripper, where it grasps the spatula. In
this picture, you can also see the left robot maintaining the fondue bowl.

60 4.2. Real example

Spatula support

Since a robot hand does not have the same dexterity of a human hand, the spatula
can not lie on the floor of the table, it has to be put in a position where a robot can
easily come and take it. That is the purpose of this support, it raises the spatula to
let a robot grab it.

Figure 4.18: 3D model of the spatula support.

Figure 4.19: 3D printed spatula support with the spatula and the robot that is
grasping it.

Chapter 4. Experiments 61

4.2.3 Temperature sensor development

As stated before, the temperature sensor needs to be waterproof, and measure a
temperature between the ambient temperature (assumed to be around 20°C) and
73°C. For this use case, an accuracy around the degree is assumed to be sufficient.
The temperature sensor is connected to the controller of the robots (a PC), and its
value should be read as wanted.

After investigating an all-in-one solution that would need no specific developments,
this track has been abandoned, all sensors found were either expensive (around 200
CHF), either not waterproof.

The chosen solution was to develop a homemade temperature sensor from different
components that we can buy online, that is to say:

• A temperature sensor, the choice has been made on a PT1000 waterproof
temperature sensor, which has an internal resistor that vary precisely with the
temperature.

• An amplifier to correctly read the output voltage of the sensor (ref: MAX31865).

• A micro-controller that read the voltage value, transform it into its tempera-
ture conterpart, and send it to the controller (ref: Arduino Nano).

Figure 4.20: Schema on how the different parts of the sensor are connected together

As pointed out by figure 4.20, the voltage at the terminals of the sensor is read by
the amplifier and sent to the micro-controller through SPI (Serial Peripheral Inter-
face), which allows to send information between two peripheral at a high bit rate.
The micro-controller communicates with the controller through UART (Universal
Asynchronous Receiver Transmitter).

The micro-controller does not continually read and send the temperature value, it
is waiting for a GET command from the controller.

62 4.2. Real example

Figure 4.21: Developed temperature sensor

The evaluation of the accuracy of the sensor was a bit more challenging since no
accurate ground truth was available, the evaluation has to be made with another
temperature sensor that has an unknown accuracy as ground truth.

Figure 4.22: Accuracy of the temperature sensor (average error: 0.63 °C).

As you can see in figure 4.22, The temperature difference between the two sensors
are almost always below the degree (desired accuracy). These measures have been
made by submerging the two sensors into water which is warmed between twenty
and ninety degrees, they come from two independent measure sets. Due to the lack
of knowledge on the ground truth sensor, we can only assume that the accuracy of
the developed sensor is good. Furthermore, in these measures, we assumed that heat
propagates the same way in the two sensors, then the result of these measurements
must be analyzed with caution. We will just assume that the accuracy of our sensor
is enough for our task.

J
The code of the temperature sensor is available at https:
//gitlab.idiap.ch/jmaceiras/wyssmuller/-/tree/master/temp_
sensor/temp_sensor. Thanks to the manufacturer of the amplifier,
the code is really small (they provide a library to read a PT1000
temperature from their amplifier). The Arduino IDE is needed to run
the code on a micro-controller.

Chapter 4. Experiments 63

4.2.4 Robotics developments

The scope of this chapter consists in the implementation and tests of the techniques
presented in chapter 3. The experiments to test these techniques are oriented to
the robot fondue project in order to see if it is possible to use them in a concrete
robotics application. The setup used in these experiments is the setup presented in
figure 4.10, that has been created.

Figure 4.23: Real setup inspired by figure 4.10

J
The code is available at: https://gitlab.idiap.ch/jmaceiras/
wyssmuller

Environment

Usually, in the industry, there are two different ways to program a robot, either
use an SDK provided by the manufacturer or use ROS (Robot Operating System).
ROS is an open-source set of tools that aims to facilitate the development of robotics
applications. Nowadays, all serious robots are compatible with ROS, but manufac-
turers continue to provide an SDK in order to give the user an alternative to ROS. It
is based on the publisher-subscriber architecture, that allows a node (an executable)
to read or write values in the desired topics.

Figure 4.24: Schema representing the architecture of ROS.

64 4.2. Real example

In these experiments, instead of using ROS, the development will be made with the
help of the SDK provided by Franka Emika: libfranka. The main reason behind
this choice is that the group wants to know if libfranka can be a viable alternative
to ROS or not. Furthermore, ROS can be very helpful if we want to include special
sensors in the application easily (e.g, a camera, laser, ...), but for a pure robotics
application, the way to use it is a bit heavy.
libfranka is a C++ SDK that allows to read and control a Panda robot. It manages
the communications with the robot and provides interfaces to:

• Execute non-realtime commands.

• Execute realtime commands (basically control commands).

• Read in real time the state of a robot.

• Access the model of the robot to compute our desired kinematic or dynamic
parameters.

Figure 4.25: Architecture of libfranka, source: https://frankaemika.github.
io/docs/libfranka.html.

As you can see in figure 4.25, the use of libfranka is divided into a real-time
and non-real-time part. The non-realtime commands are blocking commands sent
to the robot. They encompass all commands related to the end-effector or to the
configuration of the robot (collision behavior, internal controllers gains,...). The
realtime part of libfranka is related to the control of the robots. When controlling
the robots, a callback is called every millisecond, and the SDK expects to have a
control command to send to the robot. If the computation of the control command
takes longer than one milliseconds (in practice, the control command still have
to be transmitted through ethernet, so we should not take longer than about 0.7
milliseconds to compute a command), the control loop will be broken, and the robot
will throw an error that will kill the connection.

Chapter 4. Experiments 65

Realtime method commands are UDP based (TCP for non-realtime commands), and
their methods are deterministic in time to not violate the one millisecond constraint.
They are related to the control of the robot but also to the lecture of the robot state.
The SDK offers lots of possibilities, but in the frame of this project, the use of
libfranka can be summed up in five classes:

• A Network class that is responsible of the connection between the computer
and the robot.

• A Robot class which is the abstraction of the Panda robot. This class is used
to start a control loop, or to get the current state or model of the robot. The
control loop can accept torque, joint velocities, joint positions, end-effector
pose as control commands.

• A Gripper class which is the end-effector abstraction of the robot. This class
contains only non-realtime commands (homing, grasping of the gripper).

• A Model class that is used to generate the kinematic or dynamic parameters of
the robot. These parameters can be computed with the current or an arbitrary
robot state.

• A RobotState class that contains the information of the current state of the
robot.

Figure 4.26: Minimalist class diagram of libfranka.

First tests

Before building, the robot fondue application, we need to verify if the algorithms
presented in section 3 can work in practice as they work in the simulator. For this,
we will explore:

1. A LQT/MPC solution to track position and orientation with control com-
mands in torque.

66 4.2. Real example

2. A LQT/MPC solution to track orientation and a dynamic programming LQT
to track the position with control commands in torque.

3. A LQT/MPC solution to track orientation and a dynamic programming LQT
to track the position with control commands in joint velocities.

The planning algorithms were also implemented in C++, but they will not be de-
scribed here, as we already validated their smooth execution with the simulator ex-
periments, their implementations are basically a translation from Python to C++,
thus the approach remains the same.

LQT/MPC solution for position and orientation with commands in torque

For the tracking of the position, the LQT/MPC solution was the one which performs
best in the simulator, but as said before, the LQT/MPC solution performs best if
and only if it can perform with a sufficient big horizon, it is not easy to define what
an big horizon is, since it depends on the task, but usually, we would prefer to use
a MPC solution with an horizon bigger than twenty time steps. The problem with
that is that the bigger the horizon is, the longer the algorithm will take to compute
the control command at each time step. As stated before, the time on a Panda robot
to compute one control command should not exceed 0.7 milliseconds otherwise, the
connection with the robot will be broken. The main question here is to know what
is the maximal possible horizon in practice and does it give an acceptable tracking
accuracy.
After some tests, it comes out that the LQT/MPC solution for position tracking
is hardly realisable in practice. The tracking only performed successfully with a
relatively short horizon of five time steps, and the tracking accuracy was horrible
(bigger than two centimeters). There are no results to present since the algorithm
never gave results that could be interesting. This problem could be due to several
elements:

• As said before, the time complexity plays an important role in the control of
a robot. To respect the real-time constraints of the robot, the horizon was
decreased to a point where there are no advantages to use such technique (i.e.,
with an horizon of two time steps, the controller would be exactly the same as
solving at each time step a finite horizon LQR between the current and next
states).

• Even with a small horizon, the time complexity of the problem remains higher
than solving a normal LQT in the task space and transforming the control
commands into joint velocities or torque, and we may face-off moments where
a control command is missing for a millisecond (it was not said before, but the
robot does not directly stop if the one-millisecond constraint is violated, it will
stop if the constraint is too often violated). These losses of control commands
will generate discontinuities in the robot dynamics, and therefore reduce the
quality of our robot model.

Chapter 4. Experiments 67

Despite the position tracking solution does not work, the LQT/MPC orientation
tracking solution works a lot better. As stated before, the horizon does not really
affect the performances of the algorithm, mainly because in the position tracking
solution, the purpose of the LQT/MPC is to linearize the system around the current
point and to give a notion of anticipation to the controller, whereas in the orientation
tracking or planning solution the purpose of the LQT/MPC is more to present
information from the point of view of the current point. Of course, it is a kind of
linearization, but thanks to the fact that orientation changes are smooth, and that
the system matrices remain constant, it is not a problem to have a small horizon for
this part.

This test showed that another technique is needed to track the position of the robot,
but fortunately, the LQT/MPC solution works well for the orientation tracking,
which is a good point since it is the only reliable tracking method for position
presented in this project (the single LQT solution presented in chapter 2.3, give a
sub-optimal solution, and is hardly applicable for a tracking problem). More details
about the orientation tracking will be given below.

LQT/MPC solution for orientation, and dynamic programming LQT so-
lution for position with commands in torque or joint velocities

Since we already know that the LQT/MPC solution for orientation tracking works,
here, we will mainly focus on the position tracking part, the differences between
torque and joint velocities commands, and the error plots of these different tech-
niques.

To compare these two ways to control a robot, the same task is used for both
scenarios (the robot needs to grasp an object that lies on the floor). At each time
step, the differences between the desired state and current state is computed. For
the position, the norm of the Euclidean distance is used, and for the orientation, the
distance function between two quaternions is used. Even if this measure can inform
us if the regulator accurately tracks the desired trajectory or not, this measure can
be perturbed by the joint configuration of the robot, thus we have to use it carefully.
To validate one method or the other, other aspects of the motion need to be taken
into account (i.e., the naturalness of the motion, the joint configuration resulting
from the control commands,...). Unfortunately, there are no mathematical measures
to represent these aspects.

68 4.2. Real example

Figure 4.27: Tracking error on a real application.

As pointed out by figure 4.27, the two methods are able to track a trajectory. The
position error plot shows us that at some moments, the position tracking is not
really accurate with the operational space dynamics solution. It is difficult to say
if it is due to the joint configuration of the robot at these moments or not, but in
any case, a six millimeters deviation from the target does not guarantee the success
of a task. But, as you can see on the OS position tracking error plot, at the end of
the task, the regulator successfully compensates for the tracking error (the error is
only of 2 millimeters). It is because the speed of the end-effector decreases slowly
with a double integrator planning, thus the regulator can more easily compensate
for the tracking error than with a single integrator solution in which the position
changes more abruptly. It is important to notice that for this example, position and
orientation tracking are performed with the same priority. The position tracking
error of the inverse kinematics solution is particularly interesting since during the
majority of the movement, it is close to the minimal accuracy promoted by the
manufacturer of the robot (1 millimeter). In both cases, the orientation tracking
works well, the worst case appends with the inverse kinematics solution, which has
temporary an absolute deviation of 0.08 radians (= 4.6 degrees), which is acceptable.
Leaving aside these error plots, and taking into account the naturalness of these
two motions, the torque controlled version of the task looks more natural than the
velocity version, which produces a more mechanical motion. This naturalness differ-
ence between the two versions is not only due to the tracking but the planning also
influences the naturalness of the motion. Since the planning was made with respect
to the tracking (i.e., single integrator for the IK solution and double integrator for
the OS solution), the planned motion for the OS motion will look more natural
since it will be smoother. To overcome the lack of naturalness for the IK solution,
we can imagine to plan the motion with a double integrator system and track only
the resulting positions and orientations (since we are sending velocity commands,
we can not track the velocity of the system). Anyways, this experiment showed up
that the two methods can be used to control a robot, thus the method to use will
mainly depend on the task of the robot. We would prefer an IK solution for an
industrial robot that does not need to look natural, whereas the OS solution would
be better if the robot has to perform some human-robot interactions.

Chapter 4. Experiments 69

It was not presented before, but if during its motion a robot puts itself in an unfa-
vorable joint configuration that does not allow it to accurately perform its task, we
can imagine to add a less prioritized task that will maintain as much as possible the
robot in a good joint configuration:

q̇cmd = q̇task + N
qstable − qt

dt
,

where q̇task is the control command resulting from the regulator, qt the current joint
configuration of the robot, qstable a joint configuration that is assumed to be stable
for the robot, and N the nullspace of the full Jacobian.

Architecture of the project

Now that we know which regulators work in practice, we can encapsulate them in a
more convenient architecture for the development of the FondueBot project. This ar-
chitecture aims to facilitate the use of the planning and tracking techniques presented
in the project by providing to the programmers interfaces that would directly pro-
duce the expected result without worrying about LQT, LQT/MPC, oversampling,
...

Figure 4.28: Developed architecture for the FondueBot project. It is not specified
in the diagram, but all classes use Eigen (a linear algebra library) as mathematical
library.

The main advantage of the architecture presented in figure 4.28 is that it simplifies
the planning and tracking problem by providing a ConstrainedMotionPlanner class
that plan a motion which satisfies the task and the constraints, and a MotionTracker
class that tracks the trajectory created by the planning class. With this architecture,
we can easily make a robot achieve a task by specifying:

• The initial and final state for position and orientation.

• A set of constraints.

• The time step and total duration of the motion.

70 4.2. Real example

Furthermore, the ConstrainedMotionPlanner and MotionTracker classes work ei-
ther with single or double integrator systems. It means that only minimal interven-
tion is needed to control a robot with torque instead of joint velocities.

Figure 4.29: Sequence diagram representing the execution of a task

Making the definition of constraints dynamic was a bit challenging. For this,
a class Constraint has been created, and the constraints of a task are defined
as a list of Constraint objects. To create the constraint matrices, a method
generateConstraintMatrices(), which generates the constraint matrices for one
constraint has been implemented. The global constraint matrices of the task are
build by stacking the AS matrix and bS vector of each constraint together.

Figure 4.30: Structure of the constraints of a task.

Chapter 4. Experiments 71

Figure 4.30 shows how constraints are constructed. A constraint is defined by a list
of points that are constrained together, and a constraint vector bS (not present in
the figure) such that:

i=N∑
i=1

Wipi = bS ,

where Wi is the weight diagonal matrix that contains in its diagonal the weight
vector corresponding to its current point, each point pi is the state that occurs at
the desired percentage of the motion. This structure allows to build constraints that
are given to the motion planner.
If we do not want to constrain our motion, a MotionPlanner class exists. It works
similarly as the constrained version except that it does not need constraints to
perform the planning.

J
The code corresponding to this architecture is available at https://
gitlab.idiap.ch/jmaceiras/wyssmuller

4.2.5 Ongoing developments

In this chapter, the planning and tracking methods were implemented and tested
on a simulator and real robots. From these methods, a programmer-friendly archi-
tecture has been created. Now the remaining work is to implement the FondueBot
project, with respect to the specifications of the client, from these specifications a
finite state machine (where each state corresponds to a specific task for the robots)
was thought.

Figure 4.31: State machine of the FondueBot project.

More than the remaining software development, some pieces still need to be mod-
elized and printed, especially the support for the temperature sensor. But the project
will be able to progress serenely now that we know that the methods work in prac-
tice.

Chapter 5

Conclusion

5.1 Discussion

This project showed up that with only a few information about a task, it is possible to
build a whole trajectory that can be accurately tracked by a robot. The developed
architecture in this project allows an easy use of these methods, and make the
re-programmability of robots accessible for an industrial use. If we compare the
proposed method and the pre-recorded motions method, the method presented in
this thesis allows a smarter use of robots by making them understand their goal and
how to achieve it.

At present, priors information about a task (target, constraints) are given by a
human expert. It involves that the human expert needs to know perfectly the
workspace of the robot, otherwise he may create tasks that would lead to break
the robot. Knowing these priors information is not always trivial. For example, it
would be impossible to program a Martian rover with this approach since, at the
moment, no human experts are present on the red planet to identify the workspace
of the rover. To overcome this issue, we can imagine to add an augmented reality
application that will compensate for the lack of knowledge of the human expert
by adding a new communication channel between the robot and the human expert.
The simplest form of augmented reality system that we can imagine is a smartphone
application that shows what the robot sees, and by clicking on a point of interest
the robot moves to this point.

The compatibility of the proposed approach with velocity commands is particularly
interesting, since torque-level robots are costly, in the industry, we prefer to use
cheaper robots that do not offer torque encoders. Torque level robots were for a
long time reserved for the world of research or particular tasks. Still, now we can
see a new trend that wants to make these robots more affordable, this is notably the
case with the Panda robot, which aims to be an alternative to expensive torque-level
robots in the frame of the industry 4.0.

72

Chapter 5. Conclusion 73

5.2 Further works

The main disadvantage of the proposed approach is that planning is done without
information about the model of the robot. Thus we may face off a situation where the
robot can not track the planned motion. Thanks to the fact that in our experiments
we used a redundant robot, and that the prior information of the tasks were set with
respect to the robot kinematics and dynamics, this situation was not observed in the
frame of this project. But it is a problem that we may face off while applying this
approach to other robots. A possible way to solve this problem would be to merge
the planning and tracking in one method who would take into account the robot
configuration. Similarly to what has been presented with the LQT/MPC approach
for the position tracking, we would like to have an algorithm that directly outputs a
sequence of torque commands that respects the desired final state and the constraints
expressed in the task space of the robot. Unfortunately, this LQT/MPC solution
proves difficult to achieve in practice, particularly because of the time complexity of
the problem. Furthermore, the LQT/MPC solution assumes that we do not know
how the dynamic of our system evolves over time, thus we need to linearize it at
every time step. But it is not really the case since, with a good model of the robot,
we are able to know the kinematic and dynamic parameters of the robot in function
of a predicted state.
Recent searches [18] [19] [20] propose an extension of LQR control that is able to
plan out and optimize a sequence, mindful of the changing dynamics of the system.
They called this algorithm iterative LQR (iLQR). The algorithm is based on the fact
that given an estimated control sequence û, we can accurately model the resulting
sequence of state x̂. From this sequence, the residual is used (∆x = x − x̂) to
solve another LQR problem to get the residual of the control command ∆u, which
is added to the last estimate to form the new estimate of the control command
sequence (ût+1 = ût + ∆u) The process can be repeated until convergence.
Since we need to know what effect a sequence of control command would have on
the robot, iLQR needs an accurate model of the robot but has the advantage to
take time to be solved only before the motion, once the algorithm converged, we
just apply the resulting sequence of control commands, then there are no risks of
breaking the real-time constraint of the robot.
This technique could be used to merge the planning and tracking part, especially
[18] proposes a constrained approach for this problem that could fit our scenario. It
is something that will be investigated in parallel with the FondueBot project that
still needs to be finished.

5.3 Personal conclusion

Here ends this master thesis, that started with some low-level examples on a 2D
planar robot, and ended up with a concrete application of the developed techniques.
From a personal point of view, this project was my first step in the wide world of
robotics. Thanks to it, I discovered something that was totally unknown to me, and

74 5.3. Personal conclusion

that immediately interested me. I particularly liked the different challenges that
occur when using artificial intelligence techniques for a robotics application, since
they are used with few data, and permit fewer errors than in other applications
their use is really challenging. Furthermore, the fact that with one simple brick (the
LQT), and a good use of it, we were able to build a really complex application is
really impressive. Jobs still need to be done in the FondueBot project, but thanks
to this master thesis, I can see this project with a good point of view, and I can
move forward in the development now that I know that the developed techniques
are applicable in practice.

Vex, the 15th June 2020 Jérémy Maceiras

Appendix A

Quaternion algebra

A.1 Addition

ε1 + ε2 =

ε10 + ε20
ε11 + ε21
ε12 + ε22
ε13 + ε23

A.2 Identity quaternion

εI = 1 + 0i+ 0j + 0k =

1
0
0
0

 = 1

A.3 Conjugate

ε̃ = ε0 − ε1i− ε2j − ε3k =

ε0
−ε1
−ε2
−ε3

A.4 Multiplication

ε1ε2 = E(ε1)ε2

E(ε) =

ε0 −ε1 −ε2 −ε3
ε1 ε0 −ε3 ε2
ε2 ε3 ε0 −ε1
ε3 −ε2 ε1 ε0

75

76 A.5. Inverse

A.5 Inverse

Given a quaternion ε, we are looking for a quaternion ε−1, such that:

εε−1 = εI = 1.

Solving the equation above results in:

ε−1 =
ε0 − ε1i− ε2j − ε3k

‖ε‖2
.

An interesting point with this formula, is if ε denotes a unit quaternion, its inverse
is equal to its conjugate.

A.6 Rotation matrix to quaternion transformation

Given a rotation matrix R, the corresponding quaternion can be computed with:

ε =

ε0
ε1
ε2
ε3

 =

√
1+r11+r22+r33

2
r32−r23

4ε0
r13−r31

4ε0
r21−r12

4ε0

 ,
where rij stands for the element in the i-th row and j-th column of R. This trans-
formation is accurate only under certain conditions (if ε0 = 0, a division by zero
appends). A transformation accurate under all circumstances is possible by using
the trace of the rotation matrix1.

1http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

Appendix B

Proof of QP formulation for LQT

For the cost function, we want to express:

J = (µ− SxS1 − Suu)>Q(µ− SxS1 − Suu) + u>Ru,

under the form:
J = u>Pu + q>u.

We start by developing the cost function:

J = (µ>Q− S>1 Sx>Q− u>Su>Q)(µ− SxS1 − Suu) + u>Ru.

From this point, we discard all terms not containing u:

J = −µTQSuu︸ ︷︷ ︸
A

+S>1 Sx>QSuu︸ ︷︷ ︸
B

−u>Su>Qµ︸ ︷︷ ︸
C

+ u>Su>QSxS1︸ ︷︷ ︸
D

+u>Su>QSuu+u>Ru.

If Q is a diagonal matrix (usually the case), then A = C and B = D:

J = 2(S>1 Sx>QSu − µTQSu)u + u>(Su>QSu + R)u,

with:

q> = 2(S>1 Sx>QSu − µTQSu),

P = Su>QSu + R.

The constraint in the state space is:

ASx = bS ,

subtracting x by SxS1 + Suu gives:

AS(SxS1 + Suu) = bS ,

ASS
u︸ ︷︷ ︸

A

u = bS −ASS
xS1︸ ︷︷ ︸

b

,

the command space formulation of a state space constraint.

77

Bibliography

[1] How the tesla model s is made | tesla motors part 1 (wired). https://www.
youtube.com/watch?v=8_lfxPI5ObM. Accessed: 2020-06-01.

[2] Electrolux professional laundry — factory tour (ljungby, sweden). https://
www.youtube.com/watch?v=JCmGNSoYL-Y. Accessed: 2020-06-01.

[3] Desktop computer host automatic assembly line. https://www.youtube.com/
watch?v=GNqNVgLk1Mg. Accessed: 2020-06-01.

[4] Franck C. Park Kevin M. Lynch. Modern Robotics. Cambridge University
Press, 2017.

[5] Ricardo Campa and Hussein De La Torre. Pose control of robot manipulators
using different orientation representations: A comparative review. In 2009
American Control Conference, pages 2855–2860. IEEE, 2009.

[6] J Luh, M Walker, and R Paul. Resolved-acceleration control of mechanical
manipulators. IEEE Transactions on Automatic Control, 25(3):468–474, 1980.

[7] Ricardo Campa, Karla Camarillo, and M Ceccarelli. Unit quaternions: A math-
ematical tool for modeling, path planning and control of robot manipulators.
Robot manipulators, M. Ceccarelli (ed.), In-Teh, pages 21–48, 2008.

[8] Samuel R Buss. Introduction to inverse kinematics with jacobian transpose,
pseudoinverse and damped least squares methods. IEEE Journal of Robotics
and Automation, 17(1-19):16, 2004.

[9] Herman Bruyninckx and Joris De Schutter. Symbolic differentiation of the
velocity mapping for a serial kinematic chain. Mechanism and machine theory,
31(2):135–148, 1996.

[10] S. Calinon and D. Lee. Learning control. In P. Vadakkepat and A. Goswami,
editors, Humanoid Robotics: a Reference, pages 1261–1312. Springer, 2019.

[11] Eduardo D Sontag. Mathematical control theory: deterministic finite dimen-
sional systems, volume 6. Springer Science & Business Media, 2013.

[12] S. Calinon. Gaussians on Riemannian manifolds: Applications for robot learn-
ing and adaptive control. IEEE Robotics and Automation Magazine (RAM),
2020.

78

Bibliography 79

[13] M. J. A. Zeestraten, I. Havoutis, J. Silvério, S. Calinon, and D. G. Caldwell.
An approach for imitation learning on Riemannian manifolds. IEEE Robotics
and Automation Letters (RA-L), 2(3):1240–1247, June 2017.

[14] Joao Silvério, Leonel Rozo, Sylvain Calinon, and Darwin G Caldwell. Learn-
ing bimanual end-effector poses from demonstrations using task-parameterized
dynamical systems. In 2015 IEEE/RSJ international conference on intelligent
robots and systems (IROS), pages 464–470. IEEE, 2015.

[15] ETH Zurich Robotic Systems Lab. Robot Dynamics: Lecture notes. ETHZ
Press, 2017.

[16] Claudio Gaz, Marco Cognetti, Alexander Oliva, Paolo Robuffo Giordano, and
Alessandro De Luca. Dynamic identification of the franka emika panda robot
with retrieval of feasible parameters using penalty-based optimization. IEEE
Robotics and Automation Letters, 4(4):4147–4154, 2019.

[17] Pybullet quickstart guide. https://docs.google.com/document/d/
10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit#heading=h.
2ye70wns7io3. Accessed: 2020-06-01.

[18] Marc Toussaint. A tutorial on newton methods for constrained trajectory op-
timization and relations to slam, gaussian process smoothing, optimal control,
and probabilistic inference. In Geometric and numerical foundations of move-
ments, pages 361–392. Springer, 2017.

[19] Marc Toussaint. Robot trajectory optimization using approximate inference. In
Proceedings of the 26th annual international conference on machine learning,
pages 1049–1056, 2009.

[20] Emanuel Todorov and Weiwei Li. A generalized iterative lqg method for
locally-optimal feedback control of constrained nonlinear stochastic systems.
In Proceedings of the 2005, American Control Conference, 2005., pages 300–
306. IEEE, 2005.

