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Abstract.  Nowadays, more and more people are gaining interest in
news,  and  social  media  networks,  and  are  also  sharing  their
opinions freely in different languages. Such kind of activities leads
to  interesting  topics  of  research  that  scientists  are  working  on.
Considering news, it must be classified and easily accessible by the
users  for  the  information  of  their  interest.  In  comparison  to
traditional machine learning techniques, deep learning approaches
have achieved surpassing results  on natural  language processing
tasks. Convolutions neural networks (CNNs) have shown promising
performance, which extracts n-grams as features to represent the
input. 

In  this  work,  we  build  a  multi-channel  CNN  for  German  news
article classification. The model can classify different categories of
news articles with an accuracy of 99.2% on training and 81.4% on
the test dataset. We also perform a comparative study with single-
channel  CNN  and  have  found  that  the  multi-channel  approach
outperforms the single-channel by +6.3% absolute on the test set. 

Keywords:  Convolution  neural  network  ·  Multi-channel  CNN  ·  News
article classification.

1 Introduction

The  objective  of  text  classification  is  to  automatically  classify  documents  by
assigning one or more predefined tags/categories based on their content.

In the past few years, deep learning methods were found to be effective for natural
language  processing  (NLP)  related  tasks.  In  several  domains  related  to  NLP
applications including text  classification, deep learning techniques better  results as
compared to traditional machine learning approaches  [1] -  [2].  Two main types of



2 S. Parida et al.

deep neural network architectures that are widely explored for handling various NLP
tasks and provide competitive results are CNN and recurrent neural network (RNN)
[3]. CNNs are generally used in computer vision and have shown to achieve better
performance on text
classification  tasks  [4]  -  [6].  The  convolutional  layers  of  CNN are  extracting  the
features using geometrically fixed filters and can be regarded as an implementation of
the n-gram language model [7]. CNN generally outperformed RNN in capturing high-
level features in short text [8].

A series of experiments with CNN for the task of sentence classification built on
top of  “word2vec”  (with little  hyperparameter  tuning) has  shown excellent  results
over multiple benchmarks [4]. Even one-layer CNN performs excellently for sentence
classification  [9].  Deep  CNN  architectures  operating  directly  on  character  level
representation/input  have  shown  an  improvement  in  text  classification  tasks  [10],
however  for  inputs  such  as  patent  text  containing  full  of  technical  and  legal
terminologies the performance may not be adequate [11]. The paper is organized as
follows. Section 1 describes related work on text classification. Section 2 explains the
proposed model architecture. Section 3 explains the dataset used in our experiment.
Section 4 explains the experimental  settings:  pre-processing and hyper-parameters.
Section  5  provides  evaluation  results  with  analysis  and  discussion.  The  paper  is
concluded in Section 6.

2 Model

When applying CNN to text rather than an image, we have a 1-dimensional array
representing  text  and  the  architecture  changed  to  1D  convolutional-and-pooling
operations [12].

We  define  single-  and  multi-channel  models.  The  multi-channel  CNN  is  a
combination of many versions of the standard model. The standard model contains an
embedding layer as input, next to a one-dimensional CNN, a pooling layer followed
by a  prediction output layer with kernels of different sizes. This enables the text to be
processed for various n-grams (groups of words) at a time, while the model learns
how to best integrate these interpretations [4].

We define a model containing 3 input channels for processing different n-grams
(4-grams, 6-grams, and 8-grams) of the input text as shown in Figure 1. Each of the
channels consists of the following elements:

– Input layer defines the input sequences length.
– Embedding layer  is set to the vocabulary size, and dimension 100 to store

real-valued representations.
– One-dimensional convolutional layer having a filter size of 32 and the kernel

size equal to the count of words read at once.
– Max pooling layer consolidates the output from the convolutional layer.
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– Flatten  layer  maps  from  3-dimensional  output  to  2-dimensional  output,
required for concatenation.

The output obtained from the three channels is concatenated into a single vector.
Then it is processed by a dense and output layer respectively. The architecture of the
multi-channel network is shown in Figure 2.

Fig.1. Model architecture with three channels.
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Fig.2. The proposed multi-channel CNN architecture.

2.1 Regularization

We  use  dropout  for  regularization  which  operates  on  randomly  dropping  out  a
variable proportion of the hidden units [13].

3 Dataset

We use 10k German News Articles Dataset (10kGNAD)1 in our experiment. It has
10,273 German-language news articles collected by an Austrian online newspaper,
categorized into 9 topics [14]. The articles and per-category distributions are shown in
Figure 3. As can be seen, the class distribution of the 10kGNAD is not balanced.

1 https://github.com/tblock/10kGNAD
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Fig.3.  Articles per class.  [Image is taken from 10k German News Articles Dataset website.
https://tblock.github.io/10kGNAD]

4 Experimental Setup

This section describes the proposed setup for the experiments.

4.1 Pre-processing

The downloaded 10kGNAD training and test datasets contain articles along with their
respective categories (i.e. Web, Panorama, etc.). We mapped each article to one of 9
(0-8) categories for the training and test dataset. The statistics of the dataset are shown
in Table 1.

Table 1. Statistics of the experimental (10kGNAD) data.

Dataset #Articles #Category
Train 9245 9
Test 1028 9

During pre-processing, we performed the following text-normalization operations:

– Divide the tokens based on the occurrence of the white space.
– Removing of punctuation present in the words.
– Removing words which do not contain fully alphabetical characters.
– Removing German stop words.
– Truncate words having a length of ≤ 1 character.
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4.2 Hyper-parameters

The configuration parameters are shown in Table 2. The parameters are similar for the
single- and multi-channel experiments. We manually explored and tuned the hyper-
parameters such as drop-out (for avoiding over-fitting), and batch size (for improving
performance). The training also follows an early termination if validation loss does
not improve for 3 epochs [15].

Table 2.  Configuration parameters: “Relu” refers to the rectified linear unit, a common CNN
activation function [16].

Description Values
Filter 32
Feature maps 100
Activation function Relu
Pooling 1-max pooling
Dropout rate 0.5
Loss categorical cross-entropy
Optimizer Adam
Epoch 15
Batch size 16

5 Evaluation and Discussion

We evaluate the proposed text classification system on the test dataset (10kGNAD)
and shown the results in Table 3.  In addition to classification accuracies,  we also
show the training and test accuracy and loss w.r.t. each epoch of training in Figure 4
and Figure 5. The maximum article length (in words) is 1,761 and the total number of
unique  words  in  the  training  dataset  is  197,762.  We  observe  a  performance
improvement  comparing multi-channel  CNN with a single-channel  CNN. We also
experimented with different  kernel  sizes (2-gram, 4-gram, and 6-grams) for multi-
channel CNN, while not observing any further improvement. As our experiments are
limited  to  news  articles  German  dataset,  the  performance  of  our  model  for  other
domains needs investigation.

Table 3. Evaluation results of text-classification on the test dataset (10kGNAD).

Model Dataset Accuracy
CNN-single-channel Train 99.5

Test 75.1

CNN-multi-channel Train 99.2
Test 81.4
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(a) Single-channel accuracy. (b) Multi-channel accuracy.

Fig.4. Classification accuracies of news-article categories on training and test datasets.

6 Conclusion

We propose a multi-channel CNN approach for German news article classification.
We found that CNN’s can well capture the textual feature information for classifying
text in multilingual scenarios [17]. The proposed model uses multiple parallel CNN
which reads the German news articles using different n-gram sizes (4-grams, 6-grams,
and 8-grams) and the multi-channel CNN boosts text classification accuracy and able
to classify different news categories for the news articles better than single-channel
CNN. Even, with a dataset size of 10K, the proposed model achieves good validation
accuracy.

(a) Single-channel loss. (b) Multi-channel loss.

Fig.5.  Loss computed using categorical cross-entropy function measured on training and test
datasets.

As  the  next  step,  we  plan  to  investigate  more  on:  i)  applying  different
configurations  (e.g.  different  n-grams,  varying  channels,  deeper  networks,  varying
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dropout  rates).  ii)  experiment  with  our  model  with  other  languages  and  across
domains. iii) compare the performance of our model with other supervised and hybrid
approaches [18] - [22].
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