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Abstract

Automatic speech fluency prediction has been mainly approached from the perspective of computer
aided language learning, where the system tends to predict ratings similar to those of the human
experts. Speech fluency prediction, however, can be questioned in a more relaxed social setting, where
the ratings arise mostly from non-experts. This paper explores the latter direction, i.e., prediction of
non-expert perceived speech fluency ratings, which has not been studied in the speech technology
literature, to the best of our knowledge. Toward that, we investigate different approaches, namely, (a)
low-level descriptor feature functionals, (b) bag-of-audio word based approach and (c) neural network
based end-to-end acoustic modelling approach. Our investigations on speech data collected from 54
speakers and rated by seven non-experts demonstrate that non-expert speech fluency ratings can be
systematically predicted, with the best performing system yielding a Pearson’s correlation coefficient
of 0.66 and a Spearman’s correlation coefficient of 0.67 with the median human scores.

Keywords Perceived fluency, speech assessment, low level descriptors, bag of audio words, raw wave-
form modelling, zero frequency filtering, articulatory features.

1 Introduction

Speech fluency, i.e. a smooth flow of speech, is an important aspect of spoken language communication.
Technologically, speech fluency estimation has been approached in the context of computer aided spoken
language learning and testing. Several existing methods predict fluency automatically in a reference-
based setting by comparing the utterance under test to a predefined reference in terms of its linguistic
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content and estimating a score: for example, using speech recognition system to estimate number of
correct words per minute [1, 2] and phoneme-level goodness of pronunciation [3]. Vocal source char-
acteristics have also been studied, such as comparing the prosody contour to a reference [4]. Fontan et
al. [5] used automatic segmentation techniques and formant tracking to compute similar features with-
out the use of speech recognition. In a no-reference setting, where only the expert scores of perceived
fluency are available, Mao et al. [6] studied directly predicting the mean opinion scores using standard
machine learning techniques on fluency feature vectors, which constitute pause durations, pause similar-
ity scores based on their positions and durations w.r.t. a predefined set of references, estimated syllable
speaking rate and pronunciation quality values.

Besides the language learning and testing perspective, speech fluency prediction can be questioned
in a more informal or social settings. For instance, in spoken communication, perceived speech fluency
may have an impact on the interaction and/or on other aspects such as, forming impressions about the
person. Speech fluency prediction in such a context has certain differences when compared to language
learning and testing. First, in language learning and testing, speech fluency prediction is a part of a
broader aspect, more precisely, proficiency assessment, which also includes linguistic accuracy, i.e. the
correctness of syntax and vocabulary [7]. Second, the assessment system is developed to predict a score
that best correlates with expert ratings. In the literature, it has been found that native experts and
non-experts tend to rate differently [7]. In particular, non-expert raters tend not to focus much on the
linguistic accuracy aspects.

This paper focuses on predicting perceived speech fluency from non-expert ratings. Toward that, we
collect a speech data set consisting of read speech and speech on a topic of interest to the volunteers;
rate the speech fluency with non-expert raters; and investigate whether such non-expert ratings can be
predicted in a consistent manner. To the best of our knowledge, this question has not been addressed
before. So, with this research question in mind, we investigate different approaches that do not explicitly
model linguistic information: (a) predefined set of acoustic low level descriptor (LLD) features-based,
(b) unsupervised speech embeddings-based, and (c) end-to-end acoustic modelling-based.

The remainder of the paper is organised as follows. Sections 2 and 3 present the data collection
and the investigated approaches respectively. Section 4 presents the experimental setup and results.
Section 5 gives an analysis of the different approaches. Section 6 finally concludes the paper.

2 Data Collection

The data were collected in three different countries: Switzerland, Greece and the USA (city of New
York). We mainly went in medium sized international companies as well as social gatherings and asked
for volunteers to participate in the project. The volunteers who agreed to participate were provided
with an informed consent form to sign. Each of the participants were then provided with an iPod or an
iPhone with headphones and were asked to make audio or video recordings, as per their preference,
of all the languages they spoke (whether fluent, intermediate or beginner level). They were asked to
(i) make 4 recordings of minimum 15 seconds where they would speak about a topic of their choice,
and (ii) read a phonetically balanced text, viz. the Northwind passage. Out of the 54 participants, 29
were women and 25 were men. The participants’ age ranged between 25 and 75 years. They were from
different nationalities, viz., Albanian, French, Greek, Italian, Mexican, Portuguese, Russian, Spanish,
Swiss and Turkish.

The final collected data set comprises 187.36 minutes of data from 54 speakers, of which 144.14
minutes corresponds to English recordings, which we used in our analysis. On average, each speaker



Table 1: LLD features. (See [8] for detailed explanations.)

Source-related System-related

Loudness Alpha ratio
FO semitone from 27.5 Hz | Hammarberg index
Jitter Spectral slopes (0-500, 500-1500)
Shimmer Spectral flux
HNR (dB) F1 (freq, bw, ampLogRelF0)
logRelFO-H1-H2 F2 (freq, ampLogRelF0)
logRelFO-H1-A3 F3 (freq, ampLogRelF0)

MFCC (1-4)

had about 2-4 minutes of speech. These data were then rated by seven raters (4 women and 3 men),
aged between 37 and 75 years old. The raters were fluent English speakers, who are active professionals
in the law and banking sector in the USA and Switzerland. The raters were asked to rate each audio
or video on a 5-point Likert scale, with 1 being beginner and 5 being fluent. The Krippendorff’s alpha
coefficient for the ratings was found to be 0.584. The median values per each speaker were used as
reference scores in our experiments.

3 Approaches

In this section, we motivate and present several approaches we used for automatic fluency prediction.

3.1 Using functionals of LLD features

We investigate the use of a generic set of LLD features, viz. the extended Geneva minimalistic acoustic
parameter set (eGeMAPS) [9, 8], that comprise several short-time features that correspond to the vocal
source and tract, as listed in Table 1. Such features are typically used in paralinguistic and other tasks [9,
10,11, 12, 13]. Itis worth mentioning that the source-system classification of the features is arguable, for
instance, regarding the spectral slope related features. In the first approach, their statistical properties,
also called functionals, are computed at the utterance-level and are used to train standard linear support
vector machine (SVM) classifiers to classify each utterance into the five rating categories. This approach
is denoted as Functionals (LLD) + SVM.

3.2 Using BoAW representations

In the second approach, we compute histogram representations known as BoAW for each utterance using
frame-level features. Such representations give the relative counts of events in each utterance that are
determined by clustering the features. We also included time in seconds as an additional feature, so
that the events clustered depend on the time of occurrence of the events. We investigate the use of two
feature sets for the BOAW approach, viz. (i) eGeMAPS and (ii) wav2vec 2.0 representations, obtained by
passing raw speech through multiple convolutional and self-attention layers, that are learned to predict
quantised representations among a set of distractors [14]. Both these sets of representations could
carry position dependent counts of pauses, disfluencies and syllables, which were shown to indicate
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Figure 1: Proposed joint feature-classifier learning based on CNNs and using raw signal modelling.
Conv: convolutional layer with rectified linear (ReLU) activation, MP: max-pooling, FC: fully connected
layer with ReLU activation, FC-S: FC layer with softmax activation.

fluency [6]. These two approaches are denoted as BoAW (LLD) + SVM and BoAW (wav2vec 2.0) + SVM,
respectively.

3.3 Using jointly learned feature-classifiers

In recent years, it was demonstrated that task-specific information can be automatically learned from
raw waveforms using convolutional neural networks (CNN) [15, 16, 17, 18], as opposed to using hand-
crafted features. Inspired from these works, we investigate how well this approach can predict speech
fluency ratings. In this direction, following some of the recent works on speech recognition [15], speaker
recognition [19] and paralinguistic speech processing [20, 21], as illustrated as Method 1 in Fig. 1,
we train CNNs that take as input raw waveform and predict the probability for each fluency rating
category, which are then averaged per speaker to make a decision about the fluency rating. Depend-
ing upon the length of the filters in the first convolution layer, two approaches can be distinguished,
namely, (a) subsegmental modelling (subseg), where the filters span about 2 ms (< 1 pitch period) and
provide better time resolution and (b) segmental modelling (seg), where the filters span about 20 ms
(1 —5 pitch periods) and gives a better frequency resolution. This approach is denoted as Raw SigProc.

We also investigate methods where prior knowledge is integrated through signal processing or trans-
fer learning. These two approaches are briefly presented below.

3.3.1 Voice source information-based approach

Voice source related information such as change in the fundamental frequency and energy over time
could indicate speech fluency. However, separating the voice source related information from the vo-
cal tract system related information and modelling it is not a trivial task. In recent works, it has been
shown that glottal source activity can be characterised from speech signals through zero frequency
filtering (ZFF) technique [22, 23] and can be modelled by CNNs for paralinguistic tasks such as sleepi-
ness [21] prediction, dementia [24] and depression [20] detection. Briefly, ZFF involves passing raw
speech through a cascade of two ideal digital resonators located at 0 Hz, and then removing the trend
over a window spanning 1 to 2 pitch periods. As illustrated in Method 2 of Fig. 1, we take inspira-
tion from these works to model zero frequency filtered signal for speech fluency rating prediction. This
approach is denoted as ZFF SigProc.
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Figure 2: Transfer learning based on articulatory knowledge.

3.3.2 Implicit linguistic knowledge modelling-based approach

Linguistic accuracy has been studied in the literature in the prediction of fluency [1, 3, 2]. To investi-
gate whether non-expert fluency rating prediction can benefit from such knowledge, we utilise transfer-
learning to implicitly model articulatory feature information such as place and manner of articulation.
In recent works, such implicit modelling of linguistic knowledge have been found beneficial for dialect
identification [25] and degree of sleepiness prediction [21]. In this work, similar to [25, 21], as illus-
trated in Fig. 2, we initialise the speech fluency rating prediction network with the CNNs trained to
predict articulatory features, by only modifying the output layer. There are four such pre-trained CNNs
corresponding to manner of articulation, place of articulation, height of articulation and vowels, follow-
ing a previous work on AF representations for speech recognition [26]. More information related to the
pre-trained nets can be found in the Appendix A. This approach is denoted as Artic.

4 Experimental setup and results

We evaluated our systems based on 10-fold validation with non-overlapping speakers. Specifically, we
split the speakers into 10 parts, where 9 parts are used for training and the 10 part was used for testing.
Models were trained using 10 such possible splits, and the performance was measured by computing
Pearson’s and Spearman’s correlations between the predicted and the median human scores. eGeMAPS
features and their functionals were extracted using OpenSMILE toolkit [27]. BoAW representations
were extracted using OpenXBow toolkit [28]. Linear SVM classifiers were trained using scikit-learn [29]
with the default parameters, without optimising the hyperparameters. For BOAW representations, the
codebook size used was 50, as the data was limited and contained mostly read speech. We included
the time information of the frame as an additional feature to the BoOAW representations, as we found
that this improves the performance. For the wav2vec 2.0 representations, we used the pre-trained base
model provided by the authors [30], which was trained on LibriSpeech corpus [31].

CNNs for joint feature-classifier modelling were trained using Tensorflow [32, 33]. The terms subseg
and seg refer to 30 sample sub-segmental and 300 sample segmental modelling respectively (see Table Al



Table 2: Results in terms of correlation coefficients, with p-values in parentheses.

| Pearson’s

Spearman’s

Functionals (LLD) + SVM

| 0.338 (6e-71)

0.356 (4e-79)

BoAW (LLD) + SVM

BoAW Source (LLD) + SVM
BoAW System (LLD) + SVM

0.627 (7e-37)
0.337 (4e-10)
0.657 (2e-41)

0.641 (6e-39)
0.347 (1e-10)
0.668 (2e-43)

BoAW (wav2vec 2.0) + SVM

| 0.556 (1e-27)

0.578 (3e-30)

. subseg 0.431 (4e-16) 0.446 (3e-17)
Raw SigProc seg 0.569 (3e:29)  0.563 (le-28)
. subseg 0.560 (3e-28) 0.576 (4e-30)
ZEF Sigbroc seg 0.515 (2e-23)  0.545 (2e-26)
Manner 0.497 (1e-21) 0.527 (1e-24)
Place 0.517 (1e-23) 0.528 (9e-25)
Artic Height 0.489 (6e-21) 0.499 (7e-22)
Vowel 0.416 (5e-15) 0.437 (1le-16)
Overall 0.493 (3e-21) 0.516 (2e-23)
%107
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Figure 3: Frequency responses of the first convolutional layers of some systems.

in Appendix A for the architecture details). During training, all the five classes were ensured of equal
representation in each epoch by duplicating some of the utterances presented. The input to the CNNs
is a 250ms signal, overlapped by a 10ms shift. The networks were trained using cross-entropy loss with
stochastic gradient descent. Learning rate was halved, in the range 1072 to 10°, between successive
epochs whenever the training-loss stopped reducing.

For the training procedure of the articulatory networks, the reader is referred to either Sec. A or
[25]. It is worth noting that four AF CNNs were first pre-trained using AMI corpus [34] to individually
predict the four AF categories: place, manner, height and vowel. Transfer learning for fluency prediction
involved initialising 4 corresponding CNNs from the pre-trained ones, of the same architecture (Artic)
except for the final layer, and fine-tuning them with the same training procedure as above. The posterior
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Figure 4: Confusion matrices of four best systems.

probabilities obtained from the 4 CNNs for each utterance were averaged before classification.

4.1 Results

Results are reported in Table 2 in terms of Pearson’s correlation coefficient and Spearman’s rank correla-
tion coefficient. The p-values are provided in parentheses. For both evaluation measures, all the systems
yield good correlation with a p-value well below 0.01, i.e., the results are statistically significant. We can
observe that the BOAW approach modelling LLDs yields the best results. We also conducted experiments
by considering only the source-related LLDs and vocal-tract system related LLDs. The vocal-tract system
related features contribute the most. Having said that, a better performance of ZFF-based approach
than BoAW approach modelling source-related LLDs indicates that the former is able to better model
source-related information for speech fluency prediction. We can also observe that, in the subseg raw
signal modelling based systems, initialising the neural network with articulatory feature information
improves its performance, most prominently with the place of articulation. Finally, it is interesting to

observe that BOAW approach with wav2vec 2.0 embeddings yields performance similar to subseg ZFF
SigProc and seg Raw SigProc approach.



5 Analysis

Fig. 3 shows the cumulative frequency responses of the first convolution layer of the different CNN-based
systems. It can be observed that most of the systems focus on the low frequency regions that are more
related to the fundamental frequency and voice source related aspects [19, 20], which are more linked
to fluency than the linguistic accuracy, corroborating with the finding in [7]. However, the articulatory
feature initialised networks focus on low-to-mid frequencies, which are typically modelled by the CNNs
when trained to classify phones and tend to model formant related information [35]. This suggests that
the initialisation of subseg Raw SigProc approach with CNNs trained to classify AFs helped shift the
focus of the network more towards linguistic unit related information and consequently improved the
performance. Fig. 4 shows the performance of four best systems covering the different approaches. For
all the systems, the predictions are centred around the true rating, indicating a systematic prediction of
the speech fluency ratings. We have observed similar trend for other systems (see Fig. Al in Appendix A).

6 Conclusion and Future Work

In this work, we investigated the prediction of perceived fluency from non-expert ratings. In this regard,
we collected non-expert perceived fluency ratings of non-native speech and studied several approaches
to automatically predict the human scores. Our investigations demonstrated the feasibility of predicting
such scores using several approaches, and that BOAW based system modelling hand-crafted vocal-tract
related LLD features performing the best. Automatic feature learning methods also obtained encourag-
ing performance. In particular, end-to-end based acoustic modelling approach is able to better model
the source related information than LLD-based or BoAW-based approach. Our future will focus along the
following directions: (a) combining learned speech representations and hand-crafted feature represen-
tations, (b) fine tuning or adapting the wav2vec 2.0 models with the collected speech data for improved
fluency prediction and (c) contrasting expert rating prediction with non-expert rating prediction.
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A Supplementary Information

A.1 CNN architectures

This section contains additional information about the network architectures used in joint feature-
classifier and articulatory models, listed as SigProc and Artic in the Table Al respectively, and confusion
matrices of more systems that were not included in the main content due to space constraints. The
SigProc subseg and seg architectures were inspired from the previous work on modelling voice source
information for depression detection [20].

Table Al: CNN architectures. N;: number of filters, kW: kernel width, dW: kernel shift, MP: max-
pooling.

Conv
Model Layer N; kW dW MP
1 128 30 10 2
subse 2 256 10 5 3
81 3 |s512 4 2 -
SigProc 4 512 3 1 -
1 128 300 100 2
seg 2 256 5 2 -
3,4 same as subseg
. 1 80 30 10 3
Artic subseg 2.3 60 - 1 3

A.2 Off-the-shelf AF CNNs

We used the articulatory feature (AF) CNNs originally trained for dialect identification study [25] and
later used for sleepiness prediction [21]. Briefly, following the previous work on AF-based speech recog-
nition [26], four AF CNNs, corresponding to manner of articulation, place of articulation, height of
articulation and vowel, were trained on the independent headset microphone portion of the AMI data
set [34], consisting of 77 hours of speech. The architecture of the AF CNNs is listed as Artic in Table Al.
For further details related to the training of CNNs, the reader is referred to [25].

A.3 Confusion matrices

Fig. Al provides the confusion matrices of a few more trained systems. It can be observed that the trends
are similar to the results presented earlier in Section 5.
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Figure Al: Confusion matrices of four additional systems.
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