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Abstract—Assistant Based Speech Recognition (ABSR) for air
traffic control is generally trained by pooling both Air Traffic
Controller (ATCO) and pilot data. In practice, this is motivated
by the fact that the proportion of pilot data is lesser compared
to ATCO while their standard language of communication is
similar. However, due to data imbalance of ATCO and pilot
and their varying acoustic conditions, the ASR performance
is usually significantly better for ATCOs than pilots. In this
paper, we propose to (1) split the ATCO and pilot data using an
automatic approach exploiting ASR transcripts, and (2) consider
ATCO and pilot ASR as two separate tasks for Acoustic Model
(AM) training. For speaker role classification of ATCO and pilot
data, a hypothesized ASR transcript is generated with a seed
model, subsequently used to classify the speaker role based on
the knowledge extracted from grammar defined by International
Civil Aviation Organization (ICAO). This approach provides an
average speaker role identification accuracy of 83% for ATCO
and pilot. Finally, we show that training AMs separately for each
task, or using a multitask approach is well suited for this data
compared to AM trained by pooling all data.

Keywords—assistant based speech recognition, air traffic
management, multitask acoustic model, speaker classification

I. INTRODUCTION

Previous research [1], [2] as part of the MALORCA1

and AcListant-Strips2 project, respectively, focused on i)
improving ABSR accuracy for ATCOs, ii) reducing workload
for ATCOs [3], and iii) increasing efficiency [4] of ATCOs.
As part of an ongoing HAAWAII3 project, we aim to research
and develop a reliable and adaptable solution to automatically
transcribe voice commands issued by both ATCOs and pilots.

An error resilient and accurate ASR system is critical in
the ATC domain. Current state-of-the-art technologies require
large amounts of data to train ASR systems. The goal of

1MAchine Learning Of speech Recognition models for Controller
Assistance: http://www.malorca-project.de/wp/

2Active Listening Assistant Strips: https://www.malorca-project.de/wp/
?page_id=350

3Highly Advanced Air Traffic Controller Workstation with Artificial
Intelligence Integration: https://www.haawaii.de

another ongoing project called ATCO2 4 is to collect large
set of voice recordings of ATCOs and pilots (with a minimum
effort) for the aforementioned purpose. In order to train ASR
for this task, ATCO and pilot speech recordings are usually
pooled together [1], [5], [6] despite having a significant
variability in the data distribution (acoustic and grammatical
conditions) and the number of speakers in the data. As a result
of the variability in the data distribution, ASR performance is
significantly different if applied on ATCO or pilot speech (i.e.
ATCO’s speech is easier to recognize). Our baseline system
trained by pooling all data reveals that the absolute difference
in WER for ATCO and pilot is 9.7% (ATCO WER: 36.1%,
Pilot WER: 45.8%). ASR on another dataset also revealed
that it is ’twice as hard’ to correctly recognize pilot utterances
compared to ATCO utterances due to shortened speech [7].

The classification of speaker roles is not only important
to improve ASR quality. It also improves succeeding
natural language processing tasks, i.e., it enhances automatic
annotation of extracted ATC commands from transcripts.
A developed and European-wide agreed ontology [8]
distinguishes between ATCO and pilot utterances to accurately
recognize different elements of ATC commands in a tower
environment [9] or for read back error detection in an en-route
environment [10].

In this paper, we hypothesize that instead of developing the
ASR as a single task, ATCO and pilot ASR can be considered
as two separate tasks [11]. Specifically, this paper investigates
a multitask approach to train AMs to be integrated in ASR for
ATCO and pilot. An obvious first step is to automatically split
the ATC speech communications into two tasks (i.e. obtaining
these speaker labels manually on a large dataset would be
expensive and time consuming). A common approach is to use
speaker diarization to classify the speakers in the audio [12],
[13]. Although the ATCO speech is often cleaner than the
pilot (as the former communicates from a controlled acoustic
environment), the speech recordings collected in ATCO2

4Automatic collection and processing of voice data from air-traffic
communications https://www.atco2.org/



project using Very High Frequency (VHF) receivers are noisy
for both ATCO and pilot channels. In such a case, the speaker
diarization system may fail to assign speaker labels (ATCO or
pilot) accurately. Thus, a speaker diarization system cannot be
easily deployed to obtain accurate speaker labels.

The vital aspect in the air traffic management (ATM)
environment is the communication between a controller and
pilot. For the smooth travel of the aircraft this communication
is well defined with a standard phraseology by ICAO [14].
Another approach to obtain the speaker class is through
leveraging the ‘ICAO’ grammar to classify an utterance as one
of the classes on the text level. Once the speaker labels (ATCO
and pilot) are available for the large data, AMs can be trained
for both controllers and pilots through different approaches. In
this study, we show that due to the poor acoustic conditions
training a single AM by pooling all data does not provide the
best performance for pilots even if the speech is constrained by
grammar. To obtain better performance accuracy, AM should
be trained separately for ATCO and pilot data or considered
as different tasks by using a multitask approach.

Section 2 provides a brief overview of the work related to
multitask automatic speech recognition. The datasets used are
described in Section 3 followed by Section 4 that describes
speaker role classification with text. Section 5 explains the
experimental setup and the results obtained which are followed
by the conclusion in Section 6.

II. RELATED WORK

Previous research [15]–[19] has shown that to compensate for
limited data available in low-resourced languages, multilingual
systems are an effective way to train ASR systems. In
such a system, the output layer could be a separate layer
for each language, or a single layer shared between all
languages [19]. The Kaldi [20] toolkit provides state-of-the-art
techniques to train AMs, specifically Lattice-Free Maximum
Mutual Information (LF-MMI) [21]. Recently, [15] showed
that multilingual AM can be trained with LF-MMI [21]. In
MMI training, the cost function is given as:

FMMI =

U∑
u=1

log
p
(
x(u)|Mw(u),θ

)
p(w(u))

p
(
x(u)|Mden,θ

) , (1)

where x(u) is an input sequence for an utterance u, U is a set
of all utterances in the training data, Mw(u) corresponds to a
numerator graph specific to a word sequence in transcription,
Mden is a denominator graph modelling all possible sequences
which is usually a phone LM, θ is a model parameter and
p(w(u)) is a language model probability for an utterance.

However, in multitask training with separate output layers,
the cost function from Equation 1 is computed for each task
depending on the number of tasks. For T tasks, the output

cost function for each task t depends only on the utterances
of that task:

F (t)
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where Ut is the number of utterances in a minibatch
for a task t, θ contains the shared and task-dependent
parameters, Mt

w(u) and Mt
den are task-specific numerator and

denominator graphs, respectively. For a task t, a denominator
graph is built using the task-specific phone. For each
minibatch, the gradient of each task output layer is computed
and updated.

The overall cost-function is then given as a weighted sum of
all task-dependent cost-functions defined in Equation 3.

FMMI =

T∑
t=1

αtF
t
MMI , (3)

where αt is a task-dependent weight.

Although language and phone sets are the same for ATCO
and pilots, due to the variation in the acoustic conditions, we
consider them as different tasks and propose to use a multitask
approach to train AMs. We hypothesize that using a multitask
approach can lead to better ASR performance for both ATCOs
and pilots compared to a single AM trained by combining all
data.

III. DATASETS

The following subsections provide an overview of the data
used in this paper.

A. Collection and pre-processing of VHF data

1) Data collection: To obtain ATC voice communications
the following two sources are considered: (i) open-source
speech like LiveATC5, and ii) speech collected with our own
setup of VHF receivers. In addition to speech data, the time-
aligned metadata available is used to obtain the contextual
information (e.g. callsign list for each utterance) from the
OpenSky Network6 (OSN). This process yielded 377 hours of
speech data from Prague (LKPR) and Brno (LKTB) airports
from August 2020 until January 2021 for ATCO2 project.

5LiveATC.net is a streaming audio network consisting of local receivers
tuned to aircraft communications: https://www.liveatc.net/

6OpenSky Network: provides open access of real-world air traffic control
data to the public



Figure 1. Pipeline for gathering ATCO-pilot speech data with VHF receivers. Speech segments that do not match air-surveillance data (i.e. prior knowledge)
are discarded.

2) Data pre-processing: Figure 1 shows the pipeline used for
preparing the VHF database. First, a seed ASR system is used
to produce the transcripts for the 377 hours of collected data.
The seed model is a ‘hybrid’ speech-to-text recognizer based
on Kaldi [20] trained with the LF-MMI cost function [21].
The neural network has six convolutional layers followed by
nine Factorized Time-Delay Neural Network (TDNN-F) [22].

A list of callsigns is retrieved from OSN in ICAO format. The
ICAO format for a callsign is composed of three characters
airline code (e.g., TVS) followed by a flight number which
can consist of digits or letters, e.g. leading to TVS84J. In
order to use this prior knowledge, this format is transformed
into its “expanded version”. Several variants exist for a given
callsign. As illustrated in Figure 1, the callsign TVS84J can
be pronounced as "skytravel eight four juliett" or instead each
letter can be spelt out "tango victor sierra eight four juliett".

Then, an ensemble of callsigns with its variants are created.
Finally, string matching of this expanded callsign list is applied
to the automatic transcripts. The utterances in which one of
the callsigns is found are stored. This pre-processing reduced
the data from 377 hours to 66 hours.

B. Related ATC datasets available for training

In addition to the above data collection, ATCO2 has brought
together several air traffic command-related databases [1],
[23]–[27] from different publicly available open data sources.
The full set of databases span approximately 140 hours of
speech data that are strongly related in both phraseology
and structure seen in ATCO-pilot communications [5], [6],
[28]. These databases were additionally augmented by adding
noises that match LiveATC audio channels, doubling the
size of training data. Since each of the seven databases had
different annotation ontologies (annotation procedure, rules,
and symbols), the transcripts had to be standardized and
normalized [8], [25].

Figure 2. Speaker role identification based on grammar for VHF data. The
text data is used to assign speaker roles, ATCO or pilot, to each utterance
with a grammar-based approach. The speaker role information is then used
to separate the data to train speaker-dependent acoustic models in the case
of separate ATCO and pilot models. The same information is also used by
the multi-task system to select the task to be trained for each utterance. The
same procedure is applied to other datasets used in this paper.

IV. SPEAKER ROLE CLASSIFICATION WITH TEXT

As described in Section 1, to develop a reliable and better
performing ASR for both ATCOs and pilots, respective
labelled speech data are required. However, in most cases, e.g.,
such as in ATCO2 project, although large amounts of data are
collected, they do not contain speaker labels. The first task is
therefore to split the speech recordings into two classes: ATCO
and pilot. To accomplish this, we extract the information based
on the ICAO grammar to identify the speaker’s role.

ICAO defines a separate grammar for ATCOs and pilots to
enable clear communication. For instance, there are certain
phrases/commands that an ATCO should use in a specific
order. This knowledge is used to extract/identify potential
words/commands that indicate a specific role of speaker. For
example, the words such as "identified", "approved", "wind"
would most probably only be spoken by an ATCO and the
words "wilco", "maintaining", "we", "our" would probably be
spoken only by a pilot. Currently we have made a list of 31
words for ATCO and 21 words for pilot that indicate each
role. The list of words are presented in Table I. This list was
generated by manual curation and expert feedback. A list of



ATCO words
approved back break call
cleared contact correct direct

disregard established expect handover
identified increase maintain no
proceed radar reduce report

roger soon standby transition
turn vortex wake wind

you’re you’ve yours

Pilot words
CPDLC approaching climbing comply

descending heavy inbound maintaining
our reducing request requesting

standing stopping taking turning
us we we’ll wilco

will

TABLE I. LIST OF ATCO AND PILOT WORDS USED FOR GRAMMAR-BASED
CLASSIFICATION.

ATCO 338
86%

78
16%

Pilot 53
14%

ATCO

397
84%

Pilot

Pr
ed

ic
te

d
C

la
ss

Actual

Figure 3. Confusion matrix for speaker role identification based on text for
manually speaker segmented data for London Approach test set. Total number
of ATCO utterances are 391 and the total number of pilot utterances are 475.

callsigns7 is also prepared from available airline codes.

Since this method operates at word level, manual (if available)
or automatically generated transcripts are required for the
corresponding speech recordings. In order to identify if an
utterance is spoken by an ATCO or a pilot, we check the
corresponding transcript for the conditions below: if the
callsign appears at the beginning of an utterance, this utterance
is classified as ATCO, else it is classified as a pilot. As there is
greeting at the beginning quite often, we check if the callsign
appears within the first four words. If one of the words in the
utterance is in the list of ATCO words or in the list of pilot
words, then the respective role is assigned.

Once each utterance in the training data is classified as ATCO
or pilot, we propose to train two versions of ASR. In the first
system there are two acoustic models: one for ATCO and one
for pilot. In the second system we train a multitask network
with one task as ATCO ASR and other as pilot ASR. The
procedure is illustrated in Figure 2.

7https://en.wikipedia.org/wiki/List_of_airline_codes

ATCO 435
87%

133
22%

Pilot 65
13%

ATCO
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Pilot
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Figure 4. Confusion matrix for speaker role identification based on text for
manually speaker segmented data for Icelandic en-route test set. Total number
of ATCO utterances are 500 and the total number of pilot utterances are 604.

ATCO 588
75%

288
29%

Pilot 193
25%

ATCO

699
71%

Pilot
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Actual

Figure 5. Confusion matrix for speaker role identification based on text for
manually speaker segmented data for LiveATC data. Total number of ATCO
utterances are 781 and the total number of pilot utterances are 987.

A. Assigning Scores to Decisions

The grammar role also provides the probability of assigning
a speaker role to a given utterance using the bag-of-words
that are manually created. In order to obtain such probability
Bayes’ rule is adopted. For e.g., the probability of an utterance
being ATCO is computed as:

p(atco|utt) =
p(utt|atco)p(atco)

p(utt|atco)p(atco) + p(utt|pilot)p(pilot)
(4)

Here p(atco) and p(pilot) are the priors, and we assume both
classes have equal probability and hence their value is 0.5.
The p(utt|atco) is computed as

p(utt|atco) =
∏

wi∈utt

p(wi|atco). (5)

Similarly, the p(utt|pilot) is computed as

p(utt|pilot) =
∏

wi∈utt

p(wi|pilot) (6)



The p(wi|atco) and p(wi|pilot) are computed from using the
15k speaker role annotated utterances available as part of
HAAWAII project from the Air Navigation Service Providers
(ANSPs) for training: i) NATS for London Approach and
ii) ISAVIA for Icelandic en-route where the total number of
utterances for ATCO and pilot are 7k and 8k respectively. The
below eqation is used to compute this:

p(wi|class) =
class count
total count

, (7)

where class count is the number of times the word wi appears
in that particular class, and total count is the sum of number
of times the words in both the classes.

B. Speaker Role Classification Performance

This method has been tested on manually speaker segmented
and transcribed data for three different test sets: i) NATS
for London Approach, ii) ISAVIA for Icelandic en-route and
iii) LiveATC test set. In the first set, there are 391 ATCO
utterances and 475 pilot utterances. From the confusion matrix
shown in Figure 3, we can observe that this method provides
a true positive rate (TPR) of 86% (correctly classified ATCO)
and true negative rate (TNR) of 84% (correctly classified
pilot). The second set used consists of 500 ATCO utterances
and 604 pilot utterances. From the confusion matrix shown
in Figure 4, we see that this method provides a TPR of
87% and TNR of 78%. For the third set we see a TPR of
75% and a TNR of 71%. This shows that the bag-of-words
generated match the first two sets and the communication
is slightly different since there are different airports and the
communication is different.

C. Error Analysis

As there exists many variants for any given callsign, checking
only for the airline code (e.g. lufthansa) is a major factor
contributing to the misclassification of ATCO as pilot. A
reason for the misclassification of pilot as ATCO is the
occurrence of callsigns at the beginning of the utterance.
Analysis of misclassification errors show that the accuracy
can be improved by i) matching the callsign spoken with its
allowed variants (e.g. LUF189AF → lufthansa one eight nine
alfa foxtrot, one eight nine alfa foxtrot, etc) and ii) using the
context prior to the callsigns (e.g., the pilot may mention the
place of the control they want to communicate followed by
the callsign). We will consider applying the aforementioned
improvements as a part of our future work.

V. EXPERIMENTS

For all our experiments, conventional biphone Convolutional
Neural Network (CNN) [29] + TDNN-F [22] based acoustic

TABLE II. WER COMPARISON FOR AMS TRAINED WITH DATA FROM
OTHER ATC DATASETS AND TESTED ON LIVEATC ATCO AND PILOT
TEST SETS. THE RESULTS SHOW THAT TRAINING SPEAKER-DEPENDENT
ACOUSTIC MODELS OR A MULTI-TASK SYSTEM PROVIDE BETTER ASR
PERFORMANCE THAN THE COMBINED SYSTEM.

Model WER %

ATCO test Pilot test

Clean 36.9 47.7
Noise 31.3 41.1

Combined 36.1 45.8
Multitask 31.6 41.1

TABLE III. WER COMPARISON FOR MODELS TRAINED WITH ONLY THE
DATA COLLECTED FROM VHF RECEIVERS AND TESTED ON LIVEATC
ATCO AND PILOT TEST SETS.

Model WER %

ATCO test Pilot test

VHF ATCO 43.2 51.6
VHF Pilot 40.3 45
Combined 46 50
Multitask 38.2 44

models trained with Kaldi [20] toolkit (i.e. nnet3 model
architecture) is used. AMs are trained with the LF-MMI [21]
training framework considered to produce state-of-the-art
performance for hybrid ASR systems. In all the experiments,
3-fold speed perturbation [30] and i-vectors are used. The
multi-task training script used can be found in Kaldi [20]8. The
value of the task dependent weight αt used in our experiments
is 0.5. Language model (LM) is trained with all the manual
transcripts available from datasets described in Section III-B
and used for all the experiments.

The performance of different models is evaluated on LiveATC
test set with the Word Error Rate (WER) metric which is
based on the Levenshtein distance at the word level. The total
duration of the test set is 1h 50 mins. The set is split into two
subsets: ATCO set (52 mins) and Pilot set (58 mins).

In each group of experiments, results are given for i) AM
trained for each task separately, ii) AM trained by combining
all data and iii) AM trained with multitask learning.

A. Experiments on ATC databases

In this setup, we use data from the ATC databases mentioned
in Section III-B as Clean data and its noise augmented part
as Noise data. As shown in Table II, both ATCO and pilot
test sets provide better performance when the model is trained
with Noise data compared to the model trained with only
Clean data. This shows that the noise augmented version of

8egs/babel multilang/s5d/local/chain2/run_tdnn.sh



TABLE IV. WER COMPARISON FOR MODELS TRAINED WITH ALL
ATCO DATA FROM ALL DATABASES AND ALL PILOT DATA WITH NOISE
AUGMENTED DATA.

Model WER %

ATCO test Pilot test

ATCO 30.3 43.2
Pilot 32.8 40.3

Combined 31.2 41.3
Multitask 31.9 41.3

the clean data matches with the test sets much better than
the clean version. Moreover, the Combined system performs
significantly worse than the Noise system. This shows that
using the Clean dataset in fact hurts ASR performance. This is
one of the reasons why the multitask system performs only on
par with the Noise system. Therefore only the noise augmented
data is used for training in the next experiments.

B. Experiments on VHF data

Results in Table III are presented for AMs trained with only
the VHF data. Applying speaker role identification for the pre-
processed data (66 h) yields 43 h for ATCO and 23 h for
Pilot. Similar to Table II, the results in Table III show that
using multitask learning instead of training AM by combining
all the data provides better ASR performance. Furthermore,
the results reveal that due the low amount of data, multitask
learning outperforms its single task counterparts.

C. Experiments on VHF+other ATC datasets

In this subsection we report results with models trained
from both VHF and ATC datasets used in the previous two
experiments. By investigating the ATC databases used in
Section V-A, we discovered that some of the datasets also
contain pilot speech. Since no speaker role labels are available
for these sets, we applied the proposed method to split the
noise augmented speech as ATCO or pilot and combined them
with their respective classes of the VHF data. This provided
123h of data for ATCO and 80h for pilot. The results in
Table IV show that training AMs for each task separately
performs relatively better by 2.9% for ATCO and 2.4% for
pilot than using the Combined system. This suggests that when
more data is available, using our grammar-based approach
to obtain speaker role information to train separate ATCO
and pilot ASR is better than the Combined approach. The
Multitask system does not perform better than the Combined;
suggesting a negative transfer when considering ATCO and
pilot tasks. This is expected as the ATC data dominates in
size during training.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we compared different types of training AMs
with state-of-the-art LF-MMI framework for ATCO and
pilot speech recordings. The developed ASR systems were
evaluated separately on ATCO and pilot test sets built from
LiveATC. Due to the noisy nature of both ATCO and pilot
test sets, AM trained with only noise augmented speech data
boosts the ASR performance. We proposed a simple grammar
based approach to identify speaker roles automatically and
train acoustic models either by speaker role or in a multitask
fashion. The results show that multitask training approach
outperforms other training methods when limited training data
is available. When sufficient data is available, we show that
training AMs separately provides better ASR performance
for both ATCO and pilot compared to the model trained by
combining all data. Relative improvements of 3.2% for the
ATCO set and 1.9% for the pilot set were obtained.

As mentioned earlier, the rule-based approach can further be
improved by taking into account all the allowed variants of
a callsign and using the context prior to the callsigns during
classification. In our current work, we explored only acoustic
modeling part of speech recognizer. As a part of our future
work, we consider investigating the improvement of speaker-
dependent ASR systems by i) training separate LM for each
speaker class or ii) interpolating the class specific LM with
the baseline LM.
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sign detection: Matching air surveillance data with air traffic spoken
communications,” in Multidisciplinary Digital Publishing Institute
Proceedings, vol. 59, no. 1, 2020, p. 14.

[7] T. Pellegrini, J. Farinas, E. Delpech, and F. Lancelot, “The airbus air
traffic control speech recognition 2018 challenge: towards atc automatic
transcription and call sign detection,” 2020.

[8] H. Helmke, M. Slotty, M. Poiger, D. F. Herrer, O. Ohneiser, N. Vink,
A. Cerna, P. Hartikainen, B. Josefsson, D. Langr et al., “Ontology for
transcription of atc speech commands of SESAR 2020 solution PJ.16-
04,” in IEEE/AIAA 37th Digital Avionics Systems Conference (DASC).
IEEE, 2018.

[9] O. Ohneiser, H. Helmke, S. Shetty, M. Kleinert, H. Ehr, S. Murauskas,
and T. Pagirys, “Prediction and extraction of tower controller
commands for speech recognition applications,” Journal of Air Transport
Management, vol. 95, no. 102089, 2021.

[10] H. Helmke, M. Kleinert, S. Shetty, O. Ohneiser, H. Ehr, H. Ariliusson,
T. Simiganoschi, A. Prasad, P. Motlicek, K. Vesely, K. Ondrej,
P. Smrz, J. Harfmann, and C. Windisch, “Readback error detection
by automatic speech recognition to increase atm safety,” in Fourteenth
USA/Europe Air Traffic Management Research and Development
Seminar (ATM2021), 2021.

[11] S. Ruder, “An overview of multi-task learning in deep neural networks,”
arXiv preprint arXiv:1706.05098, 2017.

[12] X. Anguera, S. Bozonnet, N. Evans, C. Fredouille, G. Friedland, and
O. Vinyals, “Speaker diarization: A review of recent research,” IEEE
Transactions on Audio, Speech, and Language Processing, vol. 20, no. 2,
pp. 356–370, 2012.

[13] T. J. Park, N. Kanda, D. Dimitriadis, K. J. Han, S. Watanabe, and
S. Narayanan, “A review of speaker diarization: Recent advances with
deep learning,” arXiv preprint arXiv:2101.09624, 2021.

[14] ALLCLEAR, “Icao phraseology reference guide,” 2020. [Online].
Available: https://www.skybrary.aero/bookshelf/books/115.pdf

[15] S. Madikeri, B. K. Khonglah, S. Tong, P. Motlicek, H. Bourlard,
and D. Povey, “Lattice-free maximum mutual information training of
multilingual speech recognition systems,” in Proc. of Interspeech, vol.
2020, 2020.

[16] L. Burget, P. Schwarz, M. Agarwal, P. Akyazi, K. Feng, A. Ghoshal,
O. Glembek, N. Goel, M. Karafiát, D. Povey et al., “Multilingual
acoustic modeling for speech recognition based on subspace gaussian
mixture models,” in 2010 IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2010, pp. 4334–4337.

[17] D. Imseng, P. Motlicek, H. Bourlard, and P. N. Garner, “Using out-of-
language data to improve an under-resourced speech recognizer,” Speech
communication, vol. 56, pp. 142–151, 2014.

[18] N. T. Vu, D. Imseng, D. Povey, P. Motlicek, T. Schultz, and
H. Bourlard, “Multilingual deep neural network based acoustic modeling
for rapid language adaptation,” in 2014 IEEE international conference
on acoustics, speech and signal processing (ICASSP). IEEE, 2014, pp.
7639–7643.

[19] M. Karafiát, M. K. Baskar, P. Matějka, K. Veselỳ, F. Grézl, and
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