
TROPER
NOITA CI

N
U

M
MOC

P AID I

MODELING AND OPTIMAL CONTROL OF
THE OPEN TORQUE-CONTROLLED

QUADRUPED ROBOT SOLO-12

Niederberger Adi

Idiap-Com-02-2022

JULY 2022

Centre du Parc, Centre du Parc, Rue Marconi 19, CH - 1920 Martigny
T +41 27 721 77 11 F +41 27 721 77 12 info@idiap.ch www.idiap.ch

Modeling and Optimal Control of the
Open Torque-Controlled Quadruped

Robot Solo-12

Master Thesis

Master in Artificial Intelligence

Author : Adolf Kilian Niederberger
Student number : 17-653-288
Project supervisor : Sylvain Calinon
Company supervisor : Philip Abbet

Copyright (c) 2022 Idiap Research Institute, http://www.idiap.ch/
Written by Adolf Kilian Niederberger, June 2022

Abstract

Despite recent advances in controlling legged robots, modern quadruped robots are still
not nearly as powerful as their biological counterparts. The biggest gaps exist in terms
of robustness and versatility. The first is mainly caused by simplification in modeling
the dynamics. On the other hand, the second point is forced by the complexity of the
dynamics respectively its resulting challenging, and high computational optimization
problems. Since these two requirements are in conflict with each other, a compromise
must be found between the two.

Depending on the task and the requirements, it is more appropriate to neglect less or more
in modeling. This work aims to test and apply different controllers on the quadruped
robot Solo 12. The goal is to gain knowledge about which controllers are suitable for
which tasks. Additionally, it should also be reported why a controller did fail and what
could be improved to achieve a better result.

The robot is modeled based on centroidal dynamics or a simplified version of it to con-
struct a whole-body controller. In addition, a method is used to plan feasible dynamical
motions with the robot. Finally, there is also a Model Predictive Control (MPC) archi-
tecture tested.

The robot successfully performed a trotting walk, whereby the trajectory was generated
with a whole-body dynamics planner. It was also shown how large the deviation from
the simulation to reality is, although complex, non-linear models were used for the dy-
namics.

I

Acknowledgments

I would like to express my very great appreciation to the Idiap Research Institute for
giving me the possibility to carry out my project here. Thereby I learned a lot of new,
exciting things.

I would like to thank Dr. Sylvain Calinon for his excellent supervision and advice
throughout this project.

I am grateful for the assistance given by Mr. Philip Abbet. I also want to thank all the
robot learning and interaction group members, particularly Teguh Santoso Lembono,
since he supported me a lot in my learning process.

Thanks to all the teachers and assistants at Idiap for allowing me to improve my knowl-
edge and acquire new skills. Finally, my thanks go to all the people around me that have
helped me in one way or another during this master’s.

Martigny, June 24, 2022

II

List of Abbreviations

CoM Center of Mass

FD Forward Dynamics

FK Forward Kinematics

ID Inverse Dynamics

IK Inverse Kinematics

LQR Linear Quadratic Regulator

LQT Linear Quadratic Tracking

MPC Model Predictive Control

PID Proportional–Integral–Derivative

QP Quadratic Programming

III

List of Symbols

In Idendity Matrix n× n

g gravitational acceleration vector
g gravitational acceleration term

IV

Contents

Abstract . I
Acknowledgment . II
List of Abbreviations . III
List of Symbols . IV

1 Introduction 1
1.1 Structure of the Thesis . 2

2 Theoretical Background 3
2.1 Description of the robot . 3

2.1.1 Fundamentals of the Robot . 3
2.1.2 Technical Basics of the Robot 4
2.1.3 Joints of the Robot . 6
2.1.4 Communication and Control Software of the Robot 7
2.1.5 Calibration of the Robot . 8

2.2 The State of the Robot . 9
2.3 General Robotic Concepts . 11

2.3.1 Robot Kinematics . 11
2.3.2 Robot Dynamics . 13

2.4 Control Theory in Robotics . 20
2.4.1 Linear Dynamical Systems . 20
2.4.2 PID Controller . 24
2.4.3 Linear Quadratic Regulator . 25
2.4.4 Linear Quadratic Tracking . 26

V

Contents CONTENTS

3 Methodology 28
3.1 Centroidal Momentum Dynamics . 28
3.2 Kino-Dynamic Motion Planner . 30

3.2.1 Functionality of the Algorithm 32
3.3 Impedance Controller . 34
3.4 Centroidal Motion Controller . 35

3.4.1 Centroidal PD-Controller . 36
3.5 Control Architecture of a Reactive Controller 38

3.5.1 MPC Formulation of the Controller 39

4 Experiments and Results 46
4.1 Trajectory Replay . 46

4.1.1 Jumping . 47
4.1.2 Trotting . 50

4.2 Controller with MPC . 53

5 Conclusion 57

6 Lists 59

(Bibliography) . 64
(List of Figures) . 66
(List of Tables) . 66

A Appendix I
A.1 Rotations . I
A.2 Rigid Body Dynamics . II
A.3 Forward Kinematics . III
A.4 Inverse Kinematics . VII

VI

1. Introduction

Humanoids and other legged robots are considered a very exciting research topic in
modern robotics, but it is also a very challenging subfield. Unlike manipulators with
fixed bases, legged robots can move around, encountering surfaces or obstacles that are
unknown to them. Therefore, a controller for such robotic systems should be adaptable
and robust.

However, the challenge starts even earlier. Since legged robots have fewer actuators
than degrees of freedom, they are underactuated. Furthermore, the nonlinear dynamics
make modeling legged locomotion additionally difficult. These facts lead to complex
physical behavior and cause significant computational challenges. Common approaches
to address or overcome these problems are simplifying dynamic models, partitioning
and splitting of problems, or a combination thereof. However, ignoring certain dynamic
aspects to obtain a simpler model often has the disadvantage that capability decreases or
the stability of the controller deteriorate.

This raises the question of what is a good compromise between model complexity and
computational effort. Different control systems are examined in this work to investigate
this issue, or at least to gain knowledge under which circumstances it makes more sense
to deviate in one direction.

These controllers are combined with a quadruped robot to control it to perform trotting
and jump motions.

Although the research of quadruped robots is largely based on the principle of bionics [1]
and thus proposes cushioned legs [2], the robot Solo 12 [3] is used without suspension.
Due to its low weight, the robot is not susceptible to vibration and exhibits leg stiffness
similar to that of a human.

1

1.1. Structure of the Thesis CHAPTER 1. INTRODUCTION

1.1. Structure of the Thesis

This thesis is composed of four more chapters.

Chapter 2 describes the robot and its technical properties, and a second part introduces
basic concepts of robotics used in this work.

Chapter 3 delineates the methods used to generate motion planning as well the different
control-architectures for the applied controllers.

Chapter 4 consist of the description of how the controllers are used and what results were
obtained in the simulation and also in reality.

Chapter 5 sums up the insights and findings of this work and suggests and suggests
possible changes for improvements.

2

2. Theoretical Background

The theoretical background is spitted into two main parts. First the robot and its technical
properties are described.

The second part describes general robotics concepts that are used to control legged
robots.

2.1. Description of the robot

In this section the robot used for the experiments is described. The technical properties
of the robot are introduced and the software that is employed, as well as the calibration
procedure is explained.

2.1.1. Fundamentals of the Robot

A four-legged mobile robot, a so-called quadruped robot, is used for the experiments to
gain knowledge and thus implement the project. The robot, named Solo 8, was devel-
oped by a team from the NYU Tandon School of Engineering and an institute of the Max
Planck Society1. Under the supervision of the Open Dynamic Robot Initiative2, the robot
was further developed in the areas of software and control. The initiative promoted the
robot and made all research results and software components available as open source.

1http://www.is.mpg.de/ (05.2022)

3

2.1. Description of the robot CHAPTER 2. THEORETICAL BACKGROUND

Meanwhile, a successor model of the robot has been developed, the Solo 12 robot (Fig-
ure 2.3), which is equipped with more joints and can also walk sideways compared to
the Solo 8 (Figure 2.1a). However, since hardly any experiments and research results
are available, findings from the Solo 8 will be used for the time being, and this robot
will also be presented. However, it should be kept in mind that the results should also be
transferable to the Solo 12. Due to the additional degrees of freedom, more possibilities
are available, but the optimizations become more complex.

2.1.2. Technical Basics of the Robot

(a) Quadruped Solo 12 (b) 2-DOF leg

Figure 2.1.: (a) Quadruped robot Solo 12, it is the robot which has lateral hip joints, in
comparison to Solo 8, and can therefore move sideways. (b) Illustration of
a 2-DOF leg with hip, corresponding to Solo 8 19 , upper-hip 20 , and lower
leg module 21 , and foot contact switch 22

The centerpiece of the robot is the leg architecture with the ability for sensors to inter-
act, allowing for dynamic impedance and force control. The robot achieves spring-like
behavior by using torque-controlled motors for leg manipulations, which corresponds to
similar characteristics to muscles and elastic tendons of animal legs.

One leg of the quadruped (Figure 2.1b) consists of a hip section 19 , a thigh 20 and a
lower leg 21 , with two identical brushless actuator modules used to control the hip and

2https://open-dynamic-robot-initiative.github.io/ (06.2022)

4

CHAPTER 2. THEORETICAL BACKGROUND 2.1. Description of the robot

knee joints. At the end of the lower leg, the foot 22 is distally attached as a foot contact
sensor.

All joints are multiturn capable but limited to about three rotations due to cable rout-
ing. The robot is symmetrically constructed, which does not matter which part of the
robot is on top and represents the back. Likewise, it allows the robot to perform leg
manipulations with its back lying on the floor. In the bottom row of Figure 2.2, the se-
quence of positions is shown, which is made possible by the symmetry of the robot. The
figure also shows various possible joint configurations.

Figure 2.2.: Illustration of possible leg and knee configurations of the Quadruped Solo
12.

The foot contact sensor covers a detection range of 270°. The sensor, constructed with
the help of a light-emitting diode and a light sensor, can thus sense different and complex
environments. The sensor has a low sensitivity, which can also be adjusted mechani-
cally and is characterized by a low response time. Furthermore, it is very robustly built,
and thus withstands even high unpredictable shock loads.

The robot is powered by cable. The complete control of the elements is combined by a
lightweight main-board control computer and can be controlled with Wifi or an Ethernet
cable. The total weight of the robot is specified at 2.2 kg. From its standing height of
24 cm, the robot can jump up to 65 cm [3].

5

2.1. Description of the robot CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.3.: Quadruped robot Solo 12 laid down on a trestle. Through the laid-out legs,
it is visible how the hip joints work. Compared to the Solo 8, the robot has
a lot of more possibilities to move.

2.1.3. Joints of the Robot

As mentioned in subsection 2.1.2, each leg of the robot consists of 3 joints. To control the
robot in later tasks, it is necessary to define the order of the legs and so too for the joints.
The leg names, their abbreviations, and the joint labels are illustrated in Figure 2.4.

Figure 2.4.: Definition of the legs and joints of Solo 12.

The order will always be the same to control the robot in simulation or real environments.
The sequence of the legs is ordered as in (2.1). The first joint for each leg is always

6

CHAPTER 2. THEORETICAL BACKGROUND 2.1. Description of the robot

the hip joint for hip adduction and abduction. The next joint applies hip extension and
flexion, and the third joint executes extension and flexion to the lower leg.

q =
[
qFL qFR qHL qHR

]
=

[
q0 . . . q11

]
(2.1)

As mentioned, the robot is controlled by torque. To control a joint, its motor must be
activated by the current. For a single joint, the desired torque to be applied can be
converted into motor current by the relationship:

τi = Ii KT N

where,

• Ii is the motor current denoted in Ampere [A]

• N is the gear reduction, here N = 9

• KT is the torque constant and defines the torque-current relationship of the motor,
here KT = 0.025 N m/A

which leads to:

Ii = τi

KT N
= τi

0.225 N m/A
(2.2)

2.1.4. Communication and Control Software of the Robot

As mentioned, all communication between the robot’s motor drivers and the off-board
control computer is combined on a master board. The control of the robot with a PC is
done via the network interfaces with an Ethernet cable or wirelessly via WiFi. When
controlling WiFi, acknowledgment (ACK) should be disabled, and multicast should be
used to ensure deterministic transmission time and prioritize new data packets.

7

2.1. Description of the robot CHAPTER 2. THEORETICAL BACKGROUND

The quadruped can be remotely controlled in real-time from a PC running Linux and
using Preempt RT patch. The sampling control loop is performed at 1 kHz. Through
a C++ software package, an API is provided to control the motor boards. The API can
also be controlled with Python bindings, allowing fast prototyping [3].

2.1.5. Calibration of the Robot

Before the robot can be used, the ground truth between the joint position and the index
position of the corresponding motor must be determined for all joints. This is ensured
by performing a calibration of the robot. The calibration has to be executed repeatedly
when the robot has been disconnected from the power supply. The reason for this is that
the encoders are incremental, so due to the gear ratio (see 2.1.3), the encoder detects
nine index pulses per joint revolution.

Figure 2.5.: Calibration tool attached to the robot in order to keep all joints in zero po-
sition and perform accurate calibration3.

To conduct a calibration procedure, all robot joints must be brought to zero position, as
demonstrated in Figure 2.5, before the robot is connected to the power supply. In order
to precisely set the joints to the initial position, the calibration tool should be used.

8

CHAPTER 2. THEORETICAL BACKGROUND 2.2. The State of the Robot

Once power is applied to the robot, the software searches by moving the joints for the
nearest index for each motor. When the index is detected, the offset between the zero
configuration and the index position is saved and used as a compensation term so that
the actual zero position can always be found uniquely. A problem can be caused when
the zero position and the index on the encoder are close together. In that case, the index
cannot be correctly detected. The issue becomes noticeable when a joint does not adopt
the desired starting position after calibration. It can be solved by disconnecting the
robot from the power supply, rotating the joint causing the problem, and rerunning the
calibration.

2.2. State of the Robot and its Frames

Unlike manipulators such as an industrial robot arm whose base is rigidly attached to a
fixed support, the base of quadrupeds moves because they can locomote. They have a
floating base, whereas a manipulator is a fixed base robot.

In the case of a robot with a floating base, there is a need to express its position and
orientation with respect to a reference frame. Generally, this frame is called an inertial
frame. In robotics, it is often denoted as the global frame or world frame. Further, the
base frame is often called the body frame.

Since the base frame is relative to the robot, it is a local frame. It is often convenient to
define other local frames to keep some sub-tasks simple and avoid unnecessary trans-
formations. In terms of an application with a solo, for example, for a manipulation
involving only one leg, a local frame is defined at the shoulder of the corresponding leg.
For that task, it may be interesting to describe the end position of the leg, also often
denoted as end-effector, with respect to the local frame. In Figure 2.6 for the front left
leg a local frame lA is defined as an example.

Finally this allows to express the robots pose in the world coordinate frame as follows:

3https://github.com/open-dynamic-robot-initiative/open_robot_actuator_h
ardware/blob/master/mechanics/general/robot_calibration.md#robot-calibration
(06.2022)

9

2.2. The State of the Robot CHAPTER 2. THEORETICAL BACKGROUND

OP =
[
x y z ϕ θ ψ

]⊺

Where x, y and z are expressed in Cartesian coordinates and the orientation is declared
with Trait-Bryan Euler angles. In which ϕ stands for roll, θ for pitch and ψ for yaw.
Sometimes the orientation of the base is also expressed with quaternions. In that case ϕ,
θ, ψ would be replaced by ϵ0, ϵ1, ϵ2, ϵ3, so that OP ∈ R7

In order to express the state of the robot not only the pose OP but also the joint configu-
rations q (2.1) are necessary. By concatenating them, the state of the robot at a specific
time t can be described as follows:

Oxt =

OP
q

 =
[
x y z ϕ θ ψ q0 . . . q11

]⊺
(2.3)

Figure 2.6.: Illustration of possible leg and knee configurations of the Quadruped Solo
12.

10

CHAPTER 2. THEORETICAL BACKGROUND 2.3. General Robotic Concepts

2.3. General Robotic Concepts

In this section, general basic concepts used in robotics are introduced. For simplifica-
tion, often a fixed robot arm is often assumed to derive a method. Most of the time,
these concepts can be either directly or with some constraints adapted to legged robots.
Whereas including such constraints can cause very complex behavior in the model, not
all concepts are introduced specifically for legged robots here.

The information in this chapter has been compiled from these sources [5, 4].

2.3.1. Robot Kinematics

Generally, robot kinematics relies on the study of the movement of robotic systems based
on multi-degree of freedom kinematic chains. It is assumed that the robot’s links are
rigid bodies, and all joints apply either pure rotation or translation. The main goal is
to have a concept that describes the relationship between the robot’s joint coordinates
and its spatial layout. These two-state spaces are often denoted as joint space and task
space. Sometimes the term workspace is used as a synonym for task space, but mostly it
is referred to as the set of points and orientation configurations the robot’s end-effector
can reach.

Kinematics plays a crucial role in many tasks in robotics. For example, to describe a path
and its joint configurations, move a manipulator’s robot’s end-effector from position A
to B, or check a given sequence of joint configurations if its execution would cause a
collision with obstacles.

For legged robots, the concepts of kinematics are mainly used for movements of the
legs, such as for locomotion, during a foot is in the swing phase. However, also in
combination with robotic dynamics, it is essential to have kinematics.

11

2.3. General Robotic Concepts CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.7.: Forward Kinematics (FK) of a two-link planar manipulator, with the at-
tached reference frame on its links. The z-axes all point out of the page.

2.3.1.1. Forward Kinematics

FK refers to the computation of resulting motions respectively position x(t) in task frame
from a joint-angle motion or configuration q(t).

Mathematically, it can be written as a function FD such that:

FK: Rn → R6,

x(t) = FK(q(t)) (2.4)

A detailed description about FK and how to solve it, is available in the appendix A.3.

2.3.1.2. Inverse Kinematics

In many robotics applications, an action is defined in task space, and the robot should
perform it by applying a control command. That may be moving the end-effector along a
specified path or, in the case of a legged robot, lifting a leg to reach the desired position.

12

CHAPTER 2. THEORETICAL BACKGROUND 2.3. General Robotic Concepts

Since a robot applies commands with its actuators and their positions are represented in
joint space, a method is necessary to translate task space coordinates to the joint space.
The concept for that is called Inverse Kinematics (IK) which carries out the opposite
mapping of FK such as:

FK−1: R6 → Rn,

q(t) = FK−1(x(t)) (2.5)

In general, unlike FK, IK cannot be solved in a closed-form manner. There may ex-
ist multiple solutions, an infinite number of solutions, or even no possible solution is
available to fulfill an IK problem.

A common way to solve the IK problem is described in detail and presented in the ap-
pendix A.4.

2.3.2. Robot Dynamics

In the previous section about robot kinematics, it was described how things move in a
robotic system. On the other hand, robot dynamics is concerned with the forces and
torques which are responsible for the motion. In robotics, there are the two main prob-
lems related to dynamics:

• ForwardDynamics (FD): given the forces, compute the accelerations (see 2.3.2.3).

• Inverse Dynamics (ID): given the accelerations, compute the forces (see 2.3.2.4).

To understand why and how something in the system is moving, we look at the equation
of motion of a general physical system as well as for a robot mechanism. In the case
of a physical system, it describes the motion as a function of time and external optional
control inputs as follows:

F (q(t), q̇(t), q̈(t), u(t), t) = 0 , (2.6)

13

2.3. General Robotic Concepts CHAPTER 2. THEORETICAL BACKGROUND

where:

• t is the variable indicating the time,

• q is the vector for generalized coordinates of a system, e.g. the vector of joint-
angles for a manipulator,

• q̇ is the velocity (first time-derivative) of q,

• q̈ is the acceleration (second time-derivative) of q,

• u is the vector of control inputs.

2.3.2.1. Case of Manipulators

For some controlling tasks, it makes sense to see a single leg of the quadruped as a
separate fixed-base robot arm. We assume that the robot’s whole body is fixed to the
environment, and the constraint is strong enough to hold back any force applied to it.
With this supposition, the equation of motion for a manipulator can be written as follows:

τq = M(q)q̈ + c(q, q̇) + g(q) + τext , (2.7)

where, n = dim(q) denotes the degree of freedom of the system,

• τq ∈ Rn is the vector of actuated joint torques,

• M(q) ∈ Rn×n is the inertia matrix (symmetric positive-definite),

• c(q, q̇) ∈ Rn is the vector with the Coriolis and centrifugal terms,

with c(q, q̇) = q̇⊺Γ(q)q̇,

where Γ(q) ∈ Rn×n×n represents the Coriolis tensor,

• g(q) ∈ Rn is the vector of joint torques caused by gravity,

• τext ∈ Rn is the vector with external torque caused by extrinsic force from the
environment.

14

CHAPTER 2. THEORETICAL BACKGROUND 2.3. General Robotic Concepts

Compared to the general form of the equation of motion mentioned above, the formula
for the manipulator is time-invariant. That means based on the current state of (q, q̇)
and the applied torque τ it is possible to compute directly the resulting joint accelera-
tions (q̈). So the system has no memory, independently of how the system reached a
configuration, based on the current state and the given torque, the system will always
accelerate in the same manner.

2.3.2.2. Case of Legged Robots

Legged robots such as humanoids or quadrupeds are not fixed to the environment and are
denoted as floating base systems. Further, their legs can have or break contact with the
environment. In order to describe its state, besides the vector of the joint configurations,
the position and orientation of the floating base frame with respect to the global frame
are also necessary.

Thus, to describe the robots state with n actuated joints, leads to q ∈ Rn+6. Since
the vector of actuated torques τ has just n entries, fewer degrees of freedom than the
system itself, the system is underacted. It is impossible to control all degrees of freedom
directly.

Contact with environment

Kinematically, a contact of a leg with the environment can be expressed as equality as
follows:

pCi
(q) = pDi

,

where Ci is the position of a robot’s point in the inertial frame that is in contact with the
environment (i.e., a leg is in contact with the ground) and Di expresses a fixed point in
the same frame. The point fixes position even so velocities and accelerations:

15

2.3. General Robotic Concepts CHAPTER 2. THEORETICAL BACKGROUND

ṗC = 0 ⇒ JC(q)q̇ = 0
p̈C = 0 ⇒ JC(q)p̈ + q̇⊺HC(q)q̇ = 0

JC is the Jacobian of the contact constraint, and HC its Hessian.

If the robot would have nc such contacts with the environment, there would be k con-
straints and the equation of motion becomes to [7]:

M(q)q̈ + c(q, q̇) + g(q) = S
⊺
τ +

nc∑
i=1

J
⊺
Ci

fi (2.8)

where, nq = n+ 6,

• S ∈ Rn×nq is the selection matrix of actuated joints.

In case the six floating base coordinates are the first entries of q,

then S = [06×n In],

• JCi
∈ R3×nq is the Jacobian of the location Ci of the position vector pCi

,

• fi ∈ R3 is the vector of the external forces acting on the robot at the contact point
Ci.

The contact points Ci are located at the interface between the robot’s limbs and the
environment. Suppose there is a surface contact and the robot’s surface is in full contact
with an environmental surface. In that case, it is sufficient to take only the contact points
Ci at the vertices of the contact polygon instead of the whole surface [6].

2.3.2.3. Forward Dynamics

FD also known as direct dynamics, is the general term for calculating resulting motion
from forces. Based on a robot system with a given configuration q, generalized veloc-
ity q̇, applied joint torques τ and contact force f , the resultant joint accelerations q̈ is
computed so that the constrained equations of motion are satisfied.

16

CHAPTER 2. THEORETICAL BACKGROUND 2.3. General Robotic Concepts

M(q)q̈ + c(q, q̇) = S
⊺
τ + g(q) + τext + JC(q)⊺f (2.9)

JC(q)q̈ + q̇
⊺
HC(q)q̇ = 0

It can be mathematically written as function FD such that:

q̈ = FD(q, q̇, τ ,f)

FD is mainly used for simulation-related tasks. For example, the motion of a robot in a
simulation environment should be represented and tracked, depending on a given applied
torque input that is applied on its actuators. Generally, forward dynamics problems are
characterized by high computational complexity.

2.3.2.4. Inverse Dynamics

ID is concerned with the calculation of forces from motions. By satisfying the con-
strained equation of motion (2.9), the joint torques τ and the external force f is worked
out based on a robot system with a given configuration q, generalized velocity q̇ as well
the generalized acceleration q̈.

It can be mathematically written as function FD such that:

(τ, f) = ID(q, q̇, q̈)

In case of the linear optimization problem is fully determined, the expression is well-
defined. For a fixed robot arm, this is often satisfied, but so mostly not for legged robots.
A common approach, in that case, is to shift the external force component, for example,
to a contact model, where the force is given. Thus the joint torques can be calculated.
Mathematically, the function can now be formulated such that:

(τ) = ID(q, q̇, q̈, f)

17

2.3. General Robotic Concepts CHAPTER 2. THEORETICAL BACKGROUND

2.3.2.5. Algorithms to Solve Dynamics Problems

In robotics dynamics application, the most commonly used main algorithms are the fol-
lowing three [8, 9] :

• RNEA: The recursive Newton-Euler algorithm solves the inverse dynamics prob-
lem and grows with a complexity O(n). It allows to calculate c(q, q̇)+g(q) from
(2.8), respectively by modification this terms separately.

• ABA: The articulated-body algorithm, is used to calculate the unconstrained for-
ward dynamics. It has a computational complexity of O(n).

• CRBA: The composite-rigid-body algorithm can be used to compute the joint
space inertia matrix M(q) based on the given joint configuration. The com-
putational complexity is of O(n2). It can also be used for FD in com-
bination with RNEA by calculating c(q, q̇) + g(q) first, and solve then
M(q)q̈ = τ − (c(q, q̇) + g(q) + τext) with respect to q̈ (i.e. based on (2.7)).
This leads to a computational complexity of O(n3).

Libraries Based on Dynamics Algorithms

The rigid body dynamics library Pinocchio, which is used for some controlling tasks of
Solo, relies on these three algorithms depending on the optimization task. The simulation
environment that is used, PyBullet with its dynamic simulator Bullet, uses ABA. In
comparison, the inverse dynamics computation is based on RNEA. The library TSID,
which is used for solving inverse dynamics-related problems in task space, is based on
RNEA too.

2.3.2.6. Dynamics in the Task Space

An alternative form to represent the equation of motion is the operational space formu-
lation. For some applications, it is more convenient to express the dynamics in the task
space, e.g., the end-effector coordinate system, instead of in the space of joint motions,

18

CHAPTER 2. THEORETICAL BACKGROUND 2.3. General Robotic Concepts

respectively, joint forces and torques. The following system assumes a fixed base robot
arm, wherein the task space position and orientation is considered. Therefore in the
equation, wrenches (force, torque) are equalized.

To describe the end-effector dynamics in that way, J(q) must be invertible to ensure a
unique mapping between joint velocities and twists of the end-effector. The operational
space dynamics can then be expressed such as:

Λ(q)V̇ + µ(q, q̇) + ρ(q) = F ,

with:

Λ(q) =
(
J(q)M(q)−1J(q)⊺

)−1
,

µ(q, q̇) =Λ(q)
(
J(q)M(q)−1c(q, q̇) − J̇(q)q̇

)
,

ρ(q) =Λ(q)J(q)M(q)−1g(q) ,

where:

• V̇ ∈ R6 is the time derivative of the Twist of the end-effector with,

V̇ = [a⊺, ω̇⊺]⊺ with linear acceleration and angular acceleration,

• Λ(q) ∈ R6×6 represents the mass inertia matrix for the end-effector,

• µ(q) ∈ R6 is the vector that contains Coriolis and centrifugal force terms in the
task space,

• ρ(q) ∈ R6 is the vector with gravity terms,

• F ∈ R6 is the vector representing the end-effector’s wrench.

Further, the components Λ, µ and ρ are expressed in terms of the joint configuration and
not the end-effector configuration because there may be several joint configurations to
fulfill the given end-effector configuration. The wrench acting on the end-effector can
be translated into joint space torque as follows:

τ = J
⊺(q)F

19

2.4. Control Theory in Robotics CHAPTER 2. THEORETICAL BACKGROUND

2.4. Control Theory in Robotics

In the previous sections, the basics of robotics systems were presented. This allows us
to describe how a robot reacts based on the current state and given input. Mainly the
goal is to control the robot to apply the desired task.

There is maybe the question of why is there a need for a controller because, as described
in 2.3.1.2, IK is already a tool that allows, for example, to reach a robot arm the desired
position in task space, if joint positions control the robot. This thought might be rea-
sonable, but ordinarily, a task should be executed with controlled movements and in an
optimal way. In addition, sometimes, a tool is required to respond to a perturbation so
that the robot can still comply with its task. The controller usually performs this part
in a robot control system. Various kinds of controllers mainly differ by complexity and
capacity.

This section introduces the most common controllers in robotics, revealing their main
properties. Furthermore, it is shown how to construct a controller based on a linear
dynamical system and different ways to obtain the optimal control commands.

2.4.1. Linear Dynamical Systems

When a robot is in action, the state changes continuously over time. A dynamical system
is often set up to track or model a robot. The state can include different terms depending
on the model or the system. In the case of a quadruped, this could be the joint config-
uration of one leg and its velocities, the pose and its velocity, or even the whole state
vector as described in (2.3) including its velocity. The velocity term doesn’t have to
be included, but in most application it is considered, since it allows also to express the
behavior in terms of its momentum.

The standard representation for modeling a dynamical system is an equation associating
the state and control input with the derivation of the state. It is a representation of the
equations of motion (2.6) and can be written:

ẋ(t) = f(x(t),u(t)) ,

20

CHAPTER 2. THEORETICAL BACKGROUND 2.4. Control Theory in Robotics

where:

• x ∈ Rn is the state variable,

• u ∈ Rm indicates the control input variable.

In general, the function f can be nonlinear with respect to its arguments. Preferably,
the dynamics were modeled linearly so that the dynamical system can be described as a
linear, time-invariant (LTI) system. Unfortunately, in practice, this is often not the case.
A common approach to handle this problem is to simplify the system so that the main
characteristics are still preserved, and some other effects can be neglected. In state-space
representation with time-varying dynamics, it takes the form of:

ẋ = Ac
tx(t) + Bc

t u(t) , (2.10)

where:

• Ac
t ∈ Rn×n is the system matrix,

• Bc
t ∈ Rn×m is the input matrix.

To transfer the system to the trajectory level, in order to describing the evolution of the
system in a vector form after, the dynamics can be discretized:

At = I + Ac
t∆t, Bt = Bc

t ∆t, ∀t ∈ {1, . . . , T},

xt+1 = At xt + Bt ut (2.11)

2.4.1.1. Open-Loop and Closed-Loop Control

In general, a distinction is made between two primary control architectures. The main
difference between the two is feedback. On the one hand, open-loop control systems
don’t get feedback and operate just with inputs (Figure 2.8). On the other hand closed-
loop control systems get feedback from the output-state (Figure 2.10) [10].

21

2.4. Control Theory in Robotics CHAPTER 2. THEORETICAL BACKGROUND

In the block diagrams to represent the different control architectures, the following no-
tations are used:

• xd(t): desired signal or reference, in literature often denoted as r(t)

• x(t): output of the process, often referred as y(t)

• xest(t): feedback term, could be i.e. measurement or estimation of the signal

• e(t) error term i.e. e(t) = xd(t) − x(t)

• u(t) control input to the system

• d(t) disturbance term acting on the system

Controller System
u(t)xd(t) x(t)

Figure 2.8.: Schematic diagram of the open-loop control system, which is also denoted
as a non-feedback system.

Because open-loop controllers often require some human intervention, they are rarely
used in robotics as stand-alone controllers. In the category of non-feedback systems,
there exists a subcategory called feed-forward control systems (Figure 2.9). This control
design can adjust its input based on known disturbances. Often the disturbances are
measured or modeled and passed to the controller, which can adjust the original control
command to compensate for the perturbation acting on the system.

Although open-loop controllers do not provide feedback, they are an essential tool in
robotic control systems. Mainly they were used in combination with closed-loop sys-
tems, as later shown and applied, and represent a powerful utility tool. Likewise, it
plays an essential role as a planning tool; it is often easier to compute an open-loop
trajectory.

22

CHAPTER 2. THEORETICAL BACKGROUND 2.4. Control Theory in Robotics

Disturbances

Feedforward
Controller System

u(d, t)xd(t)

d(t)

x(t)

d(t)

Figure 2.9.: Feed-forward control architecture, since this controller does not get any
feedback, it belongs to the category of open-loop controllers.

The main feature of closed-loop control is that the control function can observe the sys-
tem’s state by feedback, for example, in the form of sensor output. This property allows
the robot to react to disturbance and change the control input accordingly to achieve the
desired task. The controller is a fully automatic control system since its control action
depends on the output.

Controller System

Disturbances

u(x, t)

Feedback

xd(t)

d(t)

e(t) x(t)
−

xest(t)

Figure 2.10.: Control architecture of a closed-loop controller.

Despite the previously mentioned advantages, the closed-loop controller also has its
limitations. Depending on how feedback is provided, a delay, or the noise-term of a
sensor measurement, can cause problems. So the feedback may lead to an oscillatory
response or event to a loss of stability. Two closed-loop control systems are introduced
below.

23

2.4. Control Theory in Robotics CHAPTER 2. THEORETICAL BACKGROUND

2.4.2. PID Controller

The Proportional–Integral–Derivative (PID) controller is a feedback control loop mech-
anism, consisting of proportional, integral, and derivative terms (Figure 2.11). The PID
controller can be written in the general continuous form:

u(t) = Kp e(t) + Ki

∫ t

0
e(t′) dt′ − Kd

de(t)
dt

, (2.12)

where Kp, Ki and Kd ∈ Rn×n are positive-definite gain matrices. The physical mean-
ing of the three consisting parts can be seen as follows:

• P: implies the present effort to transform a present state into a desired state.

• I: describes the accumulated effort taking into account the experience information
of the previous states.

• D: reflects the prediction effort, which is the information about trends in future
states.

P Kpe(t)

I Ki

∫
e(t)dt

D Kd
e(t)
dt

∑e(t) ++

+

u(x, t)

Figure 2.11.: Block diagram of a PID controller. To represent a system with PID con-
trol, the whole diagram can be substituted with the Controller block in
Figure 2.10.

The PID controller is widely used for robotic applications, mainly because of its sim-
plicity and clear physical meaning. A typical control method in robotics, which is also
used in this work, is the usage of PD control in joint space with gravity compensation

24

CHAPTER 2. THEORETICAL BACKGROUND 2.4. Control Theory in Robotics

[11]. This means just the proportional and derivative terms were used. The controller
can be described:

τ = Kp(qd − q) − Kd q̇ + g(q) (2.13)

By converting this controller into the system (2.8) with assumption of no external force,
the closed-loop controller is obtained:

M(q)q̈ + c(q, q̇) + S
⊺ (Kp(qd − q) − Kd q̇) = 0, (2.14)

where its equilibrium state is complied with [(qd − q)⊺, q̇⊺]⊺ = 0. However, it should
be taken into account that PD respectively PID control does not guarantee optimal con-
trol.

2.4.3. Linear Quadratic Regulator

Just like PID, Linear Quadratic Regulator (LQR) is also a closed-loop controller and
works with feedback. It is a widely used method for computing the control signal by
modeling it as an optimization problem. The approach tries to minimize a cost function
to get optimally controlled feedback gains to construct a stable and high-performance
closed-loop system.

The LQR problem [12] can be formulated as the minimization of the cost, by consider-
ing the underlying linear discrete-time system introduced in subsection 2.4.1 and initial
state x1.

c(x1,u) = cT (xT) +
T −1∑
t=1

ct(xt,ut) (2.15)

= x
⊺
T QT xT +

T −1∑
t=1

(
x
⊺
t Qtxt + u

⊺
t Rt ut

)
,

s.t. xt+1 = Atxt + Btut, ∀t ∈ {1, . . . , T}, (2.16)

25

2.4. Control Theory in Robotics CHAPTER 2. THEORETICAL BACKGROUND

where Qt ∈ Rn×n and Rt ∈ Rm×m are positive definite diagonal matrices. Qt is the
precision matrix and Rt is the control weight matrix, to determine the penalizing cost
on high control commands.

The state feedback gains Kt can be obtained with the help of solving the discrete-time
algebraic Riccati tion, by using the dynamic programming principle. First the matrices
Vt have to be calculated by performing a backward recursion. The backward pass is
initialized by setting the terminal condition VT = QT , in order to compute Vt:

Vt = Qxx,t − Q
⊺
ux,t Q−1

uu,t Qux,t. (2.17)

with Qxx,t = A
⊺
t Vt+1At + Qt,

Quu,t = B
⊺
t Vt+1Bt + Rt,

Qux,t = B
⊺
t Vt+1At.

(2.18)

The control commands ut can be retrieved by using the forward integration:

ut = − Ktxt , (2.19)

with the feedback gain

Kt =
(
B

⊺
t VtBt + Rt

)−1
B

⊺
t VtAt (2.20)

and the computation of the evolution of the state, by using the linear system (3.13) start-
ing from its initial state x1.

2.4.4. Linear Quadratic Tracking

The LQR controller can also be extended to a closed-loop controller with an additional
feed-forward part. In that case, the controller can be formulated as a Linear Quadratic
Tracking (LQT) problem so that a discrete-time finite-horizon LQR is computed be-
tween each state. This can be set up with the help of expressing the tracking problem

26

CHAPTER 2. THEORETICAL BACKGROUND 2.4. Control Theory in Robotics

to a regulation problem by redefining the state definition to an augmented state. The
augmented dynamical system is expressed:

xt+1

1

︸ ︷︷ ︸

x̃t+1

=

A 0
0 1

︸ ︷︷ ︸

Ã

xt

1

︸ ︷︷ ︸

x̃t

+

B

0

︸ ︷︷ ︸

B̃

ut, (2.21)

Q̃t =

Q−1
t +µtµ

⊺
t µt

µ⊺
t 1

−1

∀t ∈ {1, . . . , T},

where Q̃t is the augmented tracking weight matrix and µt is the target signal to be
tracked.

The tracking problem can be solved in the same manner as for the standard LQR, just
by redefining the cost function (2.15), based on the variables defined in the augmented
representation. After the backward recursion, the system can be decomposed. This leads
finally to a control policy with an error term, handled by the feedback-gain, and feed-
forward term uff

t , that also depends on the solution of the Riccati equation.

ût = −K̃t x̃t with K̃t =
[
Kt,kt

]
= Kt (µt − xt) − (kt + Ktµt)︸ ︷︷ ︸

uff
t

, (2.22)

where K̃t is obtained just as in (2.20), but again by using of the augmented variables
introduced in (2.21).

27

3. Methodology

3.1. Centroidal Momentum Dynamics

Legged robots locomotion is often modeled by the representation of its Center of Mass
(CoM), and thus tasks are also planned with CoM trajectories. Different approaches are
used in practice to model the dynamics and the contact with the environment. A com-
mon way is to represent the translational dynamics using a linear inverted pendulum
and model it as point-mass-model. This simplified model allows to represent the dy-
namics linearly and formulate optimal control problems so that the minimizing function
remains quadratic. The main drawback of this representation is that it does not charac-
terize the rotational inertia owing to the assumption that net angular momentum is zero,
even though it has important implications for gait and balanced behavior [13].

On the other hand, considering the whole body dynamics on the whole-body level leads
to a large and complex optimal control problem, and a numerical solver cannot solve
it directly. One method that has recently gained popularity is mapping the dynamics
to the centroidal space. This means the dynamics of a legged robot are projected at its
CoM. The CoM represents the location of its effective total mass and, therefore, the
point at which the robot’s total linear momentum and angular momentum are naturally
defined[14].

28

CHAPTER 3. METHODOLOGY 3.1. Centroidal Momentum Dynamics

Figure 3.1.: Diagram to represent the different spaces that are used to describe robot dy-
namics and its relationships.[15] The matrix H expresses the inertia matrix
in joint space, in this work introduced as M in Equation 2.7. The system
space, also denoted as whole body space, consists of N rigid body links of
the robot, always expressed with the 6 motion components. The CoM space
defines a frame located at the robot’s CoM.

The centroidal momentum of a floating base robot is the aggregated momentum of the
individual link momenta acting on the system and can be calculated with the Centroidal
Momentum Matrix AG(q) ∈ R6×n+6 as follows:

hG = A(q)Gq̇ (3.1)

The resulting centroidal momentum vector hG depends finally just on kinematic quan-
tities, where the Centroidal Momentum Matrix acts as a linear matrix function.

The centroidal dynamics representation allows to model whole-body dynamics by re-
ducing the space dimension. Nevertheless, the dynamics remain no longer linear, so
optimal control problems may be non-convex. The following methods and models for

29

3.2. Kino-Dynamic Motion Planner CHAPTER 3. METHODOLOGY

planning and control problems are based entirely or in an adapted form on centroidal
dynamics.

3.2. Trajectory Planning with Kino-Dynamic Motion
Generation

A typical control schema to control a robot is composed of a planner and a controller
part. The main purpose of the planner is motion planning by incorporating interaction
forces. Withal dynamical constraints should also be fulfilled to ensure the feasibility
of the motion in practice. This task often leads to a high complexity problem because
different sub-problems related to kinematics and dynamics have to be solved. Therefore
mostly, the path planning task is carried out offline.

The planner that is used in this work is based on the approach described in the paper
Structured contact force optimization for kino-dynamic motion generation [16]4. The
code for the planner used in this work was implemented and provided by the New York
University and the Max-Planck Institute for Intelligent Systems.

The starting situation is given a set of predefined contact points with a reference contact
force profile over time, and the goal is to find an optimal trajectory that is consistent
with the full robot dynamics. The optimization problem is split into two sub-problems
and is solved alternately. The procedure is briefly explained here.

The equations of motions of a legged robot (2.8) can be separated into an 6 row under-
actuated part (subscript u) and into an n row actuated (subscript a) dynamics part:

Mu(q)q̈ + Nu(q, q̇) =
nc∑

i=1
J

⊺
i,uλi, (3.2a)

Ma(q)q̈ + Na(q, q̇) = τq +
nc∑

i=1
J

⊺
i,aλi, (3.2b)

4https://github.com/machines-in-motion/kino_dynamic_opt (06.2022)

30

CHAPTER 3. METHODOLOGY 3.2. Kino-Dynamic Motion Planner

where M is the inertia joint space matrix, the vector of non-linear terms N containing
Coriolis, centrifugal, gravity and joint friction forces, Ji is the associated Jacobian of
the i-th end-effector contact with the acting wrench λi.

The under-actuated part (3.2a) of the dynamics can be expressed with respect to the CoM
via the centroidal momentum matrix (3.1), so the dynamic depends on joint configuration
and velocities. On the other hand, the rate of centroidal momentum ḣG can be derived
from the Newton-Euler dynamics [17], which equals the total wrench generated by the
external contacts and the gravitational force. This leads to the following relation:

AG(q)q̈ + ȦG(q)q̇ =

 mg + ∑nc
i=1 fi∑nc

i=1(pi − xCoM) × fi + τi

︸ ︷︷ ︸

ḣG

, (3.3)

where pi is the location of the contact i and xCoM the position of the CoM, both computed
with FK. fi and τi are the force respectively torque sub components of the wrench vector
λi acting on contact i.

The problem is decomposed into two steps to solve the planning process and comply
with the equations of motion for a floating base system.

The first task is to find a vector of joint trajectories q(t) in combination with contact force
profiles λ(t) satisfying equation (3.3), assuming kinematic reachability. Secondly, the
joint torques τq(t) can be computed with equation (3.2b), under the assumption sufficient
joint torque can be provided by the actuators.

The whole motion generation task can be formulated as an optimal control problem as

31

3.2. Kino-Dynamic Motion Planner CHAPTER 3. METHODOLOGY

follows:

min.
q,h,λ,c

J(q,h,λ, c) =
∑

t

Jt(qt) + J ′
t(ht,λt, ct) (3.4)

s.t. ct,i = pi(qt) (3.5)

ht =

xCoM(qt)
AG(qt)q̇t

 (3.6)

ht+1 = ht + ∆f t(ht,λt) (3.7)

λt, ct ∈ St, ∀t, (3.8)

where Jt(qt) is the objective function related to the kinematic sub problem (i.e. move
one leg from a contact via-point to another) and J ′

t(ht,λt, ct) the objective function
on momentum, force profile and contact locations. S is the set denoting all the valid
force profiles, such as the contact forces lie in a feasible friction cone. The momentum
equation (3.3) is defined as constraint in (3.7) with discretization of a time-step ∆ and
the function:

ḣ =

 ṙ
ḣG

 =

ṙ
l̇
k̇

 =

1
m

l
mg + ∑nc

i=1 fi∑nc
i=1(pi − xCoM) × fi + τi

 = f (h, λ), (3.9)

where r, l, k are CoM position, the linear and angular momentum.

3.2.1. Functionality of the Algorithm

Based on the desired, predefined contact points with its reference contact force profiles
and CoM positions, λ̄, h̄, c̄ can be initialized. After the kinemtatic related sub-problem
is solved first.

Kinematic Sub-problem

The sub-problem is an unconstrained optimization problem, respectively the constraints

32

CHAPTER 3. METHODOLOGY 3.2. Kino-Dynamic Motion Planner

(3.5, 3.6) from the original problem are considered in the cost function and become soft
constraints.

min.
q

∑
t

Jt(qt) + ∥

xCoM(qt)
AG(qt)q̇t

 − h̄t∥2 + ∥pi(qt) − c̄t,i∥2 (3.10)

The optimization problem is solved with a Gauss-Newton method. After minimizing
over q, momentum and contact locations are updated:

h̄, c̄i :=

xCoM(qt)
AG(qt)q̇t

 ,pi(qt)

The second sub-problem is then solved with the previously updated variables.

Momentum and Contact Force Related Sub-problem

In that optimization problem joint states q are ignored. Therefore contact locations ct,i

and momentum ht were introduced in the global optimization problem as redundant
variables. This optimization problem is non-convex, but well structured and solved with
a modified primal-dual interior-point method [18].

min.
h,λ,c

∑
t

∥ht − h̄t∥2 +
nc,t∑

i

∥λt,i − λ̄t,i∥2 + ∥ct,i − c̄t,i∥2 (3.11)

s.t. ht+1 = ht + ∆ft(ht,λt) (3.12)

λt, ct ∈ St, ∀t (3.13)

Afterwards the obtained momentum and contact locations are again updated:

h̄, c̄i := h, ci

Subsequently, the algorithm moves again back to the first sub-problem (3.10) by using
the updated variables h̄, c̄i. The two sub-problems will be optimized alternately until

33

3.3. Impedance Controller CHAPTER 3. METHODOLOGY

the solutions of the two sub-problems do not change anymore. The resulting solution
is a consensus between both optimization problems, a locally optimal solution for the
global full kino-dynamic plan.

3.3. Impedance Controller

A Cartesian impedance controller is used to apply some basic movements and tasks
with the Solo robot, based on the approach presented in [3]5. The physical definition of
mechanical impedance is the ratio of power to velocity, which describes the resistance
that a material opposes to a mechanical harmonic force, depending on the phase angle
of the vibration.

When a quadruped interacts with its environment, it causes a reaction of the robot and
the environment. The robot’s response is like an impedance, and the environment reacts
as an admittance, which is the inverse of impedance. With the help of an impedance
controller, the caused motions and their contact forces can be modulated and controlled.
This control mechanism relies on a mass-spring-damper system [19] to model such be-
havior.

To each foot a local frame is attached with its origin to its hip (i.e. Figure 2.6 {lA}), so
that each foot can be represented such as in Figure 3.2. In addition to the springs in the
x and z directions, one acts along the y axis and points out of the page. A controller for
one leg with respect to its hip can be formulated as follows:

τ = J
⊺ (K(xd − x) − Dẋ) , (3.14)

where xd ∈ R3 represents the spring setpoint with respect to the local frame, x ∈ R3 is
the foot position, J the foot Jacobian and K ∈ R3 respectively D ∈ R3 are the stiffness
and damping matrices. τ is the actuation torques to apply to the motors. Finally, the
desired torque to apply on a joint can be converted into motor current by the relationship
described in (2.2).

5https://github.com/machines-in-motion/mim_control (05.2022)

34

CHAPTER 3. METHODOLOGY 3.4. Centroidal Motion Controller

Figure 3.2.: Cartesian impedance controller, consisting of three mass-spring-damper
system, acting in x, z and y direction, where the latter points out of the
page.

3.4. Centroidal Motion Controller

In section 3.1 the centroidal dynamics were introduced and it was shown that this repre-
sentation is suitable for modeling whole-body motion.

The following control structure is based on centroidal dynamics. It is used to control the
robot Solo 12 and is described in the publication An Open Torque-Controlled Modular
Robot Architecture for Legged Locomotion Research[3]. The code for the controller
used in this work was implemented and provided by the New York University and the
Max-Planck Institute for Intelligent Systems.

The controller is composed of three steps. The wrench at the CoM is computed in the
first phase. Secondly, the centroidal twist is distributed on the legs in contact with the
ground. The resulting force to be exerted is finally transferred so that joint torque is
obtained.

35

3.4. Centroidal Motion Controller CHAPTER 3. METHODOLOGY

3.4.1. Centroidal PD-Controller

The model for this controller assumes the position of the CoM fixed at the base frames’
origin. The controller presumes valid dynamics trajectories as input consisting of refer-
ence centroidal wrench W CoM, CoM position x̄CoM and its velocity, angular momentum
k̄, and base orientation ϵ̄. All variables denoted with a bar representing a reference value,
all other variables expressing measured states of the robot. The desired wrench WCoM

at the CoM is obtained as follows:

WCoM = W CoM +

Kc(x̄CoM − xCoM) + Dc(˙̄xCoM − ẋCoM)
Kb(ϵ̄ ⊟ ϵ) + Db(k̄ − k)

 ,

where Kc, Kb, Dc and Db are positive definite gain matrices. The operator ⊟ maps
the orientation error with the logarithm mapping into an angular velocity vector [4].
Because orientation and angular momentum control are mixed, a constant inertia tensor
is assumed to ensure consistency.

The reference wrench is either also provided from the planner or can be calculated with
the Centroidal Momentum Matrix AG(q) and the reference generalized joint velocities
and accelerations.

W CoM = AG(q̄)¨̄q + ȦG(q̄) ˙̄q (3.15)

36

CHAPTER 3. METHODOLOGY 3.4. Centroidal Motion Controller

Figure 3.3.: Illustration of the rigid-body model with centroidal dynamics and its units
needed to calculate the wrench acting on the robot’s CoM.

The wrench is distributed to the number of foots in contact nc at each control step by
solving the following Quadratic Programming (QP) problem:

min
fi,η,ζ1,ζ2

∑
i∈C

f 2
i + α(η2 + ζ2

1 + ζ2
2)

s.t. WCoM =
∑
i∈C

 fi

ri × fi

 + η

fi,x < µfi,z + ζ1, fi,y < µfi,z + ζ2 ∀i ∈ C,

where the feet in contact are determined by an AND condition, the reference and the
measured feedback need to indicate contact. The indexes for the feet which satisfy this
condition are part of C. The vector from the contact location to the CoM position is
denoted as ri, and the force to apply at the regarding contact location is labeled as fi ∈
R3, as shown in Figure 3.3. The variables η, ζ1 and ζ2 are introduced as slack variables in
order to make the QP always solvable, withα set to a large scalar weight. µ is the friction
coefficient, and z expresses the normal force direction perpendicular to the ground.

37

3.5. Control Architecture of a Reactive Controller CHAPTER 3. METHODOLOGY

A low impedance controller (e.g. (3.14)) is included in the control law to get the actuation
torques for all joints. So that the computed force and the impedance control amount can
finally be translated with the help of the foot Jacobian Ji. The impedance controller
part allows navigating the feet not in contact with the ground, for example, to execute
the swing trajectory during trotting. But it is also crucial to handle disturbance and hard
impact dynamics.

τi = J
⊺
i

(
fi + K(Bx̄i − Bxi) + D(B ˙̄xi − Bẋi)

)

3.5. Control Architecture of a Reactive Controller

This controller is based on an overall whole-body controller that receives ground reaction
forces from the MPC as well as the reference position of the feet in the swing phase
provided from footstep planner respectively swing foot trajectory planner, and computes
for all joints the actuation torques. The goal of this controller is to track the commanded
reference velocity from the joystick as closely as possible.

The controller is based on the Mini Cheetah [20], but implemented as well from the
Gepetto team, LAAS-CNRS[21]6. The control architecture is reused and just the MPC
implemented in this work.

Figure 3.4.: Control architecture of the reactive walking controller with its centroidal
MPC.

6https://github.com/Gepetto/quadruped-reactive-walking (05.2022)

38

CHAPTER 3. METHODOLOGY 3.5. Control Architecture of a Reactive Controller

3.5.1. MPC Formulation of the Controller

The MPC subpart of the control architecture relies on a simplified centroidal dynamic
model [22]. The goal is to find the optimal contact forces of the feet in the stance phase
over a given prediction horizon to follow the reference CoM trajectory as close as pos-
sible. The dynamics are modeled with second-order dynamics so that the state of the
robot is:

x(t)=
[
Θ⊺ x⊺

CoM ω⊺ ẋ⊺
CoM

]⊺
, (3.16)

where Θ is the robot’s orientation denoted with Z-Y-X Euler angles, with (ϕ, θ, ψ) the
roll, pitch and yaw angles and ω̇ ∈ R3 its angular velocity. xCoM ∈ R3 is the CoM
position, and ẋCoM the CoM velocity.

The MPC problem will be modeled with the help of a linear dynamical system such
as introduced in (2.10). The robot is modeled as a single rigid body with centroidal
dynamics (see Figure 3.3). In order to solve the optimization problem fast, and keeping
the dynamics linear, following simplifications were made:

(1) roll and pitch angels are small

(2) actual state of the robot is close to the desired next state

(3) pitch and roll velocities are small

The dynamics of the MPC in world frame can be written as follows:

ẍCoM =

∑
i∈C

fi

m
−

0
0
g

 (3.17)

d
dt

(Iω) =
∑
i∈C

(pi − xCoM) × fi , (3.18)

39

3.5. Control Architecture of a Reactive Controller CHAPTER 3. METHODOLOGY

where (3.17), expresses the rate of change of the linear momentum at the robot’s CoM,
and (3.18) the rate of change of the angular momentum at the CoM, where I is the
rotational inertia tensor.

Rotations of the body along the axes from body coordinates to the world frame and the
time derivative of that matrix can be expressed as follows [23]:

R = Rz(ψ)Ry(θ)Rx(ϕ) (3.19)

Ṙ = [ω]× R , (3.20)

where [ω]x ∈ R3×3 is the skew-symmetric matrix representation of the angular veloc-
ity.

Take advantage of the Simplifications

The rate of change of the robot’s orientation can be found from the inversion of the
rotation matrix denoted in (3.19) and with the angular velocity of the body, expressed
in the world frame. The first simplification (1) leads finally to relation in (3.21), so that
the transformation just can be expressed with the transpose of the rotation matrix along
the z-axis.

ϕ̇

θ̇

ψ̇

=

cos(ψ)/ cos(θ) sin(ψ)/ cos(θ) 0

− sin(ψ) cos(ψ) 0
cos(ψ) tan(θ) sin(ψ) tan(θ) 1

 ω

ϕ̇

θ̇

ψ̇

≈

cos(ψ) sin(ψ) 0

− sin(ψ) cos(ψ) 0
0 0 1

 ω

ϕ̇

θ̇

ψ̇

 ≈ Rz(ψ)⊺ω (3.21)

40

CHAPTER 3. METHODOLOGY 3.5. Control Architecture of a Reactive Controller

The rotational tensor of the body in world coordinates can then be expressed as:

I ≈ Rz(ψ) · BI · Rz(ψ)⊺

Based on the second simplification (2), the lever arm definition is adapted, so that the
predefined positions from the reference trajectory (variables denoted with a bar) are
used. The definition of the moment arm becomes to ri = p̄i − x̄CoM.

The third simplification (3), which additionally requires that the off-diagonal terms of
the inertia tensor are also small, keeps the rate of the angular momentum linear with
respect to its angular velocity. This means the effect of precession and nutation of the
rotating body are neglected. To equation from (3.18) becomes to:

d
dt

(Iω) = Iω̇ + ω × (Iω) ≈ Iω̇

≈
∑
i∈C

ri × fi , (3.22)

3.5.1.1. LQT Formulation with Constraints as QP Problem

Since all dynamic relations needed to express the robots state (3.16) are derived, the
linear dynamical system can be formulated by including the gravity term in the state as
follows:

d
dt

Θ

xCoM

ω

ẋCoM

g

 =

03 03 Rz(ψ)⊺ 03 03×1

03 03 03 13 03×1

03 03 03 0 03×1

03 03 03 03

[
0 0 −1

]⊺
0 0 0 0 0

︸ ︷︷ ︸

Ac(ψt)

Θ

xCoM

ω

ẋCoM

g

+

03 · · · 03

03 · · · 03

I−1[r1]× · · · I−1[r4]×
13/m · · · 13/m

0 · · · 0

︸ ︷︷ ︸

Bc(r1, · · · , r4)

f1

f2

f3

f4

 ,

and after discretization of the system with the method described in subsection 2.4.1, the
system becomes to:

41

3.5. Control Architecture of a Reactive Controller CHAPTER 3. METHODOLOGY

[
Θ⊺ x⊺

CoM ω⊺ ẋ⊺
CoM g

]⊺
︸ ︷︷ ︸

xt+1

= Atxt + Btut ,

with xt ∈R13×1,At ∈R13×13,Bt ∈R13×12,ut ∈R12×1.

Batch Formulation Based on Prediction Horizon

The input to the MPC is a reference trajectory denoted as prediction horizon. It consists
of all the states that should be tracked so that:

µ=
[
x⊺

ref,1,x
⊺
ref,2, . . . ,x

⊺
ref,T

]⊺
, with: xref,i =

[
Θ⊺

i x⊺
CoM,i ω⊺

i ẋ⊺
CoM,i g

]⊺
,

where for this implementation the prediction horizon is composed of 16 states so that
T = 16. Based on that, the cost function of the tracking problem can be defined as:

J = ||x − µ||2Q + ||u||2R, (3.23)

with x = [x⊺
1 · · · x⊺

T]⊺ and u =
[
u⊺

1 · · · u⊺
T −1

]⊺
. The evolution of the system over the

whole prediction horizon, given the initial state x1 is expressed with the batch formula-
tion, such as follows:

x = Sxx1 + Suu,

with the transfer matrices:

42

CHAPTER 3. METHODOLOGY 3.5. Control Architecture of a Reactive Controller

Sx =

I

A1

A2A1
...∏T −1

t=1 AT −t

 ; Su =

0 0 · · · 0
B1 0 · · · 0

A2B1 B2 · · · 0
...

...
. . .

...(∏T −2
t=1 AT −t

)
B1

(∏T −3
t=1 AT −t

)
B2 · · · BT −1

Figure 3.5.: Example of one MPC period with the task of moving the robot’s CoM in x
direction. The initial state of the robot is shown on the left picture, and the
target position on the right.

The system matrices At and Bt are constructed at each time step based on the reference
trajectory since At depends on the yaw angle of the robot and Bt on the lever arms.
Because of that, the dynamics are only accurate if the robot can follow the reference
trajectory. In practice, this is often not the case. But since the controller uses not the
whole control inputs but rather recomputes the MPC problem with the new initial state
from the robot estimator, the system can handle this limitation.

To overcome the issue of the minimization problem from (3.24) tends to keep the control
commands too small, and the robot loses at the end of the prediction horizon on height,
the cost function is modified. The problem is caused by the different scales of the sub-
cost values from the cost function. The control command is much higher than the cost to
go from one state to another. Since weighting the cost by reducing the costs on control,
commands causes a delay in the behavior, a reference control command to keep the

43

3.5. Control Architecture of a Reactive Controller CHAPTER 3. METHODOLOGY

robot’s height is included. The cost can be expressed as:

J = ||x − µ||2Q + ||u||2R + ||u − uref ||2R, (3.24)

with:

uref,i,t =

g m
nct
, i ∈ Ct

[0 0 0]⊺ , otherwise
∀t ∈ {1, . . . , T −1} ,∀i ∈ {1, . . . , 4} ,

where Ct is the set containing the legs in contact with the ground at time step t.

The minimizing problem can be expressed as a quadratic term of the form:

∥
(
S

⊺
uQSu + R

)
︸ ︷︷ ︸

Ã

û − S
⊺
uQ

(
µ − Sxx1

)
+ Ruref︸ ︷︷ ︸

b̃

∥2

The optimization problem can be converted into a standard QP form by setting
P = 2Ã⊺Ã and q = −2Ã⊺b̃ [24]:

min.
û

1
2û⊺Pû + q⊺û

s.t. Gû ≤ h

Ãû = b̃ ,

where the term with the inequality constraint expresses the friction cone constraints and
the fact that the normal force has to be positive since the robot cannot pull itself on the
ground, these conditions apply to all legs and at all time steps and are expressed such
as:

| fx |≤ µfz, | fy |≤ µfz, fz ≥ 0 fz ≤ fmax ,

44

CHAPTER 3. METHODOLOGY 3.5. Control Architecture of a Reactive Controller

where µ is the friction coefficient, the upper limit of the force is just applied to the z
component because the other constraints also limit the force along y and x directions.
For one leg, it can be expressed as follows:

0 0 −1
0 0 1

−1 0 −µ
1 0 −µ
0 1 −µ
0 −1 −µ

︸ ︷︷ ︸

L

fx,i

fy,i

fz,i

︸ ︷︷ ︸
ui,t

≤

0
fmax

0
0
0
0

︸ ︷︷ ︸

hi,t

The matrix G is a block diagonal matrix consisting of matrices L, so that G ∈ R(T −1)·24×12·(T −1)

and h ∈ R(T −1)·24 is built from the concatenation of hi,t vectors.

To ensure that no force is exerted on legs in contact with the environment, the corre-
sponding entries in the Bt input matrix are set to zero at that time step.

The resulting QP problem is solved with the python library quadprog, based on the Gold-
farb/Idnani dual algorithm [25].

45

4. Experiments and Results

4.1. Trajectory Replay

This approach aims to calculate the dynamics in advance and offline and, based on that,
control the robot with a suitable controller in a simulated environment. During the be-
havior in the simulation, the data is recorded and stored so that it can be sent directly to
the robot and its lower-level actuator controller afterward.

The schematic process of the method is shown in Figure 4.1. The planner described in
section 3.2 is used to generate feasible CoM trajectory by passing desired via-points. The
output is composed of sequences with joint positions q and joint velocities q̇, CoM po-
tion xCoM and its velocity ẋCoM, positions of feet x and its speed ẋ in the workspace and
a contact plan when which foot is in contact with the environment. The kino-dynamic
motion controller introduced in section 3.4, consisting of a centroidal PD-controller and
a Cartesian impedance controller, is applied in simulation to execute the planned trajec-
tories. During the simulation, the joint configurations, the joint velocity and the applied
joint torques τ are tracked and stored. Subsequently, the recorded data is used as input
to the robot controller to apply movements in real environments. The joint values act as
a reference for the robot controller, and the torque components provide a feed-forward
term.

46

CHAPTER 4. EXPERIMENTS AND RESULTS 4.1. Trajectory Replay

Planner
Controller in
Simulation

Controller
Robot

q, q̇,x, ẋ q, q̇, τ
CoM

via-points τ

Figure 4.1.: Process structure from the desired via-points as inputs to the planner, to
the desired actuation torque in order to finally execute movements with the
robot.

4.1.1. Jumping

The goal of this task is to apply a jumping motion with the quadruped Solo 12. The plan-
ner (see. 3.2) is used to generate a physically executable jump trajectory. The following
CoM via-points where provided to the algorithm:

• contact duration: t ∈ [0; 1] x⊺
CoM =

[
0 0 0.2

]⊺

• CoM via-point t = 1.25 x⊺
CoM =

[
0 0 0.7

]⊺

• contact duration: t ∈ [1.5; 3] x⊺
CoM =

[
0 0 0.2

]⊺
,

where a first-order friction cone defines the contact points (pyramid)[26]. Further, in
addition to a desired initial and final joint configuration (such as in Figure 3.3), another
joint via-point is closed to the time when the robot is supposed to jump off (t = 0.9)
is used. The aim is to keep the mass of the robot compact by having the legs as close
as possible to the center of mass. The corresponding joint configuration is visible in
Figure 4.2.

47

4.1. Trajectory Replay CHAPTER 4. EXPERIMENTS AND RESULTS

Figure 4.2.: Desired joint via-point configuration, before the robot is supposed to jump
off.

Output of the Planner

The planner was executed with the via-points described, which took roughly 20 seconds.
The algorithm should now have found a local optimum that satisfies both the kinematic
and dynamic objectives. The obtained CoM trajectory along the z axis and the regarding
contact plan of the legs is plotted in Figure 4.3.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

he
ig

ht
 (c

m
)

CoM position z-axis

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0

1
feet contact over time

Figure 4.3.: Resulting CoM trajectory along z axis.

Comparing the planner’s output of the feet contact plan with the desired feet contact

48

CHAPTER 4. EXPERIMENTS AND RESULTS 4.1. Trajectory Replay

periods shows that the planner can completely fulfill the desired contact conditions. On
the other hand, by comparing the desired CoM height with the output of the planner, it
is apparent that the planner cannot fully accomplish the jump height. Dynamical limita-
tions most probably cause this, or the time period when the legs are not in contact with
the environment is chosen too short.

Result in Simulation

By passing the planned trajectory to the controller (see. section 3.4) in simulated envi-
ronment, the robot behaves such as pointed out in Figure 4.4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

he
ig

ht
 (c

m
)

CoM position z-axis
resulting
desired

0.0 0.5 1.0 1.5 2.0 2.5 3.0
time (s)

0

1
feet contact over time

Figure 4.4.: Resulting CoM trajectory along z axis.

It turns out that the robot jumps significantly less high than planned, even though the
robot follows up to 1 second almost exactly the planned CoM position. Even by looking
at the velocity respectively at the acceleration of the CoM and comparing it with the
planned values, there’s no significant deviance. The cause could be a friction loss that
is not considered in the planning approach or that the gain coefficients of the centroidal
PD-controller are not well-tuned.

49

4.1. Trajectory Replay CHAPTER 4. EXPERIMENTS AND RESULTS

Behavior in Reality

The stored joint configurations, joint velocity and joint torques obtained from the sim-
ulation are finally applied to the real robot. On the first try, the robot switched to error
mode when the jumping motion started. Even by holding the robot so that no force acts
on the feet, the robot couldn’t execute the trajectory.

After testing some different PD-gains on the robot’s low-level controller, the robot man-
aged to execute the motion, while holding it. Putting the robot back on the ground the
time till the robot switched to error mode was longer, but the jumping still not success-
ful.

4.1.2. Trotting

This task aims to move the robot by walking at a trot. Contact time sections of the feet,
such as in Figure 4.5, were defined over a time period of 10 seconds. Additionally, 6
CoM via points were defined to reach in an average speed of 0.047 m/s and move the
robot in x direction.

0 2 4 6 8 10
time (s)

FR
FL
HR
HL

trotting pattern

Figure 4.5.: Desired trotting pattern, that is passed to the planner, where colored sections
indicating contact with the environment of the leg.

Output of the Planner

To generate the whole trajectory, the planner took this time around 90 seconds running
time. Some feet configurations are plotted from the output trajectory in Figure 4.6.

50

CHAPTER 4. EXPERIMENTS AND RESULTS 4.1. Trajectory Replay

0 2 4 6 8 10

0.20

0.15

(c
m

)

FL
HL

0 2 4 6 8 10
time (s)

0.20

0.15

(c
m

)

FR
HR

feet position along z-axis

0 2 4 6 8 10
0.1

0.0

0.1

(c
m

)

FL
HL

0 2 4 6 8 10
time (s)

0.1

0.0

0.1

(c
m

)

FR
HR

feet position along x-axis

Figure 4.6.: Feet trajectory in task space with respect to the CoM of the robot, obtained
from the planner.

The values along the z dimension are negative at the beginning because they are denoted
in the robot’s base frame. It turns out that the planner has scheduled feet to swing phases,
where the highest distance to the floor is about 5 centimeters. By looking at the position
of the feet in the x direction, it is noticeable when a foot is in the swing phase, its x value
increases because the corresponding moves closer to the robots CoM.

Result in Simulation

By using the centroidal controller (see. section 3.4) in simulation by passing the planned
trotting trajectory, the quadruped robot was able to perform trotting walking. The result-

51

4.1. Trajectory Replay CHAPTER 4. EXPERIMENTS AND RESULTS

ing position of the front left foot can be seen in Figure 4.7 as well its desired, planned
position.

It can be observed that the resulting position deviates slightly from the reference over
time. This seems to be caused by the foot sliding slightly in the direction of motion while
it is on the ground.

0 2 4 6 8 10
time (s)

0.0

0.2

0.4

0.6

0.8

1.0

(c
m

)

foot position FR along x-axis (world)
resulting
desired

Figure 4.7.: Position of the front left foot over time in x direction. When there is almost
no increase of the value, the foot is in contact with the environment.

Behavior in Reality

The collected data from the simulation, consisting of joint configuration, joint velocity
and joint torques, is afterward applied to the real robot. Similar to the case of the jump
example, the robot switched to error mode at the beginning. It also appeared that the
choice of the PD-gains has a crucial impact on the performance. By adjusting them, the
robot could finally carry out a trotting motion.

In addition, the speed of the CoM was also changed by up- or down-sampling of the
whole trajectory. The robot could thus execute different speeds of the trotting trajectory.
It turned out that the gain values were related to the speed since they also had to be
readjusted depending on the velocity.

52

CHAPTER 4. EXPERIMENTS AND RESULTS 4.2. Controller with MPC

4.2. Controller with MPC

The reactive walking controller introduced in section 3.5, is based on an overall whole-
body controller that receives ground reaction forces from the MPC as well as the ref-
erence position of the feet in the swing phase and computes for all joints the actuation
torques. The overall goal is to track the commanded reference velocity as closely as
possible.

Result in Simulation

By commanding with the joystick velocity commands to the robot, it was possible to
control the robot in simulation. The robot responded reactively to commands and com-
mand changes. It was possible to walk with the robot in a straight line, to walk sideways
or to perform turns in place.

In comparison to the original implementation [21], the robot did not behave quite as
smoothly visually. The main reason for that seems to be, that their implementation is
about 8 times faster. So in average in the original implementation, it took about one
sixteenth and in our case the half prediction horizon, till the next MPC window was
recalculated.

53

4.2. Controller with MPC CHAPTER 4. EXPERIMENTS AND RESULTS

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

1
fo

rc
e

(N
)

FL

x
y

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20
FL

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.25

0.00

fo
rc

e
(N

)

FR

x
y

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

10
FR

z

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.25

0.00

fo
rc

e
(N

)

HL

x
y

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

10

HL
z

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0

2

fo
rc

e
(N

)

HR

x
y

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0

20
HR

z

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time (s)

0.02

0.03

(c
m

)

CoM postion along x-axis

meas.
ref.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
time (s)

0.22
0.23
0.24

CoM postion along z-axis

meas.
ref.

ground reaction force

position in world frame

Figure 4.8.: Visualization of one MPC prediction horizon with the calculated optimal
ground reaction force and the resulting CoM-position by applying it under
the model assumption.

54

CHAPTER 4. EXPERIMENTS AND RESULTS 4.2. Controller with MPC

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

2.5

fo
rc

e
(N

)

FL
x
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
5.5
6.0
6.5

FL

z

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

2.5

fo
rc

e
(N

)

FR
x
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
5.5
6.0
6.5

FR

z

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

2.5

fo
rc

e
(N

)

HL
x
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
5.5
6.0
6.5

HL

z

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.0

2.5

fo
rc

e
(N

)

HR
x
y

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

6.0
6.5

HR

z

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

0.0

0.5

(c
m

)

CoM postion along x-axis

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time (s)

0.23

0.24
CoM postion along z-axis

meas.
ref.

ground reaction force

position in world frame

Figure 4.9.: Resulting aggregated ground reaction forces of multiple MPC predictions
horizons, where the robot is commanded with a constant velocity in x-
direction..

Behavior in Reality

Unfortunately, the controller did not perform well in reality. It was possible to run the
controller so that the robot was executing the default trotting pattern. However, even
without commanding the robot using the joystick, the robot lost stability after some
time.

It is not clear what is causing the problem. It has been observed that the time taken for
the robot to lose stability is partly dependent on the calibration. Sometimes the robot
was calibrated before usage without the calibration tool.

55

4.2. Controller with MPC CHAPTER 4. EXPERIMENTS AND RESULTS

It is not clear what is causing the problem. It has been observed that the time taken for
the robot to lose stability is partly dependent on the calibration. Sometimes the robot
was calibrated before use without the calibration tool, and it was found that it turned out
to fall after less time. For other movements, such as trotting by trajectory replying, the
robot was stable even when calibrated without the tool.

56

5. Conclusion

Using the planner described in section 3.2 it was possible to generate whole-body mo-
tion. So just CoM via-points and reference time steps, when a specific leg is in contact
with the environment, have to be passed as input to the planner algorithm. The obtained
trajectory consisting of CoM position and velocity, as well as the robots, reference joint
positions and velocities, is a compromise between the kinematics and dynamics-related
goals. The algorithm is built to ensure inevitable dynamical constraints are valid.

Trajectories generated with this planner are very valuable; they allow to test other con-
trollers on the robot to perform whole-body motions. This way, previously complex
tasks can be tried in a simulated environment, improved and finally executed with the
robot. Both movements could be executed with the controller in the simulation. The joint
configurations, their speed and actuation torque were recorded. The stored sequence was
then replayed on the real robot.

The desired jumping motion could not be successfully executed with the robot. The
trotting example, on the other hand, could be executed, even at different speeds. Through
these experiments is has been observed that the robot is very sensitive to the settings of
the PD gains and that these must be varied depending on the task.

The more complex controlling architecture of the reactive walking controller is intro-
duced in section 3.5, gave pleasing results in a simulated environment. The robot could
be controlled with the joystick. The robot behaved stably and reactively to the joystick’s
command changes.

Unfortunately, in a real environment, the robot of the reactive controller with MPC was
not stable. The balance was usually lost when no reference speed was sent to the robot.

57

CHAPTER 5. CONCLUSION

The most important finding is that the results of the experiments are not entirely con-
sistent. Sometimes it worked quite well to develop something in simulation and then
transfer it to reality. However, since some experiments failed, it seems that this effect
needs to be studied in more detail in the future. Nevertheless, it is encouraging that a
relatively simple approach could be used to generate a rather complicated trajectory and
successfully transfer it to the real robot.

58

6. Lists

59

Bibliography

[1] Mantian Li et al. “System Design of a Cheetah Robot Toward Ultra-high Speed”.
In: International Journal of Advanced Robotic Systems (May 2014), p. 1. DOI:
10.5772/58563.

[2] Zhong Yuhai et al. “Analysis and research of quadruped robot’s legs: A compre-
hensive review”. In: International Journal of Advanced Robotic Systems 16 (May
2019), p. 172988141984414. DOI: 10.1177/1729881419844148.

[3] F. Grimminger et al. “An Open Torque-Controlled Modular Robot Architecture
for Legged Locomotion Research”. In: IEEE Robotics and Automation Letters
5.2 (2020), pp. 3650–3657. DOI: 10.1109/LRA.2020.2976639.

[4] ETH Zurich Robotic Systems Lab. Robot Dynamics: Lecture notes. ETHZ Press,
2017. URL: https://ethz.ch/content/dam/ethz/special-interest/
mavt / robotics - n - intelligent - systems / rsl - dam / documents /
RobotDynamics2017/RD_HS2017script.pdf.

[5] M.W. Spong, S. Hutchinson, and M. Vidyasagar. Robot Modeling and Control.
Wiley select coursepack. Wiley, 2005. ISBN: 9780471765790. URL: https://
books.google.ch/books?id=muCMAAAACAAJ.

[6] Stéphane Caron, Quang Cuong Pham, and Yoshihiko Nakamura. “Stability of
Surface Contacts for Humanoid Robots: Closed-Form Formulae of the Contact
Wrench Cone for Rectangular Support Areas”. In: Proceedings - IEEE Interna-
tional Conference on Robotics and Automation 2015 (Jan. 2015). DOI: 10.1109/
ICRA.2015.7139910.

60

BIBLIOGRAPHY Bibliography

[7] Gianluca Garofalo et al. “On the inertially decoupled structure of the floating base
robot dynamics”. In: IFAC-PapersOnLine 48 (Dec. 2015), pp. 322–327. DOI:
10.1016/j.ifacol.2015.05.189.

[8] R. Featherstone and D. Orin. “Robot dynamics: equations and algorithms”. In:
Proceedings 2000 ICRA. Millennium Conference. IEEE International Confer-
ence on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).
Vol. 1. 2000, 826–834 vol.1. DOI: 10.1109/ROBOT.2000.844153.

[9] Justin Carpentier et al. “The Pinocchio C++ library – A fast and flexible imple-
mentation of rigid body dynamics algorithms and their analytical derivatives”.
In: SII 2019 - International Symposium on System Integrations. Paris, France,
Jan. 2019. URL: https://hal.laas.fr/hal-01866228.

[10] A. Hopgood and an O’Reilly Media Company Safari. Intelligent Systems for Engi-
neers and Scientists, Third Edition, 3rd Edition. CRC Press, 2016. URL: https:
//books.google.ch/books?id=6mxRzQEACAAJ.

[11] Bruno Siciliano and Oussama Khatib. Springer Handbook of Robotics. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 169–170. ISBN: 354023957X.

[12] S. Calinon and D. Lee. “Learning Control”. In: Humanoid Robotics: a Reference.
Ed. by P. Vadakkepat and A. Goswami. Springer, 2019, pp. 1261–1312. DOI:
10.1007/978-94-007-6046-2_68.

[13] Sanyal Amit and Ambarish Goswami. “Dynamics and Control of the Reaction
Mass Pendulum (RMP) as a 3D Multibody System: Application to Humanoid
Modeling”. In: vol. 1. Jan. 2011. DOI: 10.1115/DSCC2011-6086.

[14] David Orin, Ambarish Goswami, and Sung-Hee Lee. “Centroidal dynamics of
a humanoid robot”. In: Autonomous Robots 35 (Oct. 2013). DOI: 10 . 1007 /
s10514-013-9341-4.

[15] D.E. Orin and Ambarish Goswami. “Centroidal Momentum Matrix of a Hu-
manoid Robot: Structure and Properties”. In: Oct. 2008, pp. 653–659. DOI: 10.
1109/IROS.2008.4650772.

61

Bibliography BIBLIOGRAPHY

[16] Alexander Herzog, Stefan Schaal, and Ludovic Righetti. “Structured contact force
optimization for kino-dynamic motion generation”. In: 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, Oct. 2016.
DOI: 10.1109/iros.2016.7759420. URL: https://doi.org/10.1109%
2Firos.2016.7759420.

[17] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. “Whole-body motion plan-
ning with centroidal dynamics and full kinematics”. In: 2014 IEEE-RAS Inter-
national Conference on Humanoid Robots. 2014, pp. 295–302. DOI: 10.1109/
HUMANOIDS.2014.7041375.

[18] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2e. New York,
NY, USA: Springer, 2006, pp. 566–576.

[19] Fares J. Abu-Dakka and Matteo Saveriano. “Variable Impedance Control and
Learning—A Review”. In: Frontiers in Robotics and AI 7 (2020). ISSN: 2296-
9144. DOI: 10 . 3389 / frobt . 2020 . 590681. URL: https : / / www .
frontiersin.org/article/10.3389/frobt.2020.590681.

[20] Donghyun Kim et al. “Highly Dynamic Quadruped Locomotion via Whole-
Body Impulse Control and Model Predictive Control”. In: CoRR abs/1909.06586
(2019). arXiv: 1909.06586. URL: http://arxiv.org/abs/1909.06586.

[21] Pierre-Alexandre Léziart et al. “Implementation of a Reactive Walking Controller
for the New Open-Hardware Quadruped Solo-12”. In: 2021 IEEE International
Conference on Robotics and Automation (ICRA). 2021, pp. 5007–5013. DOI: 10.
1109/ICRA48506.2021.9561559.

[22] Jared Carlo et al. “Dynamic Locomotion in the MIT Cheetah 3 Through Convex
Model-Predictive Control”. In: Oct. 2018, pp. 1–9. DOI: 10.1109/IROS.2018.
8594448.

[23] Shiyu Zhao. “Time Derivative of Rotation Matrices: A Tutorial”. In: CoRR
abs/1609.06088 (2016). arXiv: 1609.06088. URL: http://arxiv.org/abs/
1609.06088.

[24] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. 2e. New York,
NY, USA: Springer, 2006, pp. 267–275.

62

BIBLIOGRAPHY Bibliography

[25] Donald Goldfarb and Ashok U. Idnani. “A numerically stable dual method for
solving strictly convex quadratic programs”. In: Mathematical Programming 27
(1983), pp. 1–33.

[26] Milutin Nikolić, Branislav Borovac, and Mirko Raković. “Dynamic balance
preservation and prevention of sliding for humanoid robots in the presence of
multiple spatial contacts”. In: Multibody System Dynamics 42 (Feb. 2018). DOI:
10.1007/s11044-017-9572-9.

[27] Yannick Millot and Pascal P. Man. “Active and passive rotations with Euler angles
in NMR”. In: Concepts in Magnetic Resonance Part A 40A.5 (2012), pp. 215–
252. DOI: https : / / doi . org / 10 . 1002 / cmr . a . 21242. eprint: https :
//onlinelibrary.wiley.com/doi/pdf/10.1002/cmr.a.21242. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cmr.a.21242.

[28] A. Reddy. “DIFFERENCE BETWEEN DENAVIT - HARTENBERG (D-H)
CLASSICAL AND MODIFIED CONVENTIONS FOR FORWARD KINE-
MATICS OF ROBOTS WITH CASE STUDY”. In: Dec. 2014. DOI: 10.13140/
2.1.2012.9607.

[29] Multibody dynamics notation (version 2). English. Dept. of Mechanical Engineer-
ing. Report locator DC 2019.100. Technische Universiteit Eindhoven, Nov. 2019.

[30] Tomomichi Sugihara. “Solvability-Unconcerned Inverse Kinematics by the
Levenberg–Marquardt Method”. In: IEEE Transactions on Robotics 27.5 (2011),
pp. 984–991. DOI: 10.1109/TRO.2011.2148230.

[31] Erwin Coumans and Yunfei Bai.PyBullet, a Pythonmodule for physics simulation
for games, robotics and machine learning. http://pybullet.org. 2016–2021.

63

List of Figures

2.1 (a) Quadruped robot Solo 12, it is the robot which has lateral hip joints,
in comparison to Solo 8, and can therefore move sideways. (b) Illustra-
tion of a 2-DOF leg with hip, corresponding to Solo 8 19 , upper-hip 20 ,
and lower leg module 21 , and foot contact switch 22 4

2.2 Illustration of possible leg and knee configurations of the Quadruped
Solo 12. 5

2.3 Quadruped robot Solo 12 laid down on a trestle. Through the laid-out
legs, it is visible how the hip joints work. Compared to the Solo 8, the
robot has a lot of more possibilities to move. 6

2.4 Definition of the legs and joints of Solo 12. 6

2.5 Calibration tool attached to the robot in order to keep all joints in zero
position and perform accurate calibration. 8

2.6 Illustration of possible leg and knee configurations of the Quadruped
Solo 12. 10

2.7 FK of a two-link planar manipulator, with the attached reference frame
on its links. The z-axes all point out of the page. 12

2.8 Schematic diagram of the open-loop control system, which is also de-
noted as a non-feedback system. 22

2.9 Feed-forward control architecture, since this controller does not get any
feedback, it belongs to the category of open-loop controllers. 23

2.10 Control architecture of a closed-loop controller. 23

2.11 Block diagram of a PID controller. To represent a system with PID con-
trol, the whole diagram can be substituted with the Controller block in
Figure 2.10. 24

64

LIST OF FIGURES List of Figures

3.1 Diagram to represent the different spaces that are used to describe robot
dynamics and its relationships.[15] The matrix H expresses the inertia
matrix in joint space, in this work introduced as M in Equation 2.7.
The system space, also denoted as whole body space, consists ofN rigid
body links of the robot, always expressed with the 6 motion components.
The CoM space defines a frame located at the robot’s CoM. 29

3.2 Cartesian impedance controller, consisting of three mass-spring-damper
system, acting in x, z and y direction, where the latter points out of the
page. 35

3.3 Illustration of the rigid-body model with centroidal dynamics and its
units needed to calculate the wrench acting on the robot’s CoM. 37

3.4 Control architecture of the reactive walking controller with its centroidal
MPC. 38

3.5 Example of one MPC period with the task of moving the robot’s CoM
in x direction. The initial state of the robot is shown on the left picture,
and the target position on the right. 43

4.1 Process structure from the desired via-points as inputs to the planner, to
the desired actuation torque in order to finally execute movements with
the robot. 47

4.2 Desired joint via-point configuration, before the robot is supposed to
jump off. 48

4.3 Resulting CoM trajectory along z axis. 48
4.4 Resulting CoM trajectory along z axis. 49
4.5 Desired trotting pattern, that is passed to the planner, where colored sec-

tions indicating contact with the environment of the leg. 50
4.6 Feet trajectory in task space with respect to the CoM of the robot, ob-

tained from the planner. 51
4.7 Position of the front left foot over time in x direction. When there is

almost no increase of the value, the foot is in contact with the environment. 52
4.8 Visualization of one MPC prediction horizon with the calculated opti-

mal ground reaction force and the resulting CoM-position by applying
it under the model assumption. 54

65

4.9 Resulting aggregated ground reaction forces of multiple MPC predic-
tions horizons, where the robot is commanded with a constant velocity
in x-direction.. 55

A.1 A passive rotation can be seen as a rotation of the coordinate frame,
whereas an active rotation as the mapping of an object u to v in the
same frame. I

A.2 Translation between two frames according to DH parameters [5] IV

List of Tables

66

A. Appendix

A.1. Rotations

To describe a robot in work space, it is mostly represented by its position and orientation.
This introduces the need of rotation matrices to express its body frame in the world
frame. A rotation in three-dimensional space can be seen as three constitutive elementary
rotations on each axis span the coordinate system. Further, rotations can have different
interpretations, the so-called active and passive rotations. In robotics it is common to
represent a rotation as a mutual orientation between two coordinate systems, which is
the definition of a passive rotation. [27]

Figure A.1.: A passive rotation can be seen as a rotation of the coordinate frame, whereas
an active rotation as the mapping of an object u to v in the same frame.

• Passive Rotation:

RAB maps the vector u from frame B to frame A:
RAB

Au = RAB
Bu

I

A.2. Rigid Body Dynamics APPENDIX A. APPENDIX

• Active Rotation:

R represents a matrix operator that rotates a vector Au to a vector Av in the reference
frame A:
Av = R Au

A.2. Rigid Body Dynamics

In robotics it is often not possible to represent and describe a system and its dynamics by
all its single bodies separately. Instead the system is mapped by an interconnection of
bodies, under the assumption the body is rigid and do not deform by applying external
forces. The study of the dynamics of this physical science subdomain is called rigid
body dynamics. In practice the previous assumption is never strictly true, as all bodies
deform when they move, but often such deformations are negligible in comparison to
the overall motion of the body.

To describe the motion of a single particle, its position, velocity and acceleration is
needed. For the determination of a rigid body’s state, the same information are needed,
but also its orientation and rotational motion is necessary. In order to track the state
and dynamics under the influence of known external forces, the laws of kinematics,
Newton’s law, or its derivative, and Lagrangian mechanics are needed.

In the following, some basic formulas for rigid body dynamics are provided.

II

APPENDIX A. APPENDIX A.3. Forward Kinematics

Linear Motion Rotational Motion

Position x

Velocity v

Acceleration a

θ Angular position

ω Angular velocity

α Angular acceleration

Motion equation x = vt θ = ωt Motion equation

Mass (linear inertia) m

Newton’s second law F = ma

Momentum p = mv

Work F∆x

Kinetic energy
1
2
mv2

Power Fv

I Moment of inertia

τ = Iα Newton’s second law

L = Iω Angular momentum

τ∆θ Work
1
2

Iω2 Kinetic energy

τω Power

A.3. Forward Kinematics

A common systematic approach to calculate forward kinematics is to attach to each link
a reference frame with the goal to express the translation from one reference frame to
the next by a product of a homogeneous transformation. The Denavit-Hartenberg (DH)
convention is a widely used representation for the forward kinematics for 3D serial robot
kinematics.

To express a relative displacement between two frames, six independent parameters are
used. Namely three for the position translation and three Euler angles to specify the ro-
tation. The DH representation, allows by a clever choice of the origin and the coordinate
axes, to reduce the number of parameters to four.

III

A.3. Forward Kinematics APPENDIX A. APPENDIX

Figure A.2.: Translation between two frames according to DH parameters [5]

For a serial chain robot with n joints, the link frames are sequentially labeled from
0, ..., n+ 1, where frame 0 is the fixed frame, the frame i is attached to link i and joint i,
and n + 1 represents the end-effector frame (Modified DH parameters [28]). The axes
of the joints are always aligned along the z-axis of each child link’s reference frame and
the direction of a positive rotation about it is determined by the right-hand rule. The
x-axis is defined by the cross product of the z-axis from the current link with the z-axis
of its child link.

Each homogeneous transformation Ti−1,i ∈ SE(3) (position of frame i with respect
to i − 1) is represented by a product of four basic transformations, consisting of two
rotations and two translations with [5]:

Ti−1,i(θi) = Rotxi−1(αi−1) Transxi−1(ai−1) Transzi
(di) Rotzi

(θi)

where,

• θi is the joint angle, from xi−1 to xi about the zi-axis,

• di is the link offset, along zi from the origin of of frame i to the intersection with
the axis xi−1,

IV

APPENDIX A. APPENDIX A.3. Forward Kinematics

• ai−1 is the link length (not necessary the actual physical length of the robot’s link),
along the xi−1-axis perpendicular to the intersection with zi,

• αi−1 is the link twist, denoted as the angle from zi−1 to zi about the xi−1-axis.

This leads finally to the matrix of the modified DH parameters:

Ti−1,i =

cos(θi) − sin(θi) 0 ai−1

sin(θi) cos(αi−1) cos(θi) cos(αi−1) − sin(αi−1) −di sin(αi−1)
sin(θi) sin(αi−1) cos(θi) sin(αi−1) cos(αi−1) di cos(αi−1)

0 0 0 1

=

R T

0 0 0 1

 ,

where R is the submatrix describing rotation and T is the submatrix representing the
translation part.

The forward kinematics of a serial chain with n links based on a joint vector q ∈ Rn

consisting of the joint angles θ can finally be expressed as:

T0,n+1(q) =
n∏

i=i

Ti−1,i(θi) Tn,n+1

Tn,n+1 stands for the configuration of the fixed end-effector frame n.

As already mentioned, FK refers also to the study of resulting motions in task space,
caused by motions in the joint space. The velocity of the end-effector can be expressed
by ẋ = dx

dt
. As in (2.4), the output of the function for FK depends on time, and when

the function is derived with respect to time, the chain rule has to be applied. This leads
then to:

V

A.3. Forward Kinematics APPENDIX A. APPENDIX

ẋ = ∂FK(q)
∂q

dq(t)
dt

= ∂FK(q)
∂q

q̇

= J(q)q̇ (A.1)

In case the FK function maps the position of the end-effector in task space, the matrix
J , called Jacobian, expresses the linear sensitivity of the end-effector velocity. The
Jacobian matrix is defined of partial derivatives as:

J(q) =

∂x1
∂q1

· · · ∂x1
∂qn...

∂x6
∂q1

· · · ∂x6
∂qn

 , with: FK(q) =

x1
...
x6

 ,

where its dimension is of 6 × n. Each of the rows of the Jacobian correspond to each
of the component of the FK functions and each column corresponds to the derivative of
a single joint component. Further it is important to note that the Jacobian changes in
dependence of the configuration q.

It is important to note that according to (A.1), the Jacobian maps the joint velocities
to time-derivatives of the end-effector in task space, which means the resulting vector
represents a spatial velocity, and not containing the linear and angular velocity. Never-
theless this velocity vector is often named as velocity twist (i.e. as per Park & Lynch .cite
modern robotics), whereas sometimes it is denoted as end-effector velocity (i.e Spong).
[29] To express the end-effector motion as Twist V ∈ R6, consisting of a linear velocity
and angular velocity, the geometric Jacobian is used. In literature when J is written, it
mostly refers to the geometric Jacobian.

V =

v

ω

 = J(q)q̇ =

Jv(q)
Jω(q)

 q̇

Depending on the task, it is not always necessary to consider the velocity of the full task
space, as only position or orientation is required. Therefore the Jacobian can be spitted

VI

APPENDIX A. APPENDIX A.4. Inverse Kinematics

into a position and rotation Jacobian. Jv, also denoted as transnational Jacobian maps
just the linear velocity components and Jω influences only the orientation by mapping
the angular velocity.

A.4. Inverse Kinematics

There exist two distinct methods to solve the inverse kinematics problem. The analyti-
cal approach, which tries to express the equation (2.5) into a closed form mathematical
expression, so that finally the whole system can be solved at once. On the other hand
by using the numerical method, the solution is approximatively obtained by updating
the system iteratively starting from an initial guess q0. Both methods have their advan-
tages and drawbacks. So the analytical method is generally faster and it computes all
possible IK solutions, once the equations are deployed. In contrast it is often difficult
to derive it mathematically and its usage is not very flexible, as it depends on different
kinematic structures as well just applicable to non-redundant robots. Therefore many
robotics libraries and simulation environments rely on numerical methods to perpetuate
flexibility. A common way to solve IK is (A.2). We can see the task such as we want to
bring a point x of the robot (i.e. the end-effector) to a desired position xd. The residual
dependents on the robots joint configuration as:

r(q) = xd − x(q) (A.2)

To follow the task, the residual should be brought to zero if possible. By using the
Jacobian (A.1) from FK, it is possible to express the velocity of the end-point given the
joint velocity q̇. Assuming over a small duration of δt a velocity q̇ is applied. After this
time step, the new residual would be r′ = r − ẋδt. The goal is to cancel it to zero:

r′ = 0 ↔ ẋδt = r

VII

A.4. Inverse Kinematics APPENDIX A. APPENDIX

This brings up the definition of the velocity residual:

v(q, δt) def= r(q)
δt

= xd − x(q)
δt

The optimal choice for the joint velocity is then:

J(q)q̇ = ẋ = v(q, δt)

In case the Jacobian would be invertible, the optimal joint velocity would be q̇ = J−1v.
Since this is usually not fulfilled, the system can be solved according to the principle of
least squares:

min.
q̇

∥Jq̇ − v∥2,

with the best solution by the pseudo-inverse J † of the Jacobian. By rewriting it as
q̇ = (J⊺J)−1J⊺v, it’s noticeable this is the Gauss-Newton Approach. If the FK would
be linear in q, and at least a solution exists, it would be directly solvable with a given
initial guess q0 by:

q1 = q0 + ∆q, where (A.3)

∆q = J †(q0)
(
xd − f(q0)

)
(A.4)

is the change that has to be applied in the joint configuration to reach the target position
in task space. However, usually FK is not linear in q, but the updated guess from (A.3)
should still be closer to the root, and by updating (A.4) with new guess, the solution can
so iteratively approached.

In comparison to the Newtons Method, the Newton-Gauss algorithm isn’t considering
the second-order derivatives of the Hessian, as it just based on a first-order Taylor ap-
proximation to locally linearize the gradient difference. This often leads, when the resid-
ual term is to large, to instabilities or overshooting of the solution. A simple way to
overcome this problem is by scaling each update step:

qi+1 = qi + αi∆qi, α ∈ [0, 1]

VIII

APPENDIX A. APPENDIX A.4. Inverse Kinematics

In case of singularity configuration or generally to increase the numerical stability of IK,
regularization methods can be used. A common way for that is by applying Levenberg-
Marquardt damping [30], so that the pseudo-inverse is defined such as in (A.5). The
dumping matrix W ∈ Rn×n is set up proportional to the task error. It is a diagonal
matrix with the corresponding dumping factors on its diagonal.

Pybullet that is used in that project for simulated related task, uses in his physics engine to
solve IK the Damped Least Squares method, which just another name for the Levenberg-
Marquardt method [31].

J † = (J⊺
J + W)−1J

⊺ (A.5)

IX

