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2 Abstract

Performance measures are an important component of machine learning algorithms. They
are useful when it comes to evaluate the quality of a model, but also to help the algorithm
improve itself. Every need has its own metric. However, when we have a small data set,
these measures don’t express properly the performance of the model. That’s when confi-
dence intervals and credible regions come in handy. Expressing the performance measures
in a probabilistic setting lets us develop them as distributions. Then we can use those dis-
tributions to establish credible regions. In the first instance we will address the precision,
recall and F1-score followed by the accuracy, specificity and Jaccard index. We will study
the coverage of the credible regions computed through the posterior distributions. Then
we will discuss ROC curve, precision-recall curve and k-fold cross-validation. Finally we
will conclude with a small discussion about what we could do with dependent samples.
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3 Introduction

Machine learning is a branch of computer science widely used in different fields nowadays.
Machine learning algorithms uses data to train a model so that it can make decisions in
future input data. It is notably useful to detect diseases in medical scans or to detect
different objects and delimitation in self driving cars.

When using machine learning for binary classification tasks, we can define a status
for the samples according to their predicted output and their real label. So, for example,
if we want to detect pictures of cats and we hand over one to our algorithm that he,
in fact, detect as a cat, then we have a true positive sample. Doing so, we will divide
the sample’s status into 4 cases: true positives, true negatives, false positives and false
negatives. First, we should define what a positive sample is. It is the samples that the
algorithm considers as fulfilling the condition, so in our cats’ picture detection example
it will be every image that the algorithm thinks as cats. In contrary every output that
does not respect the condition according to the algorithm will be designated as negatives.
Also a sample will be considered true (respectively false) if it is correctly (respectively
incorrectly) predicted. Therefore we can divide the samples using the table 1.

prediction (z)

positive (+) negative (-)

label (l)
positive (+) True positives (TP) False negatives (FN)

negative (-) False positives (FP) True negatives (TN)

Table 1: Group division of samples according to the output of the algorithm and their
real label in a binary classification environment.

To evaluate algorithms we use different performance measurements. The accuracy of
machine learning algorithms is one such measurement that encodes an intuitive meaning.
Accuracy is the number of predictions correctly made by the model divided by the total
number of predictions. At first accuracy seems to be a really good value to evaluate
machine learning algorithms but it doesn’t take every need into account. For example,
if we want to do disease detection, it is more important to correctly detect sick patients
than healthy people. For this kind of algorithm, we would prefer to compare their recall
score, a score that returns the percentage of relevant items retrieved. As algorithms have
different uses, different performance measures exist to answer every need.
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However, a single value does not give a complete view on the performance of a system.
In fact a machine learning algorithm depends on the data samples it uses and on different
parameters so it could actually return a span of values for the performance measures.
This span of values can be represented through confidence intervals and credible regions.
These intervals give a better view on the performance of a system, which allows us to
compare algorithms in a simpler way, notably when the data samples size is small meaning
that the model is heavily dependent on the data.

In this thesis we will study the use of confidence intervals and credible regions for
performance measurements. We will study several performance measures: precision, re-
call, specificity, accuracy, F1 score and Jaccard index. We will also look into ROC and
precision-recall curves.

Figure 1: Example of images used in a classification machine learning algorithm. [1]

Usually when we compute the confidence interval of a performance measure for a
machine learning algorithm, it is assumed that the data samples are independently and
identically distributed (i.i.d.). We assume that in order to use formulas and algorithms
designed especially for i.i.d. samples. Some machine learning algorithms indeed have i.i.d.
samples. For example when we want to label pictures of animals, each of the images are
i.i.d. samples (see Figure 1). However other algorithms use data that are not i.i.d. notably
when the data samples are the pixels of the image. When this is the case pixels from the
same image are not i.i.d. and often this type of algorithm, called semantic segmentation,
uses the pixels to detect different objects in an image. For example machine learning used
in the medical domain detects different parts in organ scans (see Figure 2).

When we compute confidence intervals, a level of confidence that we can choose is
95%, which means that we have a 95% probability that the true value of the performance
measure lies inside the interval. We can test the performance of a method that returns
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Figure 2: Example of an image from a retina photograph and a picture of the vessels
present in the eye. [2]

confidence intervals by simulating systems where the real performance value is known
and use the method on that system several times to compute the number of times the
value is included in the interval. If the number of times the value is included is 95% then
the method performs as desired. If this number is below 95% it means that the method
returns an interval that is too restrictive and has more chances to not include the real
value of the performance measure, in this case we consider that we have an optimistic
view. In the contrary, the pessimistic view happens if this number is above 95% then the
method returns an interval that is too big and doesn’t give enough information on where
lies the real value. Using confidence intervals to compare a performance measure of two
machine learning models is pretty useful as it allows to compare a span of values rather
than a single value.

Knowing how to measure confidence intervals when the samples are not i.i.d. on
classical binary output machine learning models would help to have a better view on the
performances of this kind of machine learning algorithms. Now we usually use the same
algorithm whether the data is i.i.d. or not but these algorithms assume that the data
is i.i.d. so the information retrieved from this confidence interval is biased. When using
i.i.d. methods to compute the confidence interval for non i.i.d. samples we think that
we should observe a confidence interval that is restrictive meaning the real value of the
performance measure has more chances to be outside the bound. If that is the case this
kind of algorithm would not fit for these uses as it would not perform as desired but it
should be expected.

One idea in order to answer to the problem of the non i.i.d. samples would be to try to
approximate the i.i.d. case with dependent samples. This hypothesis would choose pixels
that are more independent from each other in a single sample and use them to compute
the confidence interval. Doing so it might be possible to approximate the i.i.d. case and
if that’s what happens we would be able to use i.i.d. methods on dependent data without
being afraid to receive bad information. The goal of this thesis is to study the use of
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credible region to compare systems from a Bayesian approach and we will also look into
confidence interval for the frequentist approach.
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4 State of the art

In this thesis we will talk about credible regions and confidence intervals. They are both
intervals that give a span of values for performance measures in a similar way. One of
the difference they have is that one uses the underlying distribution while the other uses
an empirical distribution, respectively credible regions and confidence intervals. Indeed
credible regions are computed using Bayesian statistics while confidence intervals are
issued from frequentist statistics. Another point where they differ is their exact definition.
The definition of the confidence intervals states that "95% of confidence intervals computed
at the 95% confidence level contain the parameter"[3] meaning that if we compute 100
confidence intervals of a performance measure for a machine learning algorithm, then 95
of them should contain the true value of the measure we’re computing. The credible
region, on the other side, describes the probability that the true value of the parameter
lies between the two bounds of the interval meaning that "if the subjective probability
that µ lies between 35 and 45 is 0.95, then 35 ≤ µ ≤ 45 is a 95% credible interval" [4].
However, even with these differences, these two intervals are often used interchangeably
and used to express the same thing. Results show that for linear models these intervals
can be considered identical when several conditions are met, and for nonlinear models
they can be considered identical if some assumptions are satisfied [5].

A frequentist approach to compute confidence intervals is bootstrapping. Bootstrap-
ping is a technique that relies on random sampling with replacement. When doing this
sampling we can infer different performance measures and properties of the underlying
distribution in an empirical way [6][7]. This technique is pretty popular and whenever
people want to compute confidence intervals, they most generally opt to bootstrapping to
do so. Using this technique it is also possible to compute other measures for a machine
learning algorithm, for example in Koch and Marshall [8] the authors use bootstrapping
to obtain coverage plots and percentile intervals providing graphical information on the
performance of the algorithms. Bootstrapping is also affected by data dependency and,
according to Liu and Singh [9], when we construct bootstrap confidence intervals under
the assumption that we are in an i.i.d. environment we can observe that these intervals
become conservative when using non-i.i.d. models.

As discussed in the introduction, a single scalar for a performance measure often
doesn’t give enough information to the performance of the machine learning algorithms.

8



In fact these algorithms are heavily data dependent so obviously the performance measure
will also depend on the data but as we never get the complete distribution because it
would require infinite data we don’t obtain the true value of the performance measure
but a value that tends to approximate the real one the more data we have. A way to
have a better view on this performance measure is to use confidence intervals, doing so
we can use the dependence on the data from the algorithm to extend our view of the
performance measure and it will include indirectly the data that we couldn’t retrieve in
the computation of the interval. Using confidence intervals to compare models is already
done in the field of semantic segmentation and in other fields as it’s an easy way to obtain
more information on your algorithm, for example in Genc et al. [10] the authors compare
three different algorithms in the segmentation of STEM tomography. In their comparison
we can see that they used a 95% confidence interval to express the performance of each of
the three algorithms. Another example would be in Sabogal et al. [11] where the authors
present the results of their study with a 95% confidence interval for the cross-section
measure. However confidence intervals are not the only way to give a better view on the
performance of an algorithm. Indeed other papers, we will briefly review, try to explore
new ways to express performance measure in order to obtain more information on the
quality of the algorithms they are studying.

In Zhang et al. [12] the authors use, what they call, the micro-averaging and macro-
averaging of the F1 scores in order to have a better view on this performance measure.
Micro-averaging, as they describe it, uses the per-document predictions across classes in
order to compute the micro-averaged recall and micro-averaged precision. After that they
use those two values and compute their harmonic mean in order to obtain the micro-
averaged F1 score. In the other hand they use each individual class to compute the
precision and recall of each of them then they use these values to calculate the different
F1 scores and when averaging those they obtain what they call the macro-averaging F1
score. Using these 2 values to express this performance measure allows them to better
evaluate their machine learning algorithm and compare them in an environment giving
more information.

Another paper by Yacouby and Axman [13] develops the precision, recall and F1 score
in a new way with a probabilistic extension. Doing so the authors present new metrics
that they refer as confidence-Precision, confidence-Recall and confidence-F1. These mea-
sures were mainly developed to help in natural language processing, as they answer to
some of the challenges encountered in this field. When doing classification tasks in ma-
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chine learning, the algorithm outputs probabilities to describe the chances to belong to
the different classes. It is using these probabilities that they compute the new confidence
metrics instead of using the true positives, true negatives, false positives and false neg-
atives values. Doing so it gives a better vision of the performance of the algorithm, as
we include information from samples in a non binary way. Indeed even if the algorithm
outputs a class for a sample we will also use the information from the other classes for
this sample. These new metrics have several benefits compared to their threshold based
counterparts according to the authors, notably they pick up 4 main benefits. These ad-
vantages are the following: i) a better robustness to NaN values that are induced by a
division by zero; ii) a sensitivity to changes in the model’s confidence scores; iii) a lower
variance inducing a better generalization to new data; iv) generally provide the same kind
of ranking as the usual performance measures.

Extending performance measures are not the only way to gain information for differ-
ent models. It is also possible to study existing metrics to detect which ones give the
best information and in which conditions they do, indeed, succeed in their role. In Dinga
et al. [14] for example, the authors do a comparison among four existing measures. These
metrics are the accuracy, the area under the curve, the brier score and the logarithmic
score. The 2 last being probabilistic performance measures whereas the 2 others don’t
really depend on probability. Ultimately they conclude that the accuracy is the worst
measure among the four with respect to reliability of results, statistical power, selecting
informative features and detecting model improvement. In the other hand the 2 prob-
abilistic metrics are the ones that seem to perform the better while the area under the
curve stands somewhere in between. That’s why they advise to not use accuracy to make
any statistical inference in order to improve the model performance but we should prefer
other measures. Another reason they don’t recommend the accuracy is because it weighs
false positive and false negative misclassification equally but, in some contexts, this is not
desired. Notably when standing in a medical perspective the results of a test or model
might have a huge impact in the life of a patient inducing possible heavy operations while
they were not necessary if he was a false positive.

These different extensions and studies assume one important point, indeed, in those
papers, it is supposed that the data samples are i.i.d. which is often the case in most
of the machine learning algorithms. However it is not always true, notably in semantic
segmentation where the pixels of the images are often accounted as individual samples,
therefore not being independent of each other. When we are in this situation using the
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formulas of the extensions described previously will probably yield results that are not
completely truthful, as they are not suited to dependent samples. According to Wåsjø
[15] having dependent samples induce biased error estimates. Indeed, in his study that
focuses on wound detection, he divides the images into, what he calls, superpixel-edges and
superpixel-segments that are mainly groups of pixels and are, therefore, samples that have
dependencies between each other when they come from the same image. While training
different algorithms, he detects that the biased error estimates induced by the dependent
samples might cause suboptimal hyperparameters and features selections which, in turn,
give a classifier that is less performant. So we know that if we have dependent samples,
it definitely has an influence on the algorithm output and we should adapt the algorithm
or the samples if we want to be able to use the different extensions discussed.

In Xiong et al. [16], authors managed to adapt the 3D convolutional neural network
algorithm they were using to accommodate dependent samples and perform better than
without any change. Training usually assumes independent samples and, according to
them, even though this assumption is violated in the computer vision field, the millions
of training examples compensate this and the empirical performance is satisfactory. Un-
fortunately, in semantic segmentation, studies are often done using only a few hundred
images and, therefore, the assumption violation turns out to be more important and
has more impact. Comparing their modified convolutional neural network to a baseline
algorithm they managed to show empirical results proving that their changes bring an
improvement to the performance of the algorithm. By showing that it was possible to
adapt a 3D convolutional neural network algorithm in order to take the dependency in
account, they revealed that it was probably possible to adapt other algorithms to also
accommodate dependent samples.
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5 Methods

In this chapter we describe a Bayesian approach by Goutte and Gaussier [17] for the
credible region estimation1. First of all we define what a credible region is.

Definition 1 (Credible region or interval). A credible region for a parameter x is an
interval defined by a lower bound L and an upper bound U such that the true value k of
the parameter x lies between the two bounds with a probability α.

P (k ∈ [L, U ]) = α

This means that, for example, if we compute the 95% credible region for the precision
of a machine learning algorithm and we obtain the interval [0.82, 0.90] then we know that
we have a probability of 95% that the real precision of this algorithm is between 0.82 and
0.90. The span of the credible region actually depends on several factors, the main one
being the size of the data set used to evaluate the algorithm. These 2 sizes are inversely
proportional from one to the other as the more data we have the more the algorithm will
be complete and behave as the real underlying distribution. Bayesian statistics are at
the center of credible regions, indeed, when computing a credible region, we assume a
prior probability density function that models the likelihood of the parameter then, using
Bayes theorem [19], we can establish the posterior distribution of the parameter given its
current estimate.

As done in Goutte and Gaussier [17], we can redefine the precision and recall with
a probabilistic definition in order to express them as estimates. Indeed, we know the
formulas to compute the precision and recall:

precision = p = TP

TP + FP
(1)

recall = r = TP

TP + FN

Looking more into this, we see that, actually, the precision returns the ratio of retrieved
objects that are relevant while the recall returns the ratio of relevant objects returned

1All the code written that results from the following conclusions can be found in the measure module
from the bob python package[18] accessible at https://gitlab.idiap.ch/bob/bob.measure also the graph
generation code and other useful information in order to use the package can be found in the user guide.
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by the system. With this in mind, probabilistic definitions that stand out are that the
precision is "the probability that an object is relevant given that it is returned by the
system"[17] and the recall is "the probability that a relevant object is returned"[17]. So,
in mathematical terms, we can define them as (cf Table 1 for definition of l and z):

p = P (l = +|z = +)

r = P (z = +|l = +)

When observing the outputs of a machine learning algorithm, it divides all the samples
into 4 distinct groups as discussed earlier. We can therefore represent the 4 groups as a
multinomial distribution and the counts TP, TN, FP and FN as independent drawings
from this multinomial. Therefore, like in Goutte and Gaussier [17], we can assume that:

Assumption 1. D ≡ (TP, FP, FN, TN) is a multinomial distribution with parameters
πT P , πF P , πF N and πT N , D ∼ M(n; π) with π ≡ (πT P , πF P , πF N , πT N)

P (D = (TP, FP, FN, TN)) = n!
TP !FP !FN !TN !π

T P
T P πF P

F P πF N
F N πT N

T N (2)

From the fact that this is a multinomial we can extract two main properties that will
be useful for following proofs [17][20].

Property 1. Each component i of D follows a binomial distribution B(n; πi), with pa-
rameters n and identical probability πi i.e. TP ∼ B(n; πT P ) etc.

Property 2. Each component i of D conditioned on another component j follows a bino-
mial distribution B(n − nj,

πi

1−πj
) with parameters n - nj and probability πi

1−πj
i.e. FN|TP

∼ B(n − TP ; πF N

1−πT P
) etc.

In Goutte and Gaussier [17], authors proved that p|D ∼ Be(TP + λ, FP + λ). In a
similar fashion we will prove that r|D ∼ Be(TP + λ, FN + λ).

First of all we should prove that TP+FN ∼ B(n, πT P + πF N)

Lemma 1. TP+FN ∼ B(n, πT P + πF N)

Proof. Using properties 1 and 2, we have TP ∼ B(n; πT P ) and FN|TP ∼ B(n−TP ; πF N

1−πT P
)
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so

P (TP + FN = k) =
k∑

x=0
P (TP = x)P (FN = k − x|TP = x)

=
k∑

x=0

(
n

x

)
πx

T P (1 − πT P )n−x

(
n − x

k − x

)(
πF N

1 − πT P

)k−x (
1 − πF N

1 − πT P

)n−k

=
k∑

x=0

(
n

x

)(
n − x

k − x

)
πx

T P((((((((1 − πT P )n−x πk−x
F N

�������
(1 − πT P )k−x

(1 − πT P − πF N)n−k

�������
(1 − πT P )n−k

=
k∑

x=0

(
n

x

)(
n − x

k − x

)
πx

T P πk−x
F N (1 − πT P − πF N)n−k

=
k∑

x=0

k!
k!

n!
x!�����(n − x)!

�����(n − x)!
(n − k)!(k − x)!π

x
T P πk−x

F N (1 − πT P − πF N)n−k

=
(

n

k

)
(1 − πT P − πF N)n−k

k∑
x=0

(
k

x

)
πx

T P πk−x
F N

=
(

n

k

)
(1 − (πT P + πF N))n−k (πT P + πF N)k

Which is indeed a binomial with parameters n and πT P + πF N .

Then we have to prove that TP|TP+FN ∼ B(TP+FN, πT P

πT P +πF N
)

Lemma 2. TP|TP+FN ∼ B(TP+FN, πT P

πT P +πF N
)

Proof. Using properties 1 and 2, we have TP ∼ B(n; πT P ) and FN|TP ∼ B(n−TP ; πF N

1−πT P
).
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From lemma 1 we have TP+FN ∼ B(n, πT P + πF N). We define M = TP + FN.

P (TP = k|TP + FN = M) = P (TP = k)P (FN = M − k|TP = k)
P (TP + FN = M)

=

(
n
k

)
πk

T P (1 − πT P )n−k
(

n−k
M−k

) (
πF N

1−πT P

)M−k (
1 − πF N

1−πT P

)n−M(
n
M

)
(πT P + πF N)M(1 − (πT P + πF N))n−M

=

(
n
k

)(
n−k
M−k

)
(

n
M

) πk
T P (1 − πT P )n−k πM−k

F N

(1−πT P )M−k
(1−πT P −πF N )n−M

(1−πT P )n−M

(πT P + πF N)M(1 − (πT P + πF N))n−M

=
�n!

k!���(n−k)!
���(n−k)!

(M−k)!����(n−M)!
�n!

M !����(n−M)!

πk
T P((((((((1 − πT P )n−k πM−k

F N

(((((((1−πT P )M−k
((((((((
(1−πT P −πF N )n−M

(((((((1−πT P )n−M

(πT P + πF N)M(
((((((((((((
1 − (πT P + πF N))n−M

= M !
k!(M − k)!

πk
T P πM−k

F N

(πT P + πF N)k(πT P + πF N)M−k

=
(

M

k

)(
πT P

πT P + πF N

)k ( πF N

πT P + πF N

)M−k

=
(

M

k

)(
πT P

πT P + πF N

)k (
1 − πT P

πT P + πF N

)M−k

Which is indeed a binomial with parameters M and πT P

πT P +πF N
.

We have seen before that we could redefine the recall in a probabilistic environment:

r = P (z = +|l = +) = P (z = +, l = +)
P (l = +)

We know that when the label and the prediction are positive it is true positive samples,
therefore the probability P(z=+, l=+) = πT P . If the label is positive then it is true
positive and false negative samples, so the probability P(l=+) = πT P +πF N . We can then
conclude that:

r = πT P

πT P + πF N

So we can rewrite the binomial distribution of TP|TP+FN as B(TP+FN, r).

The goal of all these reformulations is to interpret the recall as an estimate computed
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using the known values TP, FP, FN and TN from the algorithm. Indeed this reinter-
pretation will allow us to create a span of possible values that the algorithm could have
returned with the information that we have on his predictions. In probabilistic terms what
we’re trying to compute is the posterior probability P(r|D). As we know that TP|TP+FN
∼ B(TP+FN, r), it is possible to write the likelihood of r as:

L(r) = P (D|r) ∝ rT P (1 − r)F N

Using Bayes’ rule[19], we can express the desired P(r|D) as follows:

P (r|D) ∝ P (D|r)P (r) (3)

We use a symmetric beta distribution for the prior P(r) as we’re dealing with binomials
it is a logical choice.

r ∼ Be(λ, λ) : P (r) = Γ(2λ)
Γ(λ)2 rλ−1(1 − r)λ−1

Consequently we can rewrite equation 3:

P (r|D) ∝ rT P (1 − r)F Nrλ−1(1 − r)λ−1

∝ rT P +λ−1(1 − r)F N+λ−1

Which is a beta distribution with parameters TP + λ and FN + λ. Therefore r|D ∼ Be(TP
+ λ, FN + λ) and, as seen in Goutte and Gaussier [17], p|D ∼ Be(TP +λ, FP +λ). Using
this information, we can compute credible regions for precision and recall by integrating
these distributions2.

To understand how useful the information provided by these distributions is, we will
illustrate it by comparing 2 possible systems. Let’s suppose that the first system has
10 true positive samples and 5 false negative ones and that the second system has 3
true positive and false negative samples. Using the usual formula 1, the recall of the
first system would be 0.66 while the second one would be 0.5 so we could just conclude
that system 1 outperforms the other one. But by looking at the graph from figure 3,
we can deduce much more information. Indeed we see that system 1 is more consistent

2The measures function from the credible_region file returns credible regions for the precision and
recall.
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while system 2 is really sparse, almost ranging from 0 to 1 in the possible outcomes.
However we can also see, using Monte Carlo simulation, that, in 24% of the cases, system
2 outperforms system 1 even if it seems unusual and this is probably due to how sparse it
is. Monte Carlo is a method that uses random sampling to acquire numerical results for
a simulation[21]. So, in this context, we will use the binomial distributions, that result
from the given number of true positives and false negatives, to generate a lot of samples
and use those to compare the 2 systems.

Figure 3: Recall distribution for 2 systems.

Now that we talked about precision and recall, we can talk about the F1-score. The
usual formula to compute the F1-score uses the precision and recall.

F1 = 2pr

p + r
(4)

To redefine the F1-score in a probabilistic perspective we will use 3 properties of
gamma distributions as described in Goutte and Gaussier [17]. Let’s suppose we have two
gamma distributions with the same shape parameter. We will define them as X ∼ Γ(α, h)
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and Y ∼ Γ(β, h). With this definition the three following properties hold.

∀c > 0, cX ∼ Γ(α, ch) (5)

X + Y ∼ Γ(α + β, h) (6)
X

X + Y
∼ Be(α, β) (7)

From property 7 and the beta definitions of precision and recall we can rewrite them as
divisions and sums of gamma distributions. By defining three gamma distributions X
∼ Γ(TP + λ, h), Y ∼ Γ(FP + λ, h) and Z ∼ Γ(FN + λ, h) we obtain:

precision = X

X + Y

recall = X

X + Z

Using those and the formula 4 we can rewrite the F1-score with gamma distributions.

F1 =
2 X

X+Y
X

X+Z
X

X+Y
+ X

X+Z

=
2 XX

(X+Y )(X+Z)
X(X+Z)+X(X+Y )

(X+Y )(X+Z)

= 2X��X�����(X + Y )�����(X + Z)
�����(X + Y )�����(X + Z)��X[(X + Y ) + (X + Z)]

= 2X

2X + Y + Z

= Γ(TP + λ, 2h)
Γ(TP + λ, 2h) + Γ(FP + FN + 2λ, h)using 5 and 6

However, as these 2 gamma distributions don’t have the same shape parameter, we can’t
rewrite the F1-score as a beta distribution using property 7 and we have to refer to Monte
Carlo simulations in order to compare two systems and draw them in a graph. In figure
4, we can see the distribution generation produced by the Monte Carlo simulation. If
we only computed the F1-score using the usual formula we would have 0.571 for the first
system and 0.315 for the second one so we would conclude that system 1 is way better
than system 2. The probabilistic outlook gives another point of view. Even though the
first model seems preferable as it is more consistent and has a better mode and average,
the second model doesn’t seem so bad and actually outperforms system 1 in 43% of the
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cases.

Figure 4: F1-score distribution for 2 systems using Monte Carlo simulations.

Monte Carlo simulations can also be used to compute the credible interval of the F1-
score. Indeed using it we generate the empirical distribution of the Bayesian definition we
found with the gamma distributions. This distribution then allows us to find the lower
and upper values of the interval for the desired coverage3.

Now that we have methods that return credible intervals for these performance mea-
sures we can try to evaluate them to see if they return the desired intervals. When
evaluating this kind of methods, what we want to look into is the conservativeness of
the method. We have 2 main outcomes for this evaluation. The first possibility is that
the method is too conservative, meaning that it is pessimistic, and the credible regions
returned are larger than the desired coverage. The other possibility is that the method
is not conservative, therefore it is optimistic, and the interval returned is too restrictive
compared to the desired coverage. In order to estimate conservativeness for our methods,
we will rely on MMST [22]. In this blog, the author compares a credible region deduced
from a binomial distribution, which is our case for precision and recall, to confidence in-
tervals which are computed using frequentist approaches. So first we should define what

3The f1_score function in the credible region file returns this interval. The measures function discussed
earlier also returns the credible interval of the F1-score among others.
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confidence intervals are exactly.

Definition 2 (Confidence interval). For a parameter Θ, a x% confidence interval means
that, when repeating the trials a large number of times, x% of the returned estimated
intervals would include the true value of the parameter Θ.

So the main difference between confidence interval and credible region is the following.
For credible region, it is the parameter that is subject to random process whereas, for
confidence interval, it is the interval that is subject to random process.

We will use three frequentist approaches and 2 Bayesian with different priors to make
a comparison. The 2 different priors we will use are the flat prior, λ = 1, and the Jeffreys
prior, λ = 0.5. The 3 confidence intervals4 are methods that are based on binomial
proportions[23] and they are:

1. The Wilson interval[24] is an improvement of the normal approximation which uses
a normal distribution.

2. The Clopper–Pearson interval[25] which is referred as an exact method due to the
use of the cumulative probabilities of the binomial distribution.

3. The Agresti-Coull interval[26] which is based on the Wald interval[27] and adds two
successes and two failures. This means that we have to add 2 to the number of
successes and 4 to the number of samples.

Using those intervals, we did a simulation to detect their conservativeness. In our
simulation we know the exact value of the parameter we’re trying to evaluate. Then we
use the different methods presented before to compute the credible regions and confidence
intervals for several systems created through the exact value of the parameter. Finally
computing the percentage of times the exact value is included in the interval we can
estimate the coverage of the different methods for all possible values of the parameter
and deduce their conservativeness5. Doing so, we can generate a graph that shows the
coverage of the 5 methods presented (see figure 5).

From this graph, we can detect several things. First we see that the Clopper-Pearson
interval is too conservative. Indeed, we see that his coverage is always above the desired

4Implementations for these methods can be found in the confidence_interval file
5The code that generates this estimation is the function estimated_ci_coverage available in the curves

file
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Figure 5: Coverage of the true parameter from 5 methods that return either a credible
region or a confidence interval. This coverage was done using intervals at a 95%

confidence level

95% confidence level. This was predictable as this method, as a consequence on how it’s
computed, often returns an interval containing the true value of the parameter even if
it means that the interval will be bigger. The other 4 methods are quite similar in the
coverage they have and we can detect some common features. When the true value lies
between 0.35 and 0.65, the coverage is around 95% as it should. However, when the true
value is around the limits, the coverage is much less predictable and can be too restrictive
as too conservative. This is probably due to the fact that the binomial generation will
vary much more when we are in those extreme cases. As we know that the precision
and recall are similar to beta distributions, then the credible region returned for these
parameters will behave as the beta priors presented in the figure 5. This will not be the
case for the F1-score as we can’t write it as a beta distribution.
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6 Contributions

In this chapter, we will study the coverage for the F1-score and extend what we have
seen previously in order to produce credible regions coming from other performance mea-
sures. As a first step, we will present the coverage of the F1-score then we will discuss
the specificity, accuracy and Jaccard index metrics. After that we will talk about the re-
ceiver operating characteristic curve which allows to have a visualization of the confidence
interval. In the end, we will discuss k-fold cross-validation for our credible regions.

As evoked earlier, the F1-score can not be represented as a beta distribution, there-
fore the figure 5 doesn’t illustrate the coverage of the method we have to compute the
credible region. To show the coverage, we had to design another function that uses Monte
Carlo simulation. We consider that both precision and recall are issued from binomial
distributions as we established earlier. So we will pass through possible values for the
precision and recall. From these values we can compute the true value of the F1-score
and using the binomial distributions we will generate several systems where the three true
values of the metrics are, therefore, known. From the precision and recall generated with
binomial distribution in each system we can compute the TP, FP and FN values. Then
we can compute the credible region for the F1-score using our method and detect if the
true value is included in the interval for each system. It is worthy to note that not every
pair of precision and recall is possible as it would need more negative samples in some
cases. The graph illustrating the F1-score coverage can be seen in figure 6.

As the F1-score depends on precision and recall, the graph is generated in 3D with
the 2 metrics in the x and y axes and the coverage percentage in the z axis. We also
have a second illustration that shows the 3D graph seen from above. We can see from the
graph that the coverage of the F1-score is similar to the ones from the figure 5. Indeed,
we see that the coverage is usually as desired except when we approach to the bounds of
the precision and recall where they deteriorate6.

Now we will extend the representation as beta distributions, seen in the previous
chapter, to other performance measures. The metrics we will discuss are the specificity,
the accuracy and the Jaccard index. The usual formulas to compute these measures using
the TP, TN, FP and FN samples are the following:

6The function to generate this graph can be found in the doc/examples/f1-coverage file.
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Figure 6: Coverage of the true F1-score from our method to compute the credible
region. This coverage was done using an interval at a 95% confidence level

specificity = true negative rate (TNR) = TN

TN + FP
(8)

accuracy = acc = TP + TN

TP + TN + FP + FN

Jaccard index = Jindex = TP

TP + FN + FP

In a similar way than in the previous chapter, we can prove that these metrics are
actually binomials and we can describe their posterior probability as beta distributions.
More precisely, the specificity, which is the same as the true negative rate (TNR), has the
following posterior TNR|D ∼ Be(TN + λ, FP + λ). The accuracy posterior is ACC|D ∼
Be(TP + TN + λ, FN + FP + λ) and the Jaccard index posterior is Jindex|D ∼ Be(TP
+ λ, FN + FP + λ)7. We will now prove these statements.

Using properties 1, 2 and with similar proofs than lemmas 1 and 2, we can conclude
2 generalizations:

1. An addition of any two components from the multinomial results in a binomial (i.e.
7The measures function from the credible_region file also returns the credible regions for these metrics.
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FN+FP ∼ B(n, πF N + πF P ) etc.)

2. A component conditioned on an addition results on a binomial (i.e. FN|FN+FP ∼
B(FN+FP, πF N

πF P +πF N
) etc.)

Lemma 3. TNR|D ∼ Be(TN + λ, FP + λ)

Proof. From the generalization 2, we have TN|TN+FP ∼ B(TN+FP, πT N

πT N +πF P
). Therefore

the likelihood of TNR is :

L(TNR) = P (D|TNR) ∝ TNRT N(1 − TNR)F P

Using Bayes’ rule :
P (TNR|D) ∝ P (D|TNR)P (TNR)

We can use the symmetric beta distribution for the prior distribution P(TNR).

TNR ∼ Be(λ, λ) : P (TNR) = Γ(2λ)
Γ(λ)2 TNRλ−1(1 − TNR)λ−1

So

P (TNR|D) ∝ TNRT N(1 − TNR)F P TNRλ−1(1 − TNR)λ−1

∝ TNRT N+λ−1(1 − TNR)F P +λ−1

Which is a beta distribution with parameters TN + λ and FP + λ. We could conclude
the same for the true positive rate, the false positive rate and the false negative rate,
respectively TPR|D ∼ Be(TP + λ, FN + λ), FPR|D ∼ Be(FP + λ, TN + λ) and FNR|D
∼ Be(FN + λ, TP + λ).

Lemma 4. ACC|D ∼ Be(TP + TN + λ, FN + FP + λ)

Proof. According to the generalization 1, we have TP+TN ∼ B(n, πT P + πT N). As n =
TP + TN + FN + FP, we can actually rewrite this as TP+TN|TP+TN+FN+FP ∼ B(n,
πT P + πT N). So the likelihood of ACC is :

L(ACC) = P (D|ACC) ∝ ACCT P +T N(1−ACC)1−(T P +T N) = ACCT P +T N(1−ACC)F N+F P

Using Bayes’ rule :
P (ACC|D) ∝ P (D|ACC)P (ACC)
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We can use the symmetric beta distribution for the prior distribution P(ACC).

ACC ∼ Be(λ, λ) : P (ACC) = Γ(2λ)
Γ(λ)2 ACCλ−1(1 − ACC)λ−1

So

P (ACC|D) ∝ ACCT P +T N(1 − ACC)F N+F P ACCλ−1(1 − ACC)λ−1

∝ ACCT P +T N+λ−1(1 − ACC)F N+F P +λ−1

Which is a beta distribution with parameters TP + TN + λ and FN + FP + λ.

Lemma 5. TP+FN+FP ∼ B(n, πT P + πF P + πF N)

Proof. Using property 1, we know that TN ∼ B(n; πT N) so

P (TP + FN + FP = k)

= P (TN = n − k)

=
(

n

n − k

)
πn−k

T N (1 − πT N)k

=
(

n

k

)
(1 − (πT P + πF P + πF N))n−k (1 − (1 − (πT P + πF P + πF N)))k

=
(

n

k

)
(1 − (πT P + πF P + πF N))n−k (πT P + πF P + πF N)k

Which is indeed a binomial with parameters n and πT P + πF P + πF N .

Lemma 6. TP|TP+FN+FP ∼ B(TP+FN+FP, πT P

πT P +πF P +πF N
)

Proof. From lemma 1 we can also conclude that FP+FN ∼ B(n, πF P + πF N). Using
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property 2, we can then conclude that FP+FN|TP ∼ B(n − TP ; πF P +πF N

1−πT P
) so

P (TP = k|TP + FN + FP = M)

= P (TP = k)P (FN + FP = M − k|TP = k)
P (TP + FN + FP = M)

=

(
n
k

)
πk

T P (1 − πT P )n−k
(

n−k
M−k

) (
πF P +πF N

1−πT P

)M−k (
1 − πF P +πF N

1−πT P

)n−M(
n
M

)
(πT P + πF P + πF N)M(1 − (πT P + πF P + πF N))n−M

=

(
n
k

)(
n−k
M−k

)
(

n
M

) πk
T P (1 − πT P )n−k (πF P +πF N )M−k

(1−πT P )M−k
(1−πT P −πF P −πF N )n−M

(1−πT P )n−M

(πT P + πF P + πF N)M(1 − (πT P + πF P + πF N))n−M

=
�n!

k!���(n−k)!
���(n−k)!

(M−k)!����(n−M)!
�n!

M !����(n−M)!

πk
T P((((((((1 − πT P )n−k (πF P +πF N )M−k

(((((((1−πT P )M−k (((((((((((
(1−πT P −πF P −πF N )n−M

(((((((1−πT P )n−M

(πT P + πF P + πF N)M(
(((((((((((((((

1 − (πT P + πF P + πF N))n−M

= M !
k!(M − k)!

πk
T P (πF P + πF N)M−k

(πT P + πF P + πF N)k(πT P + πF P + πF N)M−k

=
(

M

k

)(
πT P

πT P + πF P + πF N

)k ( πF P + πF N

πT P + πF P + πF N

)M−k

=
(

M

k

)(
πT P

πT P + πF P + πF N

)k (
1 − πT P

πT P + πF P + πF N

)M−k

Which is indeed a binomial with parameters TP+FN+FP and πT P

πT P +πF P +πF N
.

Lemma 7. Jindex|D ∼ Be(TP + λ, FN + FP + λ)

Proof. From lemma 6, we know that TP|TP+FN+FP ∼ B(TP+FN+FP, πT P

πT P +πF P +πF N
).

Meaning that the likelihood of Jindex is :

L(Jindex) = P (D|Jindex) ∝ JT P
index(1 − Jindex)F N+F P = JT P

index(1 − Jindex)F N+F P

Using Bayes’ rule :
P (Jindex|D) ∝ P (D|Jindex)P (Jindex)

We can use the symmetric beta distribution for the prior distribution P(Jindex).

Jindex ∼ Be(λ, λ) : P (Jindex) = Γ(2λ)
Γ(λ)2 Jλ−1

index(1 − Jindex)λ−1
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So

P (Jindex|D) ∝ JT P
index(1 − Jindex)F N+F P Jλ−1

index(1 − Jindex)λ−1

∝ JT P +λ−1
index (1 − Jindex)F N+F P +λ−1

Which is a beta distribution with parameters TP + λ and FN + FP + λ.

As we proved that the posterior of these metrics follow beta distributions, the coverage
of their credible regions will be the same as the beta priors discussed in figure 5 depending
if we use the flat prior or the Jeffreys’ one.

In order to have a visualization of the confidence interval or credible region, the re-
ceiver operating characteristic curve (ROC curve) is a good way to achieve it. The machine
learning algorithms in binary classification tasks don’t return the class (positive or neg-
ative) directly for a sample. They return a probability that the sample is positive and
it is the user of the algorithm that will decide of a threshold value according to which
kind of samples (true positives, true negatives etc.) he wants to give more importance.
Therefore the same algorithm outputs different numbers of TP, TN, etc., depending on
this threshold value. The idea of the ROC curve is to pass through possible values of the
threshold and compute the true positive rate (TPR) and false positive rate (FPR) at each
of them. Then we display the computed values in a graph with the TPR and FPR as axes.
As each threshold gives a different TPR and FPR, we will have a unique coordinate in
the graph for each calculation. And with all these coordinates we can compute the ROC
curve, but we want to display the interval too. So at each of these points we also compute
the confidence interval (or the credible region depending on what algorithm we use, but
from now on we will just refer to it as confidence interval for readability purposes) for
the TPR and FPR. The upper and lower bounds that will be returned will produce new
coordinates that will determine the limits of the interval in the graph. Then after doing
all these we are able to display a ROC curve with a confidence interval8. From the ROC
curve we can compute a new performance measure which is the area under the ROC curve
(AUROC). This metric, as stated by the name, is the area that we can compute below
the generated ROC curve. When computing the ROC curve with a confidence interval,
we actually generate 2 more curves, an upper and a lower one, from which we can also
compute the AUROC. Doing so, we also create a confidence interval for the AUROC.

8The roc_ci function in the curves file computes the ROC curve and its confidence interval
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Figure 7: 2 ROC curves with a 95% credible region computed using a flat prior.

In figure 7, we can see 2 ROC curves generated from 2 systems. System 1 seems to
perform better than the second one. It shows more consistency, as the confidence interval
is narrower, and it has greater AUROC values (named just area under the curve in the
figure) than its counterpart.

Using the same logic, as for the ROC curve, we can create a similar curve with the
precision and recall instead of the rates used earlier. Doing so, we produce a precision-
recall curve which also displays its confidence interval9. In the same manner than the
AUROC, we can also define the area under the precision-recall curve (AUPRC). In figure
8, we see 2 systems being compared according to their precision-recall curves. One more
time, system 1 seems to perform better, but it isn’t as obvious than with the ROC curves,
as there is more overlapping. However, system 1 seems more consistent, as we can see
with the AUPRC confidence interval, which is narrower.

Lastly, we will present the k-fold cross-validation we developed to compute the credible
region coming from several splits. The method we used is also known as Monte Carlo
cross-validation[28]. The idea of this method is to average the results we obtained from
each given split. The data division will be done from the user and he will input the TP,
TN, FP and FN values from each split which he got after training the model. Once we

9The precision_recall_ci function in the curves file computes the precision-recall curve and its confi-
dence interval
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Figure 8: 2 precision-recall curves with a 95% credible region computed using a flat
prior. The graph also includes iso-F1 lines, which are segments where we have the same

F1-score value.

got all these values for each split, we know how to compute the posterior for one split
depending on the desired measure (either a beta posterior for the binomial metrics or the
posterior generated from Monte Carlo simulation for the F1-score). After computing the
posteriors of every given split, we average them. Then we determine the credible region
from the average posterior10.

10The average_measures function in the credible_region file returns the k-fold credible region for all
the metrics we presented. If we want to compute the k-fold credible region for only one measure we
should either use the average_beta or average_f1score function with the correct parameters depending
on the desired metric.
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7 Conclusion

In conclusion of this thesis, we explored different ways to express credible regions and
confidence intervals for useful performance measures. Doing so, we managed to compare
different systems with information that was not accessible from just the unique value
produced by the possible metrics. This information gave us a better view on the systems
studied and it showed us that confidence intervals and credible regions were really useful,
notably when the size of the data set is small. We also noticed that both frequentist
and Bayesian approaches gave similar results and that they could be used analogously.
However, it is also important to remark that they don’t express the same result. So we
should use them accordingly to what we’re trying to convey.

In our contribution, we extended the work of Goutte and Gaussier [17] to include
other performance measures like accuracy. We also completed the study of the F1-score
by analyzing the coverage it produced and did the same for the other metrics, which could
be expressed as binomials, according to the work of MMST [22]. After that we widened
the ROC and precision-recall curves so that they also display the confidence interval or
credible region of these measures. Doing so, it constructed intervals for the area under the
curve too. In the end, we developed a function to express confidence intervals or credible
regions when we employ k-fold cross-validation for our model.

An idea to continue this study on confidence intervals and credible regions would be
to investigate the case when we have non i.i.d. samples, more precisely when there exists
a dependency between them. To simulate dependent samples, we could rely on Markov
chain Monte Carlo methods[29] and doing something similar to the Metropolis–Hastings
algorithm[30][31]. This would divide the simulation into 2 steps. The first one would be
to generate the ground truth that would be composed with positives (ones) and negatives
(zeros). This could be done by making each sample depending to the previous one with a
predetermined probability. Meaning that, for each sample, we would do a Bernoulli trial.
On success the sample would take the same value as the previous one, and on failure it
would be the opposite than the previous. As the first sample doesn’t have a previous, it
would do a Bernoulli trial with a probability unique to him to decide if it is a positive or
a negative. The ground truth would look like that but with more samples:
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1 1 0

success failure

The second step would be to generate machine learning outputs from this ground
truth. In order to create dependency in the samples of the machine learning output,
we have to make it dependent to the previous and his equivalent of the ground truth.
Logically, the first sample would only depend on the first one of the ground truth. The
dependencies would look like the following:

GT

ML

1 1 0

1 1 1

success failure
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