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Abstract
In this study, we apply the information-theoretic Privacy Funnel (PF) model to the domain of
face recognition, developing a novel method for privacy-preserving representation learning within
an end-to-end training framework. Our approach addresses the trade-off between obfuscation and
utility in data protection, quantified through logarithmic loss, also known as self-information loss.
This research provides a foundational exploration into the integration of information-theoretic
privacy principles with representation learning, focusing specifically on the face recognition
systems. We particularly highlight the adaptability of our framework with recent advancements
in face recognition networks, such as AdaFace and ArcFace. In addition, we introduce the
Generative Privacy Funnel (GenPF) model, a paradigm that extends beyond the traditional scope
of the PF model, referred to as the Discriminative Privacy Funnel (DisPF). This GenPF model
brings new perspectives on data generation methods with estimation-theoretic and information-
theoretic privacy guarantees. Complementing these developments, we also present the deep
variational PF (DVPF) model. This model proposes a tractable variational bound for measuring
information leakage, enhancing the understanding of privacy preservation challenges in deep
representation learning. The DVPF model, associated with both DisPF and GenPF models,
sheds light on connections with various generative models such as Variational Autoencoders
(VAEs), Generative Adversarial Networks (GANs), and Diffusion models. Complementing
our theoretical contributions, we release a reproducible PyTorch package, facilitating further
exploration and application of these privacy-preserving methodologies in face recognition systems.
The source code will be made available upon acceptance at: https://gitlab.idiap.ch/
biometric/deep-variational-privacy-funnel.
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Figure 1: High-level schematic comparison of privacy funnel models: (a) discriminative
(classical) paradigm; (b) generative paradigm.

1. Introduction

1.1 Motivation

In the evolving landscape of face recognition technology, a critical issue has emerged: the need
to balance privacy preservation with the utility of data. This challenge is particularly acute
in the context of representation learning, where protecting individual privacy often conflicts
with the demand for high-quality data analysis. Existing solutions in privacy-preserving
representation learning face recognition approaches do not address the inherent information-
theoretic trade-off between privacy and utility. This gap in the existing approaches underscores
the importance of exploring new methodologies that can pave the way to understanding,
quantifying and mitigating privacy risks for face recognition systems.

Our research introduces a novel approach to this problem by applying the information-
theoretic Privacy Funnel (PF) model to face recognition systems1. We propose a new method
for privacy-preserving representation learning within an end-to-end training framework. This
approach quantifies the trade-off between obfuscation and utility through logarithmic loss,
generalizable to other loss functions for positive measures, effectively integrating the principles
of information-theoretic privacy with face recognition technology. The adaptability of our
framework with recent advancements in face recognition networks, including AdaFace and
ArcFace, highlights its relevance and applicability in current technological contexts.

Distinguishing our approach from conventional methods, we introduce the Generative
Privacy Funnel (GenPF) model and the Deep Variational Privacy Funnel (DVPF) framework.
The GenPF model extends beyond the traditional scope of Privacy Funnel analysis, offering
new perspectives on data generation with privacy guarantees. Concurrently, the DVPF model
provides a variational bound for measuring information leakage, enhancing the understanding
of privacy challenges in deep representation learning. Additionally, the proposed methodology
can also be combined with prior-independent privacy-enhancing techniques like differential
privacy, marrying both prior-dependent and prior-independent mechanisms.

1This manuscript extends our paper accepted at the 2024 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’24) (Razeghi et al., 2024).
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1.2 Key Contributions

Our research makes the following contributions to the field:

• Overview of Data Privacy Paradigm: Our research presents an overview of the current
landscape in data privacy, articulating a clear understanding of privacy risks and the
methodologies for their identification, quantification, and mitigation. It methodically cate-
gorizes Privacy-Enhancing Technologies (PETs), distinguishing between prior-dependent
and prior-independent mechanisms and their significance in the broader context of pri-
vacy protection. Part of this work serves as a brief, but foundational review, offering a
synthesized perspective on the privacy risk management in digital environments, while
also addressing the implications for biometric PETs.

• First Study of Privacy Funnel Analysis in Face Recognition Systems: To the
best of our knowledge, our work is the first to apply privacy funnel analysis to modern face
recognition systems. This study bridges the gap between information-theoretic privacy
principles and the practical implementation of privacy-preserving representation learning,
focusing specifically on advanced face recognition technologies. Our framework is also
designed to be easily integrated with recently developed face recognition networks like
AdaFace and ArcFace in a plug-and-play fashion.

• Proposition of the Generative Privacy Funnel Model: We introduce the Generative
Privacy Funnel (GenPF) model, setting it apart from the traditional Privacy Funnel,
which we now term the Discriminative Privacy Funnel (DisPF) model. The GenPF model
offers new insights into the generation of synthetic data with estimation-theoretic and
information-theoretic privacy guarantees. We further explore a specific formulation of the
GenPF model, demonstrating its potential and effectiveness in privacy preservation within
face recognition systems.

• Introduction of the Deep Variational Privacy Funnel Model: Our work also
includes the development of the deep variational PF (DVPF) model. We present a
tight variational bound for quantifying information leakage, which provides a deeper
understanding of the complexities involved in privacy preservation during deep variational
PF learning. The DVPF model sheds light on connections with various generative models,
such as the VAE family, GAN family, and Diffusion models. Furthermore, we have applied
the DVPF model to the advanced face recognition systems.

• Versatile Data Processing Capabilities: Our model can process both raw image
samples and embeddings derived from facial images.

1.3 Outline
We explore the data privacy paradigm in Sec. 2. In Sec. 3, we briefly introduce key preliminary
concepts. Sec. 4 presents both the discriminative and generative perspectives of the PF
model. We then present the deep variational PF model in Sec. 5. Experimental results
related to face recognition systems can be found in Sec. 6, and our conclusions are drawn in
Sec. 7.
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1.4 Notations

Throughout this paper, random variables are denoted by capital letters (e.g., X, Y ), de-
terministic values are denoted by small letters (e.g., x, y), random vectors are denoted by
capital bold letter (e.g., X, Y), deterministic vectors are denoted by small bold letters
(e.g., x, y), alphabets (sets) are denoted by calligraphic fonts (e.g., X ,Y), and for specific
quantities/values we use sans serif font (e.g., x, y, C, D). Also, we use the notation [N ] for the
set {1, 2, · · · ,N}. H(PX) := EPX

[− logPX] denotes the Shannon entropy; H(PX∥QX) :=
EPX

[− logQX] denotes the cross-entropy of the distribution PX relative to a distribution
QX; and H

(
PZ|X∥QZ|X | PX

)
:= EPX

EPZ|X

[
− logQZ|X

]
denotes the cross-entropy loss for

QZ|X. The relative entropy is defined as DKL (PX∥QX) := EPX

[
log PX

QX

]
. The conditional

relative entropy is defined by DKL

(
PZ|X∥QZ|X | PX

)
:= EPX

[
DKL

(
PZ|X=x∥QZ|X=x

)]
and

the mutual information is defined by I
(
PX;PZ|X

)
:= DKL

(
PZ|X∥PZ | PX

)
. We abuse no-

tation to write H(X) = H (PX) and I (X;Z) = I
(
PX;PZ|X

)
for random objects2 X ∼ PX

and Z ∼ PZ. We use the same notation for the probability distributions and the associated
densities.

2. Navigating the Data Privacy Paradigm

Data privacy is an ever-changing domain, propelled by the surge in personal and sensitive
information production and exchange via digital platforms. Its primary objective is safeguard-
ing the confidentiality, integrity, and availability of this information, restricting access and
usage to authorized parties only. To realize this aim, data privacy employs various strategies
and technologies such as encryption, access controls, and privacy-enhancing technologies
(PETs). These methods aim to thwart unauthorized access and misuse of personal and
sensitive data while minimizing the volume of information that is exposed or shared.

One of the key challenges in data privacy is managing the delicate balance between
protecting personal and sensitive information and enabling its access and use for legitimate
purposes. This trade-off becomes particularly challenging with rapid technological advances
and the increasing demand for data-driven services. Another challenge is the absence of
global standards and regulations for personal and sensitive information protection. Although
many countries have established their own data privacy laws, the significant variations among
these laws complicate the consistent protection of personal and sensitive data across borders.
Despite these challenges, this field of data privacy is constantly evolving and advancing, with
the development of new technologies and approaches to better protect personal and sensitive
information.

The main challenge in the era of big data lies in balancing the utilization of data-driven
machine learning algorithms with the crucial importance of protecting individuals’ privacy.
The increasing volume of data collected and used for training machine learning algorithms
raises concerns about potential misuse and privacy invasions. This situation presents several
open problems, such as devising effective methods to anonymize data—ensuring individuals
cannot be identified from training data—and developing robust technologies to safeguard
personal information. Furthermore, there’s an imperative need to establish ethical guidelines
for data use in machine learning, ensuring adherence to protect individuals’ rights.

2The name random object includes random variables, random vectors and random processes.
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2.1 Lunch with Turing and Shannon3

Alan Turing visited Bell Labs in 1943, during the peak of World War II, to examine the X-
system, a secret voice scrambler for private telephone communications between the authorities
in London and Washington. While there, he met Claude Shannon, who was also working on
cryptography. In a 28 July 1982 interview with Robert Price in Winchester, MA (Price, 1982),
Shannon reminisced about their regular lunch meetings where they discussed computing
machines and the human brain instead of cryptography (Guizzo, 2003). Shannon shared
with Turing his ideas for what would eventually become known as information theory, but
according to Shannon, Turing did not believe these ideas were heading in the right direction
and provided negative feedback. Despite this, Shannon’s ideas went on to be influential in
the development of information theory, which has had a significant impact on the fields of
computer science and telecommunications.

Privacy has been a central concern in the fields of information theory and computer science
since its inception. The interaction between Shannon and Turing highlights the different
approaches taken by the two communities to address the issue of preventing unauthorized
access to information contained in disclosed data. These approaches often involve the use
of unique models and distinct mathematical techniques. It is important to note that these
approaches have evolved over time as technology and threats to privacy have changed and
continue to be an active area of research and development in both fields.

In the 1970s, two influential papers on privacy were published that highlighted the
differences in approaches between information theory and computer science. The first paper,
authored by Aaron Wyner while he was working at Bell Labs, introduced the concept of
a wire-tap channel (Wyner, 1975), where data is transmitted over a discrete, memoryless
channel (DMC) that is subject to interception by an eavesdropper, who is modeled as a second
DMC observing the output of the first DMC. Wyner showed that it is possible to achieve
perfect secrecy, or the ability to communicate without any information being disclosed to the
interceptor, by designing codes that take advantage of the noise in the channel observed by
the eavesdropper. This approach to privacy, which does not rely on assumptions about an
adversary’s computational abilities and is often referred to as information-theoretic secrecy,
became a key focus of research within the field of information theory.

In November 1976, Diffie and Hellman published a paper that introduced the concept of
public key cryptography and described how it can be used to achieve secure communication
without the need for a shared secret key (Hellman, 1976). This approach to cryptogra-
phy, which is based on the difficulty of discovering private information without additional
knowledge, such as a private key, ensures security against an adversary who is limited in
their computational abilities. As a result, public key cryptographic systems are easier to
implement and deploy compared to approaches that rely on information-theoretic secrecy,
which do not make assumptions about an adversary’s computational capabilities. The paper
also discussed public key distribution systems and verifiable digital signatures, which are
important tools in ensuring the security of communication.

Since the publication of the papers on information theory and computer science approaches
to privacy, public key cryptography, which assumes that an adversary is limited in their

3This section is inspired by the insightful work of (P. Calmon, 2015; Hsu et al., 2021) and adapted from
(Razeghi, 2023).
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computational abilities, has become widely used in a variety of applications, including
banking, healthcare, and public services. It is used billions of times a day in applications
ranging from digital rights management to cryptocurrency. In contrast, information-theoretic
approaches to secrecy, which do not make assumptions about an adversary’s computational
capabilities, have been less successful in practical applications. Perfect secrecy against a
computationally unbounded adversary requires strict assumptions, which can lead to elegant
mathematical models but often result in security schemes that are difficult to implement in
practice.

The intersection of information theory and computer science approaches to privacy
continues to be relevant in today’s world, where the collection of individual-level data has
increased significantly. This development has brought both challenges and opportunities for
both fields, as the widespread collection of data has brought significant economic benefits,
such as personalized services and innovative business models, but also poses new privacy
threats. For example, social media posts may be used for undesirable political targeting
(Effing et al., 2011; O’reilly et al., 2018), machine learning models may reveal sensitive
information about the data used for training (Abadi et al., 2016), and public databases may
be deanonymized with only a few queries (Narayanan and Shmatikov, 2008; Su et al., 2017).
Both fields have faced new challenges and opportunities in addressing these issues.

2.2 Identification, Quantification, and Mitigation of Privacy Risks

Addressing privacy risks is paramount across all stages of personal data handling, including (i)
collection, (ii) storage, (iii) processing, and (iv) sharing (dissemination). This comprehensive
perspective ensures robust privacy protection applicable in various contexts, from traditional
data management to advanced machine learning models. The growing body of research
focused on managing privacy risks addresses three fundamental questions: ‘identification’,
‘quantification’, and ‘mitigation’ of these risks, setting the foundation for detailed exploration
of state-of-the-art practices and methodologies in the field.

(a) Identification: How can we effectively identify the risk of data leakage and potential
privacy attacks across the entire data lifecycle, from collection through to processing
and sharing?

(b) Quantification: Following the identification of privacy risks, what metrics4 can be
developed and applied to precisely quantify these risks and monitor the effectiveness of
implemented privacy protection strategies?

(c) Mitigation: With a comprehensive understanding of privacy, what strategies can be
formulated and implemented to mitigate identified risks, ensuring an optimal balance
between operational objectives and privacy, in line with legal and ethical standards?

The following discussion will provide a brief exploration of these pivotal questions.

4In this document, ‘metric’ is employed not in the traditional mathematical sense of a distance function
but as a quantifier for assessing privacy risk.
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2.2.1 Identification of Privacy Risks

Identifying (understanding) privacy risks is a critical first step in safeguarding privacy across
the entire data lifecycle, including collection, storage, processing, and dissemination (Solove,
2002, 2005). This task becomes increasingly vital and, at times, complex within the context
of both traditional data management practices and the utilization of machine learning
algorithms (Solove, 2010, 2024). The identification process requires a detailed understanding
of potential vulnerabilities that could lead to data leakage and privacy attacks, alongside
the development of systematic approaches to detect and assess these risks (Solove, 2010;
Smith et al., 2011; Orekondy et al., 2017; Milne et al., 2017; Beigi and Liu, 2020). We briefly
explore several key methodologies that are essential for the comprehensive identification of
privacy risks in these areas.

Data Sensitivity Analysis: Evaluating the inherent privacy risks associated with specific
data types is fundamental in both conventional data management and machine learning
contexts. This involves a meticulous assessment of datasets to identify data containing
personally identifiable information or sensitive personal information. Through techniques
such as attribute-based risk assessment and the application of privacy-preserving data mining
principles, organizations can identify data elements that necessitate heightened protection
measures. This analysis is crucial for setting the stage for privacy risk management, enabling
a prioritized focus on the most sensitive data elements.

Vulnerability Assessment Across Data Lifecycle: Conducting comprehensive vul-
nerability assessments is essential for identifying potential weaknesses that could lead to
privacy breaches or violations. This process spans the entire data lifecycle, from initial data
collection and storage to its processing and final dissemination. In the context of machine
learning, this includes a detailed examination of model architectures, training procedures, and
data processing pipelines to identify potential points of data leakage. Utilizing automated
tools and frameworks for privacy audit and analysis plays a pivotal role in facilitating these
comprehensive assessments, ensuring that vulnerabilities can be identified and addressed
proactively.

Simulated Privacy Attack Scenarios: Simulating potential privacy attacks is a proactive
strategy for identifying vulnerabilities within both traditional data handling systems and
machine learning models. Techniques such as adversarial modeling and synthetic data
generation are employed to test the ease with which a model can be manipulated or data
can be re-identified. This approach is particularly pertinent in the machine learning arena,
where algorithms may be susceptible to specific privacy threats, including model inversion
attacks and membership inference attacks. These simulated attack scenarios are invaluable
for assessing the robustness of privacy protections and for highlighting areas where additional
safeguards are needed.

2.2.2 Quantification of Privacy Risks

Following the identification of privacy risks and an in-depth understanding of the regulatory
and ethical standards relevant to data privacy, it is crucial to precisely define and apply
metrics. These metrics are indispensable for accurately quantifying the identified privacy
risks and for diligently tracking progress towards their effective mitigation. Quantifying
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privacy risks requires the development of metrics that can precisely measure the severity of
these risks across various stages of data handling, including collection, storage, processing, and
dissemination. Importantly, the applicability and specificity of these metrics vary significantly
based on the data lifecycle stage and the specific application context (Duchi et al., 2013a,
2014; Mendes and Vilela, 2017; Duchi et al., 2018; Wagner and Eckhoff, 2018; Bhowmick
et al., 2018; Liao et al., 2019; Hsu et al., 2020; Bloch et al., 2021; Saeidian et al., 2021).
This variability means that different metrics may have different operational interpretations
(Issa et al., 2019; Kurri et al., 2023), necessitating a nuanced approach to their selection
and implementation. These metrics act as definitive indicators of the privacy stance of data
processing systems, enabling data custodians to make well-informed decisions about privacy
risk management. We review a specific type of these quantitative metrics in Sec. 3.

2.2.3 Mitigation of Privacy Risks

In addressing the spectrum of privacy risks inherent in digital data handling, it’s imperative
to employ a multifaceted strategy that encompasses both the theoretical frameworks and
practical tools available for risk mitigation. Among these methodologies, PETs emerge as a
critical subset, offering targeted solutions to protect personal data across its lifecycle. PETs
are pivotal category of tools and methodologies designed to directly safeguard personal
privacy by mitigating the risks associated with the collection, storage, processing, and
sharing of personal data. PETs embody the principle of privacy by design, ensuring that
privacy considerations are embedded within the infrastructure of digital technologies from the
ground up. Deploying foundational techniques in PETs, such as pseudonymization (Chaum,
1981, 1985), anonymization (Sweeney, 2000, 2002), and encryption (Shannon, 1949; Diffie
and Hellman, 1976; Hellman, 1977), directly addresses privacy risks by protecting data
identifiability and integrity from collection to dissemination. We review PETs in Sec. 2.3.

2.3 Privacy-Enhancing Technologies

PETs play a vital role in safeguarding individual privacy by directly countering privacy
threats. As adversaries constantly refine their methods, PETs become indispensable in
the relentless pursuit to shield sensitive information from unauthorized access and misuse.
Spanning a wide range, these technologies tackle various facets of privacy and data security.

2.3.1 Encryption, Anonymization, Obfuscation, and Information-Theoretic
Technologies

These techniques are at the forefront of PETs, offering robust solutions to secure data whether
it’s stored (at rest), being transmitted (in transit), or actively used (in use). Encryption
technologies, encompassing both symmetric and asymmetric methods, as well as homomorphic
encryption, serve as critical components by enabling secure data storage and transmission,
along with the capacity for encrypted data processing. Complementing these are data
pseudonymization (Chaum, 1981, 1985) and anonymization (Sweeney, 2000) techniques,
which obscure personal identifiers, effectively anonymizing data to prevent direct association
with individuals. Furthermore, differential privacy (Dwork et al., 2006b) introduces a
probabilistic layer to data protection, injecting carefully calibrated noise to aggregated data
or query outputs. This ensures that individual data points cannot be discerned, thereby
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protecting personal information from inference attacks within statistical datasets or when
deploying machine learning models. Expanding upon these, information-theoretic privacy
techniques offer a fundamental approach to data security by focusing on the maximum amount
of information that can be gained by an adversary, regardless of the adversary’s computational
power. By assessing the unpredictability and uncertainty in data, these methods ensure a
theoretical limit on the information leakage, making them indispensable in scenarios where
robust privacy guarantees are required, especially in the absence of assumptions about the
adversary’s computational capabilities. In Sec. 2.4, we review these techniques from the
standpoint of the prior knowledge we have regarding the data distribution.

2.3.2 Privacy-Preserving Computation Technologies

Secure computation techniques are essential for maintaining privacy during data processing
(Yao, 1982; Micali and Rogaway, 1992; Mohassel and Rindal, 2018; Juvekar et al., 2018; Keller,
2020; Knott et al., 2021; Neel et al., 2021). Confidential computing (Mohassel and Rindal,
2018; Mo et al., 2022; Vaswani et al., 2023), which employs Trusted Execution Environments
(TEEs) (Sabt et al., 2015), is a critical tool, isolating computation to protect data in use from
both internal and external threats. Additionally, Secure Multi-party Computation (SMPC)
(Goldreich, 1998; Du and Atallah, 2001; Cramer et al., 2015; Knott et al., 2021) facilitates
collaborative computation over data distributed among multiple parties without revealing
the data itself, enabling joint data analysis or model training while preserving the privacy of
each party’s data. Zero-Knowledge Proofs (ZKPs) (Fiege et al., 1987; Kilian, 1992; Goldreich
and Oren, 1994) offer another layer of security, allowing one party to prove the truth of a
statement to another party without revealing any information beyond the validity of the
statement itself, essential for scenarios requiring validation of data authenticity or integrity
without exposing the data.

2.3.3 Decentralized Privacy Technologies

Decentralized privacy-preserving technologies encapsulate methods that enable collaborative
and/or federated data analysis and model training across dispersed datasets without exposing
the underlying data (Shokri and Shmatikov, 2015; McMahan et al., 2017; Dwivedi et al., 2019;
Wei et al., 2020; Kaissis et al., 2020; Kairouz et al., 2021; Shiri et al., 2023). Federated learning
exemplifies this approach by allowing machine learning models to be trained across various
devices or servers. Rather than centralizing raw data, which could pose significant privacy
risks, this technique involves aggregating model updates derived from local data. Such a
decentralized approach not only maintains the confidentiality of individual contributions but
also harnesses collective insights to improve model accuracy and performance, embodying
the principles of privacy preservation in a distributed computing framework.

2.4 Prior-Dependent vs. Prior-Independent Mechanisms in PETs

There are two main types of privacy-enhancing mechanisms: ‘prior-independent ’ and
‘prior-dependent ’. Prior-independent mechanisms make minimal assumptions about the
data distribution and the information held by an adversary and are designed to protect
privacy regardless of the specific characteristics of the data being protected or the motivations
and capabilities of any potential adversaries. Prior-dependent mechanisms, on the other
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hand, make use of knowledge about the probability distribution of private data and the
abilities of adversaries in order to design privacy-preserving mechanisms. These mechanisms
may be more effective in certain scenarios where the characteristics of the data and the
adversary are known or can be reasonably estimated but may be less robust in situations
where such information is uncertain or changes over time.

Data anonymization (Sweeney, 2000) techniques, such as k-anonymity (Sweeney, 2002), ℓ-
diversity (Machanavajjhala et al., 2006), t-closeness (Li et al., 2007), differential privacy (DP)
(Dwork et al., 2006b), and pufferfish (Kifer and Machanavajjhala, 2012), aim to preserve the
privacy of data through various forms of data perturbation. These techniques focus on queries,
inference algorithms, and probability measures, with DP being the most popular context-free
privacy notion based on the distinguishability of “neighboring” databases. However, DP
does not provide any guarantee on the average or maximum information leakage (P. Calmon
and Fawaz, 2012), and pufferfish, while able to capture data correlation, does not prioritize
preserving data utility.

DP is a privacy metric that measures the impact of small perturbations at the input of a
privacy mechanism on the probability distribution of the output. A mechanism is said to be
ϵ-differentially private if the probability of any output event does not change by more than a
multiplicative factor eϵ for any two neighboring inputs, where the definition of “neighboring”
inputs depends on the chosen metric of the input space. DP is prior-independent and often
used in statistical queries to ensure the result remains approximately the same regardless
of whether an individual’s record is included in the dataset. The privacy guarantee of DP
can typically be achieved through the use of additive noise mechanisms, such as adding a
small perturbation or random noise from a Gaussian, Laplacian, or exponential distribution
(Dwork et al., 2014).

DP has been modified in various ways since its introduction, with variations including
approximate differential privacy (which allows for a small additional parameter called delta)
(Dwork et al., 2006a), local differential privacy (which assumes all inputs are neighboring)
(Duchi et al., 2013b), and Rényi differential privacy (which uses Rényi divergence to measure
the difference in output distributions from two neighboring inputs) (Mironov, 2017). DP has
two key properties that make it useful for protecting privacy: (i) it is composable (Dwork
et al., 2014; Abadi et al., 2016), meaning that the aggregate output of multiple observations
from a DP mechanism still satisfies DP requirements; and (ii) it is robust to post-processing
(Dwork et al., 2014), meaning that the output of a DP mechanism remains private even after
further processing. These properties enable the modular construction and analysis of privacy
mechanisms with a specific privacy leakage budget.

Information-theoretic (IT) privacy is the study of designing mechanisms and metrics
that preserve privacy when the statistical properties or probability distribution of data can
be estimated or partially known. IT privacy approaches (Reed, 1973; Yamamoto, 1983;
Evfimievski et al., 2003; Rebollo-Monedero et al., 2009; P. Calmon and Fawaz, 2012; Sankar
et al., 2013; P. Calmon et al., 2013; Makhdoumi and Fawaz, 2013; Asoodeh et al., 2014;
P. Calmon et al., 2015; Salamatian et al., 2015; Basciftci et al., 2016; Asoodeh et al., 2016;
Kalantari et al., 2017; Rassouli et al., 2018; Asoodeh et al., 2018; Rassouli and Gündüz,
2018; Liao et al., 2018; Osia et al., 2018; Tripathy et al., 2019; Hsu et al., 2019; Liao et al.,
2019; Sreekumar and Gündüz, 2019; Xiao and Khisti, 2019; Diaz et al., 2019; Rassouli et al.,
2019; Rassouli and Gündüz, 2019; Razeghi et al., 2020; Zarrabian et al., 2023; Zamani et al.,
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2023; Saeidian et al., 2023) model and analyze the trade-off between privacy and utility
using IT metrics, which quantify how much information an adversary can gain about private
features of data from access to disclosed data. These metrics are often formulated in terms
of divergences between probability distributions, such as f-divergences and Rényi divergence.
IT privacy metrics can be operationalized in terms of an adversary’s ability to infer sensitive
data and can be used to balance the trade-off between allowing useful information to be
drawn from disclosed data and preserving privacy. By using prior knowledge about the
statistical properties of data and assumptions about the adversary’s inference capabilities,
IT privacy can help to understand the fundamental limits of privacy and how to balance
privacy and utility.

The IT privacy framework is based on the presence of a private variable and a correlated
non-private variable, and the goal is to design a privacy-assuring mapping that transforms
these variables into a new representation that achieves a specific target utility while minimizing
the information inferred about the private variable. IT privacy approaches provide a context-
aware notion of privacy that can explicitly model the capabilities of data users and adversaries,
but they require statistical knowledge of data, also known as priors. This framework is
inspired by Shannon’s information-theoretic notion of secrecy (Shannon, 1949), where security
is measured through the equivocation rate at the eavesdropper5, and by Reed (Reed, 1973)
and Yamamoto’s (Yamamoto, 1983) treatment of security and privacy from a lossy source
coding standpoint.

2.5 Challenges in Data-Driven Privacy Preservation Mechanisms

In the era of modern data-driven economies, cryptographic techniques, while foundational,
face limitations in effectively addressing the spectrum of privacy risks. This limitation arises
primarily because adversarial entities can directly observe disclosed data, complicating the
protection of sensitive information. For instance, in scenarios where statisticians query
databases containing sensitive information, merely encrypting outputs is insufficient. Such
practices fail to prevent potential inference of private information through multiple queries,
a challenge exemplified by the U.S. Census’ efforts to release population statistics without
compromising individual privacy (Machanavajjhala et al., 2008). Similarly, in machine
learning applications where user data is essential for model training, the dual-edged sword of
data disclosure benefits and privacy risks becomes apparent. Here, the risk emerges from
adversaries’ ability to extract individual-level information by analyzing the model’s responses.

The overarching objective in these data-centric contexts is not to eliminate information
leakage entirely—a feat that is virtually unattainable against both computationally bounded
and information-theoretic adversaries. Instead, the goal shifts towards achieving a demonstra-
ble level of privacy that balances with utility. This nuanced approach stands in contrast to
the absolute zero information leakage ideal of both cryptography and information-theoretic
security models. Here, the privacy threat model envisages adversaries who scrutinize disclosed
data to deduce sensitive information, such as political preferences or the presence of an
individual within a dataset.

Emerging privacy mechanisms, spearheaded by advances in both computer science and
information theory, eschew assumptions on the adversary’s computational prowess. These

5A secret listener (wiretapper) to private conversations.
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innovative approaches vary in the adversary’s inference objectives—ranging from probability
of correct guesses to minimizing mean-squared reconstruction errors—and the modeling of
private information. A critical challenge in this domain is the utility-privacy trade-off, which
demands careful consideration of application-specific utility against privacy needs.

Among the vanguard of data-driven privacy solutions are mechanisms inspired by Gener-
ative Adversarial Networks (GANs). These strategies conceptualize privacy protection as a
strategic game between a defender (or privatizer) and an adversary, where the privatizer’s
goal is to encode datasets to thwart inference leakage regarding private or sensitive vari-
ables (Edwards and Storkey, 2016; Hamm, 2017; Huang et al., 2017; Tripathy et al., 2019;
Huang et al., 2018). Meanwhile, the adversary endeavors to extract these variables from
the released data. The optimization of privacy-preserving mechanisms through adversarial
training—whether deterministic or stochastic—epitomizes the dynamic interplay between
privacy protection and data utility.

As machine learning technologies evolve and become more pervasive, the imperative
for robust, data-driven privacy mechanisms becomes increasingly critical. These privacy
safeguards are indispensable for maintaining individual privacy, fostering public trust in
organizations and governments, and mitigating the potential adverse effects of data breaches.
Such breaches can lead to significant repercussions, including reputational damage, financial
loss, and eroded trust in digital institutions. Thus, prioritizing the development and im-
plementation of potent privacy-preserving strategies is paramount in safeguarding sensitive
information in our increasingly data-centric world.

2.6 Threats to PETs

In this subsection, we briefly explore the challenges confronting PETs, reviewing the diverse
types of attacks that seek to undermine the integrity and confidentiality of PETs. We discuss
adversaries characterized by a broad range of objectives, as well as the strategies they utilize.

2.6.1 Adversary Objectives

Based on our understanding, we can classify the adversary objectives into three main
categories: (i) data reconstruction, (ii) unauthorized access, and (iii) user re-identification.

Data Reconstruction: The primary aim here is to accurately reconstruct original data
from its encoded or protected form, whether through cryptographic, statistical-theoretic,
information-theoretic, or estimation-theoretic privacy perspectives (Agrawal and Srikant,
2000; Rebollo-Monedero et al., 2009; Sankar et al., 2013; Asoodeh et al., 2016; Dwork et al.,
2017; Bhowmick et al., 2018; Ferdowsi et al., 2020; Stock et al., 2022; Razeghi et al., 2023;
Shiri et al., 2024). This encompasses two distinct goals. The first, ‘attribute-level recovery ’
(micro goal), involves extracting specific attributes or features from protected data, ranging
from demographic information to unique behavioral patterns. Adversaries might utilize these
details for actions like impersonation, targeted phishing attacks, or information profiling. The
second, ‘complete data reconstruction’ (macro goal), goes a step further. Here, adversaries
aim to fully revert privacy-preserving measures to access entire datasets. This could entail
piecing together fragmented personal data from multiple sources or decrypting encrypted
information to reveal sensitive details, leading to potential misuses such as identity theft,
financial fraud, or corporate espionage.
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Unauthorized Access: The objective here is for the adversary to gain access to systems,
networks, or data to which they do not have permission or authorization (Dunne, 1994;
Campbell et al., 2003; Winn, 2007; Mohammed, 2012; Muslukhov et al., 2013; Sloan and
Warner, 2017; Razeghi et al., 2018; Maithili et al., 2018; Prokofiev et al., 2018; Wang et al.,
2019). This can be for various purposes such as stealing sensitive data, disrupting system
operations, planting malware, or conducting espionage. The underlying goal is to infiltrate
a system or database without being detected and without having legitimate credentials or
authorization.

User Re-identification: The primary objective in user re-identification is the subtle
linking of anonymized data back to identifiable individuals, despite the absence of direct
identifiers (El Emam et al., 2011; Layne et al., 2012; Zheng et al., 2015; Henriksen-Bulmer
and Jeary, 2016; Zheng et al., 2016; Ye et al., 2021). In this pursuit, adversaries are not
just attempting to reveal identities but are actively aiming to undermine the integrity and
purpose of data anonymization and privacy-preserving measures. Their efforts are directed
toward establishing connections between seemingly unrelated, anonymized data sets and
specific, identifiable individuals. This includes efforts aimed at correlating disjointed pieces
of information to reconstruct identifiable profiles and, in more extended scenarios, to track
individual behaviors and patterns over time. Such objectives pose significant privacy concerns,
as they directly challenge the effectiveness of data anonymization techniques intended to
protect individual identities and personal information.

2.6.2 Adversary Knowledge

Technical Model Insights: The adversary may have a deep understanding of the compu-
tational models or algorithms used in the system. It encompasses comprehensive knowledge
of model architecture, parameters, training methodologies, vulnerabilities, and potential ways
to exploit them (Wang and Gong, 2018; Song et al., 2019; Oseni et al., 2021; Bober-Irizar
et al., 2023; Yang et al., 2023). This includes detailed knowledge of the model’s architecture
such as layers, neurons, weights, and activation functions, which enables pinpointing and
exploiting inherent weaknesses or backdoors. Additionally, insights into the training regime,
including epochs, learning rates, and loss functions, are crucial in informing the creation of
attacks tailored to the model’s vulnerabilities.

Operational System Workflow: Adversary knowledge in this area encompasses the
overall operational workflow of the system, including system architecture, data flow, user
interactions, security protocols, network infrastructure, third-party integrations, and external
dependencies. A detailed understanding of this area can highlight areas of vulnerability. This
includes tracing the data’s journey from inception to its ultimate storage or application to
unearth vulnerabilities at various stages and discerning the nuances of the system’s decision-
making process, particularly validation or rejection thresholds, to craft precision-targeted
manipulative inputs.

Data and Information Profiling: In this category, adversary insights into the data used
by the system are covered. It includes understanding the types and sources of data, data
processing methods, inherent biases, security measures for data protection, and potential
data vulnerabilities. Important aspects are understanding the underlying structure and
distribution of features within the dataset, including anomalies and edge cases, for designing
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bespoke attack vectors and analyzing even a limited subset of the true dataset to deduce the
full dataset’s characteristics, particularly useful in reconnaissance attacks.
Security Mechanisms and Protocols: This involves an understanding of the security
measures in place, including authentication processes, encryption techniques, and other
security protocols. Adversaries with this knowledge can plan attacks targeting specific
weaknesses in the security setup.
Insider Operational Knowledge: This includes knowledge acquired from having had
legitimate access to the system or from detailed observations. It encompasses not just technical
aspects but also operational procedures, organizational culture, and internal policies. This
type of knowledge is particularly dangerous as it can lead to highly targeted and effective
attacks.

2.6.3 Adversary Strategy

Adversary strategies span a wide array encompassing technical, systemic, data-centric,
sociotechnical, and insider threats, to name a few, which cannot cover widely in our brief
overview. From exploiting algorithmic vulnerabilities and cryptographic flaws to manipulating
system infrastructures and communication protocols, these strategies reveal the depth
and complexity of modern security challenges. Data-centric approaches further diversify
these tactics through the exploitation of information leakage and the creation of synthetic
identities. Privacy invasions leverage advanced traffic analysis and misuse of biometric
data, while sociotechnical maneuvers utilize misinformation and target supply chains to
undermine security indirectly. Insider and environmental manipulations, along with the
exploitation of peripheral devices, underscore the necessity for comprehensive and integrated
defense mechanisms. This extensive spectrum of adversary tactics necessitates advanced,
multi-layered security measures that combine technological, procedural, and organizational
strategies to counteract the evolving landscape of threats. In the context of machine learning
and artificial intelligence, distinct vulnerabilities emerge. Below, we briefly review a couple
of these strategies.

Gradient-Oriented Attacks: In the gradient-oriented attacks, adversaries employ tech-
niques to manipulate or infer the gradient calculations that are fundamental to machine
learning models. These attacks are categorized into two main approaches: white-box and
black-box attacks (Liu et al., 2016; Papernot et al., 2017; Ilyas et al., 2018; Bhagoji et al.,
2018; Porkodi et al., 2018; Alzantot et al., 2019; Guo et al., 2019; Sablayrolles et al., 2019;
Rahmati et al., 2020; Tashiro et al., 2020). In white-box attacks, attackers leverage detailed
knowledge of the model’s architecture and parameters to either reverse-engineer the model
or approximate the original training data, thus compromising the model’s decision-making
process. This technique directly facilitates model inference attacks (Tramèr et al., 2016;
Batina et al., 2019; Chandrasekaran et al., 2020), where the attacker’s goal is to uncover
the model’s structure or deduce characteristics of the training data based on observable
outputs or gradients. Black-box attacks contrast by not requiring direct access to the model’s
internals. Instead, adversaries deploy probing techniques to estimate gradients and discern
underlying data patterns, enabling them to infer critical insights about the model’s behavior
and vulnerabilities. This method is particularly effective in membership inference attacks
(Shokri et al., 2017), where the attacker aims to determine if specific data points were used in
the model’s training set by observing the model’s predictions in response to crafted inputs.
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Temporal Pattern Analysis: Temporal pattern analysis involves scrutinizing temporal
sequences in verification data to detect vulnerabilities (Kamat et al., 2009; Xiao and Xiong,
2015; Backes et al., 2016; Grover and Mark, 2017; Leong et al., 2020; Qi et al., 2020; Zhang
et al., 2021; Li et al., 2023). Through sequential vulnerability detection, adversaries can
highlight discernible patterns, potentially allowing them to predict when the system might
introduce new noise or make updates, making their attacks more timely and effective. Time-
based vulnerability exploitation leverages the analysis of temporal patterns in data processing,
enabling adversaries to identify recurrent vulnerabilities or even predict system behavior
at given times. This strategy could lead to targeted attacks during moments of predicted
vulnerability or broad system disruptions during peak operation hours.

Comprehensive Synergy Attacks: Comprehensive synergy attacks represent a multi-
faceted approach by integrating various data sources and modalities to uncover vulnerabilities
and enhance the efficacy of attacks. This strategy can employ data gathered from eavesdrop-
ping, database interactions, and more. A critical component of this strategy is data poisoning
(Biggio et al., 2012; Guo and Liu, 2020; Tian et al., 2022; Wang et al., 2022; Ramirez et al.,
2022; Carlini et al., 2023), where adversaries deliberately introduce corrupted, misleading, or
intentionally mislabeled data into the training set. The aim is to compromise the integrity of
the machine learning model, leading to biased outcomes, incorrect predictions, or complete
system failure. By corrupting the foundation of data on which models are trained, adver-
saries can significantly degrade the reliability and fairness of machine learning applications.
Additionally, multi-modal synthesis (Abdullakutty et al., 2021; Liu et al., 2021; Hu et al.,
2022) and noise reduction (Voloshynovskiy et al., 2000, 2001; Lu et al., 2002; Kloukiniotis
et al., 2022; Chen et al., 2023) techniques are employed to augment data reconstruction
efforts or manipulate verification procedures. For instance, denoising algorithms may be
repurposed by adversaries to retrieve original, unaltered data, aiding in the generation of
synthetic data for identity fraud. Through these comprehensive efforts, adversaries not only
exploit existing vulnerabilities but also proactively create new ones, making it increasingly
challenging to safeguard data and models against such attacks.

2.7 Biometric PETs

Biometric recognition systems automate individual identification through distinctive behav-
ioral and biological traits. Biometric recognition systems fundamentally comprise four key
subsystems: data capture, signal processing and feature extraction, comparison, and data
storage. These subsystems work in unison to manage biometric data through its lifecycle,
beginning with the capture of biometric samples, proceeding with the extraction of useful
features, and concluding with the comparison and secure storage of biometric information.
However, the security and privacy vulnerabilities inherent in face recognition systems, particu-
larly through the potential reconstruction of face images from stored templates (embeddings),
pose significant challenges.

Recent advancements have introduced a suite of Biometric Privacy-Enhancing Tech-
nologies (B-PETs), designed to safeguard sensitive information embedded within biometric
templates. These techniques prioritize the protection of identity-related data, either by
obscuring biometric templates through template protection schemes or by minimizing the
inclusion of privacy-sensitive attributes such as age, gender, and ethnicity.
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The ISO/IEC 24745 standard (ISO/IEC 24745:2022, E) sets forth four primary re-
quirements for each biometric template protection scheme, encompassing the principles of
cancelability, unlinkability, irreversibility, and the preservation of recognition per-
formance. These biometric template protection schemes can be categorized into two main
groups: (i) cancelable biometrics, which encompasses techniques like Bio-Hashing (Jin et al.,
2004), MLP-Hash (Shahreza et al., 2023a), IoM-Hashing (Jin et al., 2017), among others,
and rely on transformation functions dependent on keys to generate protected templates
(Nandakumar and Jain, 2015; Sandhya and Prasad, 2017; Rathgeb et al., 2022), and (ii)
biometric cryptosystems, which include methodologies such as fuzzy commitment (Juels and
Wattenberg, 1999) and fuzzy vault (Juels and Sudan, 2006), either binding keys to biometric
templates or generating keys from these templates (Uludag et al., 2004; Rathgeb et al., 2022).
Additionally, some researchers have explored the application of Homomorphic Encryption for
template protection in face recognition systems (Boddeti, 2018; Bassit et al., 2021; Shahreza
et al., 2022).

Face recognition systems, as extensively discussed in prior research (Biggio et al., 2015;
Galbally et al., 2010; Marcel et al., 2023), are not only susceptible to security threats but
also face serious privacy vulnerabilities. These systems rely on facial templates extracted
from face images, which inherently contain sensitive information about the individuals they
represent. Recent studies have even demonstrated an adversary’s capability to reconstruct
face images from templates stored within a face recognition system’s database (Shahreza
and Marcel, 2023b,a).

To address the privacy concerns surrounding face recognition systems, numerous privacy-
preserving methods have emerged in the literature. These privacy-enhancing techniques
predominantly focus on protecting identity-related information within face templates through
the utilization of template protection schemes (Razeghi et al., 2017; Boddeti, 2018; Rezaeifar
et al., 2019; Mai et al., 2020; Hahn and Marcel, 2022; Shahreza et al., 2022, 2023b; Abdullahi
et al., 2024), or on minimizing the inclusion of privacy-sensitive attributes, such as age,
gender, ethnicity, among others, in these templates (Morales et al., 2020; Melzi et al., 2023).

2.8 Related Works

To address the most closely related works to ours, we consider two categories of research,
which, while seemingly distinct, are indeed related. The first category encompasses research
papers studying and analyzing the privacy funnel model, and the second comprises works
addressing disentangled representation learning.

Considering the Markov chain S−◦−X−◦−Z, the authors in (Hsu et al., 2020; de Freitas
and Geiger, 2022; Huang and Gamal, 2024) tackle the privacy funnel problem. In (Hsu
et al., 2020), the authors introduce a method to enhance privacy in datasets by identifying
and obfuscating features that leak sensitive information. They propose a framework for
detecting these information-leaking features using information density estimation, where
features with information densities exceeding a predefined threshold are considered risky and
are subsequently obfuscated. This process is data-driven, utilizing a new estimator known as
the trimmed information density estimator (TIDE) for practical implementation.

In (de Freitas and Geiger, 2022), the authors present the conditional privacy funnel with
side-information (CPFSI) framework. This framework extends the privacy funnel method by
incorporating additional side information to optimize the trade-off between data compression
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and maintaining informativeness for a downstream task. The goal is to learn invariant
representations in machine learning, with a focus on fairness and privacy in both fully and
semi-supervised settings. Through empirical analysis, it is demonstrated that CPFSI can
learn fairer representations with minimal labels and effectively reduce information leakage
about sensitive attributes.

More recently, (Huang and Gamal, 2024) proposes an efficient solver for the privacy
funnel problem by exploiting its difference-of-convex structure, resulting in a solver with
a closed-form update equation. For cases of known distribution, this solver is proven to
converge to local stationary points and empirically surpasses current state-of-the-art methods
in delineating the privacy-utility trade-off. For unknown distribution cases, where only
empirical samples are accessible, the effectiveness of the proposed solver is demonstrated
through experiments on MNIST and Fashion-MNIST datasets.

In the domain of face recognition, the closest work to ours is (Morales et al., 2020), where
the authors introduce a privacy-preserving feature representation learning approach designed
to eliminate sensitive information, such as gender or ethnicity, from learned representations
while maintaining data utility. This approach is centered around an adversarial regularizer
that removes sensitive information from the learning objective.

Other fundamental related works include (Tran et al., 2017; Gong et al., 2020; Park
et al., 2021; Li et al., 2022; Suwała et al., 2024), which primarily focus on disentangled repre-
sentation learning and algorithmic fairness in face recognition systems. These works range
from introducing methods to mitigate bias and improve pose-invariant face recognition to
developing frameworks for disentangling data representation into specific types of information
to mitigate discriminatory results in AI systems.

In (Tran et al., 2017), the authors introduce the disentangled representation learning
generative adversarial network (DR-GAN) to address the challenge of pose variation in face
recognition. Unlike conventional methods that either generate a frontal face from a non-
frontal image or learn pose-invariant features, DR-GAN performs both tasks jointly through
an encoder-decoder generator structure. This enables it to synthesize identity-preserving
faces with arbitrary poses while learning a discriminative representation. The approach
disentangles identity representation from other variations, such as pose, using a pose code
for the decoder and pose estimation in the discriminator. DR-GAN can process multiple
images per subject, fusing them into a single, robust representation and synthesizing faces in
specified poses.

In (Gong et al., 2020), the authors present an approach to mitigating bias in automated
face recognition and demographic attribute estimation algorithms, focusing on addressing
the observed performance disparities across different demographic groups. They propose
a de-biasing adversarial network, DebFace, which employs adversarial learning to extract
disentangled feature representations for identity and demographic attributes (gender, age, and
race) in a way that minimizes bias by reducing the correlation among these feature factors.
Their approach combines demographic with identity features to enhance the robustness and
accuracy of face representation across diverse demographic groups. The network comprises
an identity classifier and three demographic classifiers, trained adversarially to ensure feature
disentanglement and reduce demographic bias in both face recognition and demographic
estimation tasks.
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In (Park et al., 2021), the authors introduce a fairness-aware disentangling variational
auto-encoder (FD-VAE) that aims to mitigate discriminatory results in AI systems related
to protected attributes such as gender and age, without sacrificing beneficial information
for target tasks. The FD-VAE model achieves this by disentangling data representation
into three subspaces: target attribute latent (TAL), protected attribute latent (PAL), and
mutual attribute latent (MAL), each designed to contain specific types of information. A
decorrelation loss is proposed to appropriately align information within these subspaces,
focusing on preserving useful information for the target tasks while excluding protected
attribute information.

In (Li et al., 2022), the authors introduce Debiasing Alternate Networks (DebiAN) to
mitigate biases in deep image classifiers without the need for labels of protected attributes,
aiming to overcome the limitations of previous methods that require full supervision. DebiAN
consists of two networks, a discoverer and a classifier, trained in an alternating manner
to identify and unlearn multiple unknown biases simultaneously. This approach not only
addresses the challenges of identifying biases without annotations but also excels in mitigating
them effectively. The effectiveness of DebiAN is demonstrated through experiments on both
synthetic datasets, such as the multi-color MNIST, and real-world datasets, showing its
capability to discover and improve bias mitigation.

Recently, (Suwała et al., 2024) introduces PluGeN4Faces, a plugin for StyleGAN designed
to manipulate facial attributes such as expression, hairstyle, pose, and age in images while
preserving the person’s identity. It employs a contrastive loss to closely cluster images of
the same individual in latent space, ensuring that changes to attributes do not affect other
characteristics, such as identity.

In comparison to the research mentioned above, our work begins with a purely information-
theoretic formulation of the PF model, which we have named the discriminative PF framework.
We then extend the concept of the discriminative PF model to develop a generative PF
framework. Building upon our objectives for PF frameworks, as grounded in Shannon’s
mutual information, we present a tractable variational approximation for both our information
utility and information leakage quantities. The variational approximation objectives we have
obtained share some connections with the aforementioned research, thereby bridging the
gap between information-theoretic approaches to privacy and privacy-preserving machine
learning.

3. Preliminaries

3.1 General Loss Functions for Positive Measures

In data science, the representation of data via positive measures, including probability
distributions, is critical. Positive measures are used extensively across various scientific
fields, from modeling quantum states in physics to gene expression in biology, as well as
representing wealth distribution in economics (Séjourné et al., 2023). Their role is further
magnified in ML (Bishop and Nasrabadi, 2006; James et al., 2013), where data representation
and manipulation rely on their approximation via discrete (e.g. histograms) or continuous
(e.g. parameterized densities) models.

March 27, 2024 DRAFT, Version 1.0



20

3.1.1 Divergences

Comparative analysis of measures in data science is facilitated by loss functions, which aim
to quantify the similarity or dissimilarity between two measures. Rooted in distance-based
methodologies, a special category of loss functions, known as divergences, are characteristically
non-negative and definite. This means they are defined such that their value is zero if and
only if the measures being compared are identical. Although the triangle inequality’s presence
is a beneficial feature of these loss functions, imbuing them with a structure akin to metric
spaces, it is not a universal prerequisite across all applications. Within this context, Csiszár’s
concept of f-divergences (Csiszár, 1967), a family of discrepancies between positive measures,
becomes particularly relevant. They are defined by integrating pointwise comparisons of two
measures and can be formalized as follows:

Definition 1 (f-divergences) Let f : (0,∞) → R be a convex function which f(1) = 0.
The f-divergences between two probability measures P and Q, P ≪ Q is defined as (Ali and
Silvey, 1966; Csiszár, 1967):

Df (P∥Q) := EQ

[
f

(
dP

dQ

)]
. (1)

Several specific instances of f-divergences are of particular interest and have different ‘op-
erational meanings ’. Popular instances are defined as follows (Csiszár et al., 2004; Polyanskiy
et al., 2010; Sharma and Warsi, 2013; Polyanskiy and Wu, 2014; Duchi, 2016):

1. Kullback-Leibler (KL) Divergence: The KL-divergence, DKL(P∥Q), is a special
case of f-divergence where the function f is given by f(t) = t log t. It is expressed
as DKL(P∥Q) := Df(P∥Q) for f(t) = t log t. It quantifies the amount of information
lost when Q is used to approximate P . It is widely used in scenarios like statistical
inference.

2. Total Variation Distance: The total variation distance, denoted as TV(P ,Q), is
defined by TV(P ,Q) := Df(P∥Q) with the function f being f(t) = |t− 1|. It is widely
used in hypothesis testing and classification tasks in statistics, providing a bound on
the maximum error probability.

3. Chi-squared (χ2) Divergence: The χ2-divergence, χ2(P∥Q), is another form of
f-divergence given by χ2(P∥Q) := Df(P∥Q) for the function f(t) = t2 − 1. It is usually
used in statistical analysis for feature selection, particularly in the context of evaluating
model fit and understanding feature importance. It is also used in estimation problems.

4. Squared Hellinger Distance: This measure, represented as H2(P ,Q), employs the
function f(t) = (

√
2 −

√
t)2 in its definition: H2(P ,Q) := Df(P∥Q). This distance

is particularly useful in Bayesian statistics. Unlike the KL-divergence, the Hellinger
distance is symmetric and bounded.

5. Hockey-Stick Divergence: The hockey-stick divergence, denoted as Eγ(P∥Q), is
defined for a specific γ (where γ ≥ 1) and employs the function f(t) = (t − γ)+
with (a)+ := max{a, 0}. Therefore, Eγ(P∥Q) := Df(P∥Q) for f(t) = (t − γ)+. This
divergence can be particularly useful in decision-making models and risk assessments.
The contraction coefficient of this divergence is also equivalent to the local Differential
Privacy (Asoodeh et al., 2021).
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Another important related loss is the Rényi divergence, which is not an f-divergence but
shares a similar purpose in measuring the discrepancy between probability distributions.

Rényi Divergence: The Rényi divergence (Rényi, 1959, 1961) is denoted as DR,α(P∥Q)
for a parameter α, where α ̸= 1 and α > 0. It is defined as:

DR,α(P∥Q) :=
1

α− 1
log

(
EQ

[(
dP

dQ

)α])
. (2)

This divergence provides a spectrum of metrics between distributions, with the parameter α
controlling the sensitivity to discrepancies. The Kullback-Leibler divergence is a special case
of Rényi divergence as α → 1. Rényi divergence finds extensive application in fields such as
information theory, data privacy, cryptography, and machine learning, due to its adaptability
and the comprehensive range of distributional differences it can capture.

3.1.2 Optimal Transport Distances

Optimal Transport (OT), a problem introduced by Gaspard Monge in the 18th century in
his work ‘Mémoire sur la théorie des déblais et des remblais’ (Monge, 1781), emerges as a
potent tool for probabilistic comparisons. It provides a uniquely flexible approach to gauge
similarities and disparities between probability distributions, regardless of their supports.

Monge’s OT Problem: Monge’s seminal problem seeks an optimal map T : X → X for
transferring mass distributed according to a measure µ onto another measure ν on the same
space X . This problem can be metaphorically understood as finding the most efficient way
to move sand to form certain patterns, with µ and ν representing the initial and desired
distributions of sand, respectively. The key constraint in Monge’s formulation is represented
by the equation T#µ = ν, where T# denotes the push-forward operator. The integral
equation defines the push-forward operator

∫
X f ◦ T dµ =

∫
X f dν, ∀f ∈ C(X ), where C(X )

is the space of continuous functions on X . This condition ensures that the measure µ is
effectively transformed onto ν through the map T . Specifically, it implies that T#δx = δT (x)

for Dirac measures δx (Villani, 2008; Peyré et al., 2019; Séjourné et al., 2023).
In solving Monge’s problem, the objective is to find a measurable map T that minimizes

the total cost of transportation, subject to the aforementioned constraint. The cost of
transporting a unit of mass from location x to location y in X is quantified by a cost function
c(x,y). A typical choice for c(x,y), particularly in Euclidean spaces X = Rd, is the p-th
power of the Euclidean distance, c(x,y) = ∥x− y∥2p. The original formulation by Monge is
associated with linear transport costs, corresponding to p = 1. However, the quadratic case
where p = 2 is often favored in modern applications due to its advantageous mathematical
properties, including convexity and differentiability.

Definition 2 (OT Monge Formulation Between Arbitrary Measures) Given two ar-
bitrary (probability) measures µ and ν supported on X and Y, respectively, the optimal
transport Monge map T ∗, if it exists, solves the following problem:

inf
T

{∫

X
c (x,T (x)) dµ(x) : T#µ = ν

}
, (3)

over µ-measurable map T : X → Y.
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Kantorovich’s OT Problem: Kantorovich’s formulation of the OT problem addresses the
scenario of arbitrary measure spaces and introduces the concept of ‘mass splitting’ (Villani,
2008; Peyré et al., 2019; Séjourné et al., 2023). This innovative approach, initially developed
by Kantorovich (Kantorovich, 1942) for applications in economic planning, significantly
extends the framework of Monge’s problem. In Kantorovich’s formulation, the deterministic
map T of Monge’s problem is replaced by a probabilistic measure π ∈ Π(µ× ν), termed as
a transport plan. Unlike Monge’s formulation where mass moves directly from a point x
to T (x), Kantorovich’s approach allows for the dispersion of mass from a single point x to
multiple destinations. This flexibility makes it a generalized, or relaxed, version of Monge’s
problem.

Definition 3 (Kantorovich’s OT Problem) Let X and Y be two measurable spaces. Let
P(X ) and P(Y) be the sets of all positive Radon probability measures on X and Y, respectively.
For any measurable non-negative cost function c : X × Y → R+, the Kantorovich’s OT
problem between two positive measures µ ∈ P(X ) and ν ∈ P(Y) is defined as:

OTc (µ, ν) := inf
π∈Π(µ,ν)

∫

X×Y
c(x,y) dπ(x,y) = inf

π∈Π(µ,ν)
Eπ [ c(X,Y) ] , (4)

where Π(µ, ν) denotes the set of joint distributions (couplings) over the product space X × Y
with marginals µ and ν, respectively. That is, for all measurable sets A ⊂ X and B ⊂ Y, we
have:

Π(µ, ν) := {π ∈ P(X × Y) : π(A× Y) = µ(A), π(X × B) = ν(B)} . (5)

Having established the preliminary concepts of f-divergences and optimal transport
distances as foundational tools in data science, we now direct our attention to employing
these loss functions for the quantification of privacy leakage and utility performance.

3.2 Measuring Privacy Leakage and Utility Performance

We can define a generic privacy risk loss function as a functional tied to the joint distribution
PS,Z, which quantifies the information leakage about S when Z is disclosed. Such a privacy
risk loss function can be represented as CS : P (S × Z) → R+ ∪ {0}. Analogously, a well-
characterized and task-specific generic utility performance loss function can be formulated as
a functional of the joint distribution PX,Z, capturing the utility retained about X through
the release of Z. This utility performance loss function is denoted as CU : P (U × Z) →
R+ ∪ {0}. We can define the f-information between two random objects X and Z as
If (X;Z) = Df (PX,Z∥PXPZ), where Df (·∥·) represents the f-divergence (Polyanskiy and
Wu, 2014), serving as a measure for both privacy (obfuscation) and utility. Expanding this
framework, Arimoto’s mutual information (Arimoto, 1977) could also be employed to assess
information utility and privacy leakage. In this research, however, we focus on Shannon
mutual information as our primary loss function.
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4. Privacy Funnel6 Model: Discriminative and Generative Paradigms

4.1 Discriminative Privacy Funnel Method: Optimizing Information Extraction
Under Privacy Constraints

Given two correlated random variables S and X with a joint distribution PS,X, the objective in
the (classical) discriminative PF method (Makhdoumi et al., 2014) is to derive a representation
Z for useful data X via a stochastic mapping PZ|X, satisfying the following constraints:

(i) Formation of a Markov chain S−◦−X−◦−Z,

(ii) Maximization of the Shannon mutual information I(X;Z) in the representation Z of X,

(iii) Minimization of the Shannon mutual information I(S;Z) in the representation Z of X.

The classical PF method thus addresses the trade-off between information leakage I (S;Z)
and the revealed useful information I (X;Z). This trade-off is formally represented as:

DisPF-MI (Rs,PS,X) := sup
PZ|X:

S−◦−X−◦−Z

I (X;Z) subject to I (S;Z) ≤ Rs. (6)

The DisPF-MI curve is defined by the values DisPF-MI (Rs,PS,X) for different Rs. We can use
a Lagrange multiplier α ≥ 0 to represent the DisPF-MI problem by the associated Lagrangian
functional:

LDisPF-MI

(
PZ|X,α

)
:= I (X;Z)− α I (S;Z) . (7)

By creating a unique measure called the I-Measure, we can geometrically represent the
relationship among Shannon’s information measures (Yeung, 1991; Razeghi et al., 2023).
Given that the Markov chain S−◦−X−◦−Z necessitates I (S;Z | X) = 0, the corresponding
information diagram (I-diagram) vividly illustrates this and is featured in Figure 3. Note
that I (S;X;Z) = I (S;Z)− I (S;Z | X) = I (S;Z) ≥ 0.

Discriminative Privacy Funnel with General Loss Functions: Consider the extension
of the standard discriminative PF objective to encompass a broader class of loss functions.
The aim of this general discriminative PF approach is to obtain a representation Z for the
useful data X via a probabilistic mapping PZ|X. This objective is subject to the fulfillment
of the following constraints:

(i) Establish a Markov chain S−◦−X−◦−Z,

(ii) Minimization of the utility performance loss function CU (PX,Z) via optimizing Z to
preserve the useful information X pertinent to utility.

(iii) Minimization of the privacy risk loss function CS (PS,Z) via optimizing Z to limit the
leakage about sensitive information S.

6Metaphorically, the term ‘funnel’ describes processes that gradually narrow or concentrate, akin to
filtering. In the context of the privacy funnel model in data privacy, ‘funnel’ aptly represents the progres-
sive obfuscation and narrowing of sensitive personal information through stages of collection, processing,
dissemination, and consumption.
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(a) Discriminative Privacy Funnel DisPF.
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(b) Generative Privacy Funnel GenPF.

Figure 2: Comparative overview of generalized privacy funnel (PF) approaches: (a) the
established discriminative (classical) model; (b) the proposed generative model.

We can formulate this trade-off by imposing a constraint on one of the losses. Therefore, for
a given information leakage constraint Rs ≥ 0, the trade-off can be encapsulated within a
DisPF functional:

DisPF (Rs,PS,X) := inf
PZ|X:

S−◦−X−◦−Z

CU (PX,Z) (8)

subject to CS (PS,Z) ≤ Rs.

Any of the previously addressed general loss functions can be utilized in the above optimization
problem.

Remark 1: The discriminative PF model utilizes stochastic mapping PZ|X that can
undertake either of the following processes: (i) A domain-preserving transformation,
where, for example, in an image-to-image transition, the output image Z maintains the
same domain but introduces specific alterations (such as noise or visual distortions) to
obfuscate sensitive information of the original image X. (ii) A non-domain-preserving
transformation, as seen in methods like image-to-embedding, where the output Z is a
more abstract form (an embedding) that provides a privacy-preserving representation of the
original data X, but in a different domain. The assessment of the obfuscated data’s ‘utility’
is performed either through direct analysis of Z using CU (PX,Z) or, where applicable, after
a decoding phase (indicated in gray in Figure 2a) using CU

(
P
X,X̂

)
. Information leakage is

gauged by using measure CS (PS,Z), or in the case of decoded data, via CS
(
P
S,X̂

)
.

4.2 Generative Privacy Funnel Method: Optimizing Data Synthesis Under
Privacy Constraints

The Generative PF model aims to address the fundamental problem of synthetic data
generation with privacy guarantees. Consider the general class of loss functions discussed in
Sec. 3.2. The objective of the Generative Privacy Funnel model is to generate synthetic data,
represented as X̃, from a latent code Z̃. This generation is achieved through a mapping
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H(S)

H(Z)

H(X)
I (S;Z)

I (X;Z)

(a)

H(S)

H(Z)

H(X)
I (S;X | Z)

I (X;Z | S)

(b)

H(S |X)

H (Z |X)

H (X |Z)

H(S)

H(Z)

H(X)

(c)

Figure 3: Information diagrams for S−◦−X−◦−Z. (a) entropy H(S), H(X), H(Z), and
revealed useful (preserved) information I (X;Z) and information leakage I (S;Z); (b) residual
information I (X;Z | S) and residual information I (S;X | Z); (c) private attribute uncer-
tainty H(S |X), useful information decoding uncertainty H(X |Z), and encoding uncertainty
H(Z |X).

(generator) P
X̃|Z̃, which can function in either a probabilistic or deterministic manner. The

key goal of this model is to ensure that the synthetic data X̃ preserve useful information from
the real data X, necessary for a specific utility task while minimizing privacy leakage about
sensitive data S. This objective is subject to the fulfillment of the following constraints:

(i) Establish a Markov chain Z̃−◦−X̃−◦−S,
(ii) Minimization of the utility performance loss function CU

(
P
X,X̃

)
via optimizing X̃ to

preserve the useful information X pertinent to utility.
(iii) Minimization of the privacy risk loss function CS

(
P
S,X̃

)
via optimizing X̃ to limit the

leakage about sensitive information S.

We can formulate this trade-off as follows:

GenPF
(
P
S,X̃

,Rs
)
:= inf

P
X̃|Z̃:

Z̃−◦−X̃−◦−S

CU
(
P
X,X̃

)
(9)

subject to CS
(
P
S,X̃

)
≤ Rs.

Remark 2: The objective of the generative PF model is on generating synthetic data
that preserves the utility of the original dataset while ensuring constraints on sensitive
information leakage. This model may optionally include an encoding step (represented in
gray in Figure 2b), or it may forego this step, opting to generate synthetic data directly from
a latent noise domain.

Generative Privacy Funnel with Self-Information Loss Function: The objectives
of the GenPF model under self-information loss are as follows:

(i) Establish a Markov chain Z̃−◦−X̃−◦−S,
(ii) Maximization of the Shannon mutual information I

(
X; X̃

)
in the representation X̃ of X,

(iii) Minimization of the Shannon mutual information I
(
S; X̃

)
in the representation X̃ of X.

GenPF-MI
(
P
S,X̃

,Rs
)
:= sup

P
X̃|Z̃:

Z̃−◦−X̃−◦−S

I
(
X; X̃

)
subject to I

(
S; X̃

)
≤ Rs. (10)

where X̃ = G
(
Z̃
)
.
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Figure 4: Visualization of the Generative Privacy Funnel in (a) face recognition systems and
(b) face attribute recognition.

Remark 3: The latent code Z̃ plays a versatile role in various generative models. It can
represent the latent space in Variational Autoencoders (VAEs), be sampled from the W
space in StyleGANs, derived through StyleGAN inversion methods, or constitute the latent
space in diffusion models.

4.2.1 Generative Privacy Funnel in Face Recognition Systems

Creating an effective synthetic dataset for facial recognition systems demands integrating
diverse demographic characteristics, encompassing varied ages, genders, ethnicities, and
physical features, to enhance the system’s capability in recognizing and classifying a broad
spectrum of human faces. Incorporating a range of facial expressions and poses, from
happiness to neutrality, captured in different orientations like frontal and profile views, is
critical for maintaining accuracy across various facial states. The dataset should also reflect
diverse lighting and environmental conditions, including both indoor and outdoor settings,
to ensure robust performance in real-world scenarios. High-resolution images are crucial for
extracting detailed features, whereas incorporating lower-resolution images equips the system
to handle suboptimal conditions. Including images of people wearing things like glasses or
having part of their face covered is key to making sure we can recognize faces properly in
all sorts of real-life situations. Accurate and consistent labeling is also a very important
aspect to ensure reliable learning from the dataset. Ethical standards must be considered
to prevent biases in image generation. Lastly, realism in synthetic imagery is imperative
to replicate real-life scenarios accurately, as suboptimal image generation can significantly
impair system performance. This holistic approach in dataset creation is vital for developing
facial recognition systems that are not only robust and reliable but also versatile for diverse
applications.

Incorporating the principles laid out in the comprehensive approach to synthetic dataset
generation for facial recognition systems, the GenPF is aimed to generate synthetic images
that not only adhere to the above-mentioned criteria but also protect the sensitive information
from real dataset samples. This may include protecting personal identities as well as sensitive
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attributes such as gender, race, and emotion inherent in facial images. Moreover, GenPF has
the potential to contribute to the creation of a balanced dataset, a crucial step in mitigating
biases in face recognition systems. The specifics of this are discussed in Sec. 6.7.1

4.3 Threat Model

Our threat model includes the following assumptions:

• We consider an adversary who is interested in a specific attribute S related to the data
X. This attribute S could be any function of X, possibly randomized. We limit S to a
discrete attribute, which accommodates most scenarios of interest, such as a facial feature
or an identity attribute.

• The adversary has access to the released representation Z and respects the Markov chain
relationship S−◦−X−◦−Z.

• We assume that the adversary knows the mapping PZ|X designed by the data owner
(defender), i.e., the defender’s mechanism is public knowledge.

5. Deep Variational Privacy Funnel

In the following section, we delve into the heart of our methodology: Deep Variational
Privacy Funnel.

5.1 Information Leakage Approximation

We provide parameterized variational approximations for information leakage, including an
explicit tight variational bound and an upper bound. This approximation is designed to be
computationally tractable and easily integrated with deep learning models, which allows for
a flexible and efficient evaluation of privacy guarantees. To better understand the nature of
information leakage, we can express I (S;Z) as:

I (S;Z) = I (X;Z)− I (X;Z | S) (11a)
= I (X;Z)−H(X | S) + H (X | S,Z) . (11b)

The conditional entropy H(X | S) is originated from the nature of data since it is out of our
control. It can be interpreted as ‘useful information decoding uncertainty ’. Now, we derive
the variational decomposition of I (X;Z) and H(X | S,Z). The mutual information I (X;Z)
can be interpreted as ‘information complexity ’ or ‘encoder capacity ’ (Razeghi et al., 2023). It
can be decomposed as:

I (X;Z) = EPX,Z

[
log

PZ|X
QZ

]
−DKL (PZ∥QZ) (12a)

= DKL

(
PZ|X∥QZ | PX

)
−DKL (PZ∥QZ) , (12b)
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where QZ : Z → P (Z) is variational approximation of the latent space distribution PZ. The
conditional entropy H(X |S,Z) can be decomposed as:

H(X |S,Z) = −EPS,X,Z

[
logPX|S,Z

]
= −EPS,X

[
EPZ|X

[
logQX|S,Z

]]
−DKL

(
PX|S,Z∥QX|S,Z

)

(13a)

≤ −EPS,X

[
EPZ|X

[
logQX|S,Z

]]
(13b)

= H
(
PX|S,Z∥QX|S,Z | PS,Z

)
=: HU(X |S,Z) , (13c)

where QX|S,Z :S×Z→P (X ) is variational approximation of the optimal uncertainty decoder
distribution PX|S,Z, and the inequality in (13c) follows by noticing that DKL(PX|S,Z∥QX|S,Z)
≥ 0. Using (11), (12) and (13), the variational upper bound of information leakage is given
as:

I (S;Z) ≤ DKL

(
PZ|X∥QZ | PX

)
−DKL (PZ∥QZ) + HU(X |S,Z) . (14)

Having the variational upper bound of information leakage, we now approximate the
parameterized variational bound using neural networks. Let Pϕ(Z |X) represent the family
of encoding probability distributions PZ|X over Z for each element of space X , parameterized
by the output of a deep neural network fϕ with parameters ϕ. Analogously, let Pφ (X |S,Z)
denote the corresponding family of decoding probability distributions QX|S,Z, driven by gφ.
Lastly, Qψ(Z) denotes the parameterized prior distribution, either explicit or implicit, that
is associated with QZ.

Using (12), the parameterized variational approximation of I (X;Z) can be defined as:

Iϕ,ψ (X;Z) := DKL(Pϕ(Z |X) ∥Qψ(Z) | PD(X))−DKL(Pϕ(Z) ∥Qψ(Z)) . (15)

The parameterized variational approximation of conditional entropy HU (X | S,Z) in (13c)
can be defined as:

HU
ϕ,φ (X |S,Z) := −EPS,X

[
EPϕ(Z|X) [logPφ(X |S,Z)]

]
. (16)

Let Iϕ,ξ (S;Z) denote the parameterized variational approximation of information leakage
I (S;Z). Using (14), an upper bound of Iϕ,ξ(S;Z) can be given as:

Iϕ,ξ(S;Z) ≤ Iϕ,ψ (X;Z)︸ ︷︷ ︸
Information Complexity

+ HU
ϕ,φ (X |S,Z)

︸ ︷︷ ︸
Information Uncertainty

+c =: IUϕ,ψ,φ (S;Z) + c, (17)

where c is a constant term, independent of the neural network parameters.
This upper bound encourages the model to reduce both the information complexity,

represented by Iϕ,ψ (X;Z), and the information uncertainty, denoted by HU
ϕ,φ (X |S,Z).

Consequently, this leads the model to ‘forget’ or de-emphasize the sensitive attribute S,
which subsequently reduces the uncertainty about the useful data X. In essence, this nudges
the model towards an accurate reconstruction of the data X.
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Figure 5: Core architectural components of the (a) deep discriminative privacy funnel and
(b) deep generative privacy funnel models.

Now, let us derive another parameterized variational bound of information leakage
Iϕ,ξ (S;Z). We can decompose Iϕ,ξ (S;Z) as follows:

Iϕ,ξ (S;Z) = EPS,X

[
EPϕ(Z|X) [logPξ (S |Z)]

]
+ EPS

[logPξ(S)]− EPS

[
log

PS

Pξ(S)

]
(18a)

= −Hϕ,ξ (S |Z) + H (PS ∥Pξ(S))︸ ︷︷ ︸
Prediction Fidelity

−DKL (PS ∥Pξ(S))︸ ︷︷ ︸
Distribution Discrepancy

(18b)

≥ −Hϕ,ξ (S |Z) − DKL (PS ∥Pξ(S)) =: ILϕ,ξ (S;Z) , (18c)

where Pξ(S |Z) denotes the corresponding family of decoding probability distribution QS|Z,
where QS|Z : Z → P(S) is a variational approximation of optimal decoder distribution PS|Z.
Let us interpret the MI decomposition in Eq (18b):

• Negative Conditional Cross-Entropy −Hϕ,ξ (S |Z): This term aims to maximize the uncer-
tainty in predicting S given Z. Hϕ,ξ (S |Z) can be as low as 0 when S is deterministically
predictable given Z. This means that knowing Z gives us full information about S. A
negative sign encourages the model (encoder) to increase the entropy of S given Z, which
means making S less predictable when you know Z. In the case of a discrete sensitive
attribute S, the conditional entropy is maximized when all the conditional distributions
PS|Z=z are uniform. The maximum entropy is log2 |S|, where |S| is the number of possible
states (or values, or classes) for S. This means the adversary, lacking any additional
information, can do no better than ‘random guessing ’. This scenario equates to a potential
lower boundary for −Hϕ,ξ (S |Z) at − log2 |S|.

• Cross-Entropy H(PS ∥Pξ(S)): This term encourages the classifier to produce correct
predictions for S. The minimum value is equal to the entropy of PS, i.e., H(PS), which is
achieved when Pξ(S) = PS. Given that S is discrete, the maximum value is log2 |S|.

• This term ensures the model’s inferred distribution, Pξ(S), aligns tightly with the actual
distribution PS. Ideally, the divergence measure, DKL (PS∥Pξ(S)), is minimized to zero
when Pξ(S) aligns perfectly with PS.

By pushing both Hϕ,ξ (S |Z) and H(PS ∥Pξ(S)) to their maximum values of log2N , and
simultaneously minimizing distributional gap DKL (PS ∥Pξ(S)), the mutual information
Iϕ,ξ (S;Z) will approach zero, indicating that Z has minimal information about S.
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Using (17) and (18) we have:

−Hϕ,ξ (S |Z)−DKL (PS ∥Pξ(S)) ≤ Iϕ,ξ(S;Z) ≤ Iϕ,ψ (X;Z) + HU
ϕ,φ (X |S,Z) + c. (19)

The above lower and upper bounds lead us towards two alternative models. The up-
per bound in (19) encourages the model to directly minimizes the information complexity
Iϕ,ψ (X;Z) as well as the information uncertainty HU

ϕ,φ (X |S,Z). By minimizing the infor-
mation uncertainty HU

ϕ,φ (X |S,Z) the model forces to forget the sensitive attribute S at the
expense of reducing the uncertainty about the original data X, i.e., encourages the model to
reconstruct the original data X. In contrast, the lower bound in (19) encourages the model to
maximizes (i) uncertainty about the sensitive attribute S given the released representation Z,
i.e., Hϕ,ξ (S |Z), as well as (ii) the distribution discrepancy measure DKL (PS ∥Pξ(S)). Note
that minimizing the lower bound of information leakage may not necessarily minimize the
average maximal possible leakage. Furthermore note that although the lower bound in (19)
does not explicitly depend on the information complexity Iϕ,ψ (X;Z), it depends implicitly
through the encoder fϕ.

5.2 Information Utility Approximation

In this subsection, we turn our focus on quantifying the utility of information. As with
information leakage, we provide a careful decomposition of the mutual information I(X;Z)
and derive a parameterized variational approximation for information utility. These measures
form the foundation of the Deep Variational PF framework and pave the way for practical and
scalable privacy preservation in deep learning applications. The end-to-end parameterized
variational approximation associated to the information utility I(X;Z) can be defined as:

Iϕ,θ (X;Z) := EPD(X)

[
EPϕ(Z|X)

[
log

Pθ (X |Z)
PD(X)

]]
(20a)

= EPD(X)

[
EPϕ(Z|X) [logPθ (X |Z)]

]
−DKL (PD(X) ∥Pθ(X)) + H (PD(X) ∥Pθ(X))

(20b)

≥ −Hϕ,θ (X |Z)︸ ︷︷ ︸
Reconstruction Fidelity

− DKL (PD(X) ∥Pθ(X))︸ ︷︷ ︸
Distribution Discrepancy Loss

=: ILϕ,θ (X;Z) , (20c)

where Hϕ,θ (X |Z) := EPD(X)

[
EPϕ(Z|X) [logPθ (X |Z)]

]
. Note that in our VAE-based frame-

work, the end-to-end parameterized information utility Iϕ,θ (X;Z) can equivalently be
expressed as Iϕ,θ

(
X; X̂

)
. This means it serves as a parameterized approximation of I

(
X; X̃

)

in Gen-MI problem (10).

5.3 Deep Variational Privacy Funnel Objectives

Considering (7) and using the addressed parameterized approximations, one can obtain the
DisPF and GenPF Lagrangian functionals. We recast the following maximization objectives:
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(P1) : LDisPF-MI (ϕ,θ, ξ,α) :=

Information Utility: ILϕ,θ(X;Z)
︷ ︸︸ ︷
−Hϕ,θ (X |Z)−DKL (PD(X) ∥Pθ(X))

− α
(
−Hϕ,ξ (S |Z)−DKL (PS ∥Pξ(S))

)

︸ ︷︷ ︸
Information Leakage: ILϕ,ξ(S;Z)

. (21)

(P2) : LGenPF-MI (ϕ,θ,ψ,φ,α) :=

Information Utility: ILϕ,θ(X;Z)
︷ ︸︸ ︷
−Hϕ,θ (X |Z)−DKL (PD(X) ∥Pθ(X))

− α
(
Iϕ,ψ (X;Z) + HU

ϕ,φ (X | S,Z)
)

︸ ︷︷ ︸
Information Leakage: IUϕ,ψ,φ(S;Z)

. (22)

5.4 Learning Framework

System Designer: Consider a set of independent and identically distributed (i.i.d.) training
samples {(un,xn)}Nn=1 ⊆ U × X . We train deep neural networks (DNNs) fϕ, gθ, gξ (or gφ),
Dη, Dτ , and Dω jointly using a stochastic gradient descent (SGD)-type approach. The goal
is to maximize a Monte Carlo approximation of the deep variational PF functional over the
parameters ϕ, θ, ξ (or φ), η, τ , and ω as illustrated in Figure 6. Our framework requires
backpropagation through random samples from the posterior distribution Pϕ(Z|X), which
presents a challenge since backpropagation cannot flow via random nodes. To address this,
we employ the reparameterization trick (Kingma and Welling, 2014).

We typically infer the posterior distribution to be a multivariate Gaussian with a diagonal
covariance matrix, represented as Pϕ(Z |x) = N

(
µϕ(x), diag(σϕ(x))

)
. Let’s assume Z = Rd.

We start by sampling a random variable E i.i.d. from N (0, Id). Then, given a data sample
x ∈ X , we generate the sample z = µϕ(x) + σϕ(x)⊙ ε, where ⊙ denotes the element-wise
(Hadamard) product. The prior distribution in the latent space is generally assumed to be a
fixed, standard isotropic multivariate Gaussian in d dimensions, denoted as QZ = N (0, Id).
With this assumption, the upper bound of the information complexity can be expressed in a
closed form. It is formulated as EPϕ(X,Z)

[
log

Pϕ(Z|X)
QZ

]
= EPD(X) [DKL (Pϕ(Z |X) ∥QZ)]. The

explicit form of this upper bound is given as:

2DKL (Pϕ (Z | X = x) ∥ QZ) = ∥µϕ(x)∥22 + d+

d∑

i=1

(σϕ(x)i − logσϕ(x)i). (23)

The KL divergences in the equations (15), (18), and (20) can be estimated utilizing the
density-ratio trick, as mentioned in (Nguyen et al., 2010; Sugiyama et al., 2012). This trick
is also employed in the GAN framework to align the distributions of the generated model
and the data directly. The essence of the trick lies in expressing the two distributions as
conditional distributions, based on a label C ∈ {0, 1}, thereby transforming the task into
a binary classification problem. The central idea here is that it allows us to estimate the
KL divergence by gauging the ratio of two distributions without the need to model each
distribution explicitly.

Learning Procedure: The deep variational PF models (P1) (21) and (P2) (22) are
trained via a six-step alternating block coordinate descent process. In this process, steps 1,
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Figure 6: The training architectures associated with: (a) DisPF-MI (P1); (b) GenPF-MI (P2).

5, and 6 are specific for each model, while steps 2, 3, and 4 are identical for both (P1) and
(P2). Figure 6 illustrates the training architectures for (P1) (21) and (P2) (22). The training
of the DVPF model (P1) follows this six-step alternating block coordinate descent process:
(1) Train the Encoder ϕ, Utility Decoder θ and Uncertainty Decoder ξ.

max
ϕ,θ,ξ

EPD(X)

[
EPϕ(Z|X) [logPθ(X |Z)]

]
− α EPS,X

[
EPϕ(Z|X) [logPξ (S |Z)]

]
. (24)

(2) Train the Latent Space Discriminator η.

min
η

EPD(X)

[
EPϕ(Z|X) [− logDη(Z)]

]
+ EQψ(Z) [− log(1−Dη(Z)) ] . (25)

(3) Train the Encoder ϕ and Prior Distribution Generator ψ Adversarially.

max
ϕ,ψ

EPD(X)

[
EPϕ(Z|X) [− logDη(Z)]

]
+ EQψ(Z) [− log(1−Dη(Z)) ] . (26)

(4) Train the Utility Output Space Discriminator ω.

min
ω

EPD(X) [− logDω(X) ] + EQψ(Z) [− log (1−Dω( gθ(Z) )) ] . (27)

(5) Train the Prior Distribution Generator ψ, Utility Decoder θ, and Uncertainty Decoder ξ
Adversarially.

max
ψ,θ,ξ

EQψ(Z) [− log (1−Dω( gθ(Z) )) ] + EQψ(Z) [− log (1−Dτ ( gξ(Z) )) ] . (28)

(6) Train Uncertainty Output Space (Sensitive Attribute Class) Discriminator τ .

min
τ

EPS
[− logDτ (S)] + EQψ(Z) [− log (1−Dτ (gξ(Z)))] .

The DVPF model (P2) is trained using alternating block coordinate descent across six
steps as follows:
(1) Train the Encoder ϕ, Utility Decoder θ and Uncertainty Decoder φ.

max
ϕ,θ,φ

EPD(X)

[
EPϕ(Z|X) [logPθ(X |Z)]

]
− α DKL (Pϕ(Z | X)∥Qψ(Z) |PD(X))

− α EPS,X

[
EPϕ(Z|X) [− logPφ(X |S,Z)]

]
. (29)
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(2) Train the Latent Space Discriminator η.

min
η

EPD(X)

[
EPϕ(Z|X) [− logDη(Z)]

]
+ EQψ(Z) [− log(1−Dη(Z)) ] . (30)

(3) Train the Encoder ϕ and Prior Distribution Generator ψ Adversarially.

max
ϕ,ψ

EPD(X)

[
EPϕ(Z|X) [− logDη(Z)]

]
+ EQψ(Z) [− log(1−Dη(Z)) ] . (31)

(4) Train the Utility Output Space Discriminator ω.

min
ω

EPD(X) [− logDω(X) ] + EQψ(Z) [− log (1−Dω( gθ(Z) )) ] . (32)

(5) Train the Prior Distribution Generator ψ, Utility Decoder θ, and Uncertainty Decoder φ
Adversarially.

max
ψ,θ,φ

EQψ(Z) [− log (1−Dω( gθ(Z) )) ] + EQψ(Z) [− log (1−Dω( gφ(S,Z) )) ] . (33)

(6) Train the Uncertainty Output Space Discriminator ω.

min
ω

EPD(X) [− logDω(X) ] + EQψ(Z) [− log (1−Dω( gφ(S,Z) )) ] . (34)

The detailed training algorithms of these models are shown in Algorithm 1 and Algorithm 2.

5.5 Role of Information Complexity in Privacy Leakage

The implicit assumption in the PF model is to have pre-defined interests in the game between
the ‘defender’ (data owner/user) and the ‘adversary’; that is, the data owner knows in advance
what feature/variable of the underlying data the adversary is interested in. Accordingly, the
data release mechanism can be optimized/tuned to minimize any inference the adversary
can make about this specific random variable. However, this assumption may be violated
in most real-world scenarios. The attribute that the defender may assume as sensitive may
not be the attribute of interest for the inferential adversary. As an example, for a given
utility task at hand, the defender may try to restrict inference on gender recognition while
the adversary is interested in inferring an individual’s identity or facial emotion. Inspired by
(Issa et al., 2019), and in contrast to the above setups, we consider the scenario in which the
adversary is curious about an attribute that is unknown to the system designer. In (Atashin
et al., 2021), we assumed the adversary is interested in an attribute S of data X which is
not known a priori to the defender7. Next, we argued that the information complexity of
the representation measured by mutual information I (X;Z) can also limit the information
leakage about the unknown sensitive variable.

7In other words, the distribution PS|X is unknown to the defender.
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Algorithm 1 Deep Variational DisPF training algorithm associated with DisPF-MI (P1)
1: Input: Training Dataset: {(sn,xn)}Nn=1; Hyper-Parameter: α
2: ϕ,θ,ψ,φ,η,ω ← Initialize Network Parameters
3: repeat

(1) Train the Encoder ϕ, Utility Decoder θ, Uncertainty Decoder ξ
4: Sample a mini-batch {xm, sm}Mm=1 ∼ PD(X)PS|X
5: Compute encoder outputs µenc

m ,σenc
m = fϕ(xm),∀m ∈ [M ]

6: Apply reparametrization trick zencm = µenc
m + ϵm ⊙ σenc

m , ϵm ∼ N (0, I), ∀m ∈ [M ]
7: Sample {nm}Mm=1 ∼ N (0, I)
8: Compute µprior

m ,σprior
m = gψ(nm), ∀m ∈ [M ]

9: Compute zpriorm =µprior
m + ϵ′m ⊙ σprior

m , ϵ′m∼N (0, I), ∀m∈ [M ]
10: Compute x̂m = gθ(z

enc
m ),∀m ∈ [M ]

11: Compute ŝm = gξ(z
enc
m ),∀m ∈ [M ]

12: Back-propagate loss:

L (ϕ,θ, ξ) =− 1

M

M∑
m=1

(
dis(xm, x̂m)− α logPξ(sm |zencm )

)
(2) Train the Latent Space Discriminator η

13: Sample {xm}Mm=1 ∼ PD(X)
14: Sample {nm}Mm=1 ∼ N (0, I)
15: Compute zencm from fϕ(xm)with reparametrization, ∀m∈ [M ]
16: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
17: Back-propagate loss:

L (η) = − α

M

M∑
m=1

logDη(z
enc
m ) + log

(
1−Dη( z

prior
m )

)
(3) Train the Encoder ϕ and Prior Distribution Generator ψ Adversarially

18: Sample {xm}Mm=1 ∼ PD(X)
19: Compute zencm from fϕ(xm)with reparametrization, ∀m∈ [M ]
20: Sample {nm}Mm=1 ∼ N (0, I)
21: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
22: Back-propagate loss:

L (ϕ,ψ) = α

M

M∑
m=1

logDη(z
enc
m ) + log

(
1−Dη( z

prior
m )

)
(4) Train the Utility Output Space Discriminator ω

23: Sample {xm}Mm=1 ∼ PD(X)
24: Sample {nm}Mm=1 ∼ N (0, I)
25: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
26: Compute x̂m = gθ(z

prior
m ), ∀m ∈ [M ]

27: Back-propagate loss:

L (ω) = − 1

M

M∑
m=1

logDω(xm) + log (1−Dω( x̂m ))

(5) Train the Prior Distribution Generator ψ, Utility Decoder θ, and Uncertainty Decoder ξ Adversarially
28: Sample {nm}Mm=1 ∼ N (0, I)
29: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
30: Compute x̂m = gθ

(
zpriorm

)
,∀m ∈ [M ]

31: Compute ŝm = gξ
(
zpriorm

)
,∀m ∈ [M ]

32: Back-propagate loss:

L (ψ,θ, ξ)= 1

M

M∑
m=1

log (1−Dω( x̂m )) + log (1−Dτ ( ŝm ))

(6) Train Uncertainty Output Space Discriminator ω
33: Sample a mini-batch {sm,xm}Mm=1 ∼ PD(X)PS|X

34: Sample {nm}Mm=1 ∼ N (0, I)
35: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
36: Compute ŝm ∼ gξ

(
zpriorm

)
,∀m ∈ [M ]

37: Back-propagate loss:

L (τ ) = 1

M

M∑
m=1

logDτ ( sm ) + log (1−Dτ ( ŝm ))

38: until Convergence
39: return ϕ,θ,ψ,φ,η,ω
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Algorithm 2 Deep Variational GenPF training algorithm associated with GenPF-MI (P2)
1: Input: Training Dataset: {(sn,xn)}Nn=1; Hyper-Parameter: α
2: ϕ,θ,ψ,φ,η,ω ← Initialize Network Parameters
3: repeat

(1) Train the Encoder ϕ, Utility Decoder θ, Uncertainty Decoder φ
4: Sample a mini-batch {xm, sm}Mm=1 ∼ PD(X)PS|X
5: Compute encoder outputs µenc

m ,σenc
m = fϕ(xm),∀m ∈ [M ]

6: Apply reparametrization trick zencm = µenc
m + ϵm ⊙ σenc

m , ϵm ∼ N (0, I), ∀m ∈ [M ]
7: Sample {nm}Mm=1 ∼ N (0, I)
8: Compute µprior

m ,σprior
m = gψ(nm), ∀m ∈ [M ]

9: Compute zpriorm =µprior
m + ϵ′m ⊙ σprior

m , ϵ′m∼N (0, I), ∀m∈ [M ]
10: Compute x̂m = gθ(z

enc
m ),∀m ∈ [M ]

11: Compute x̃m = gφ(z
enc
m , sm),∀m ∈ [M ]

12: Back-propagate loss:

L (ϕ,θ,φ) = − 1

M

M∑
m=1

(
dis(xm, x̂m) − αDKL

(
Pϕ(z

enc
m |xm)∥Qψ(zpriorm )

)
+ α dis(xm, x̃m)

)
(2) Train the Latent Space Discriminator η

13: Sample {xm}Mm=1 ∼ PD(X)
14: Sample {nm}Mm=1 ∼ N (0, I)
15: Compute zencm from fϕ(xm)with reparametrization, ∀m∈ [M ]
16: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
17: Back-propagate loss:

L (η) = − α

M

M∑
m=1

logDη(z
enc
m ) + log

(
1−Dη( z

prior
m )

)
(3) Train the Encoder ϕ and Prior Distribution Generator ψ Adversarially

18: Sample {xm}Mm=1 ∼ PD(X)
19: Compute zencm from fϕ(xm)with reparametrization, ∀m∈ [M ]
20: Sample {nm}Mm=1 ∼ N (0, I)
21: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
22: Back-propagate loss:

L (ϕ,ψ) = α

M

M∑
m=1

logDη(z
enc
m ) + log

(
1−Dη( z

prior
m )

)
(4) Train the Utility Output Space Discriminator ω

23: Sample {xm}Mm=1 ∼ PD(X)
24: Sample {nm}Mm=1 ∼ N (0, I)
25: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
26: Compute x̂m = gθ(z

prior
m ), ∀m ∈ [M ]

27: Back-propagate loss:

L (ω) = − 1

M

M∑
m=1

logDω(xm) + log (1−Dω( x̂m ))

(5) Train the Prior Distribution Generator ψ, Utility Decoder θ, and Uncertainty Decoder φ Adversarially
28: Sample {nm}Mm=1 ∼ N (0, I)
29: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
30: Compute x̂m ∼ gθ

(
zpriorm

)
,∀m ∈ [M ]

31: Compute x̃m ∼ gφ
(
zpriorm , sm

)
, ∀m ∈ [M ]

32: Back-propagate loss:

L (ψ,θ,φ)= 1

M

M∑
m=1

log (1−Dω( x̂m )) + log (1−Dω( x̃m ))

(6) Train Uncertainty Output Space Discriminator ω
33: Sample a mini-batch {sm,xm}Mm=1 ∼ PD(X)PS|X

34: Sample {nm}Mm=1 ∼ N (0, I)
35: Compute zpriorm from gψ(nm)with reparametrization, ∀m∈ [M ]
36: Compute x̃m ∼ gφ

(
zpriorm , sm

)
, ∀m ∈ [M ]

37: Back-propagate loss:

L (ω) = 1

M

M∑
m=1

logDω(xm ) + log (1−Dω( x̃m ))

38: until Convergence
39: return ϕ,θ,ψ,φ,η,ω
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6. Face Recognition Experiments

Face recognition systems represent a crucial segment within the larger domain of biometric
technology. They operate by identifying or verifying a person’s identity through the analysis of
facial features in digital images or video frames. The technology employs complex algorithms
and machine learning models to compare specific facial attributes in an input image with
those in a known database, thereby establishing an individual’s identity or lack thereof. Face
recognition systems find widespread applications, ranging from security and surveillance to
social media and smartphone technology.

6.1 Face Recognition Leading Models and Their Core Mechanisms

The evolution of face recognition technology has been significantly influenced by the devel-
opment of several groundbreaking models, each distinguished by its unique features and
mechanisms. Prominent among these are DeepFace (Taigman et al., 2014), FaceNet
(Schroff et al., 2015), OpenFace (Amos et al., 2016), SphereFace (Liu et al., 2017), Cos-
Face (Wang et al., 2018), ArcFace (Deng et al., 2019a), and AdaFace (Kim et al., 2022).
These models have advanced the field through their innovative use of deep learning techniques,
setting new standards in accuracy and reliability for face recognition tasks.

DeepFace, developed by Facebook, employs a deep neural network with over 120 million
parameters, demonstrating notable robustness against pose variations through advanced
3D modeling techniques. FaceNet, from Google, uses a ‘triplet loss’ function to optimize
distances between anchor, positive, and negative images. Despite its effectiveness, FaceNet
faces challenges related to the large number of triplets in extensive datasets and complexities
in mining semi-hard samples. OpenFace, a Carnegie Mellon University innovation, offers
a lightweight yet efficient alternative, focusing on ‘TripletHardLoss’ for challenging sample
selection during training. This model excels in environments with limited computational
resources. Subsequent to OpenFace, SphereFace introduced an angular margin penalty in
its loss function to enhance intra-class compactness and inter-class separation. SphereFace,
however, encountered training stability challenges due to the need for computational ap-
proximations in its loss function. Building on these advancements, CosFace added a cosine
margin penalty directly to the target logit, simplifying the implementation and improving
performance without requiring joint supervision from the softmax loss. This marked a
significant step forward in the development of margin-based loss functions. ArcFace, from
InsightFace, further refined the approach by introducing an ’Additive Angular Margin Loss’,
which optimizes the geodesic distance margin on a normalized hypersphere. Known for its
ease of implementation and computational efficiency, ArcFace achieved state-of-the-art perfor-
mance across various benchmarks. Most recently, AdaFace has represented a significant leap
in addressing image quality variations in face recognition. By correlating feature norms with
image quality, AdaFace adapts its margin function to emphasize hard samples in high-quality
images and de-emphasize them in lower-quality ones. This adaptive approach, blending
angular and additive margins based on image quality, represents a notable advancement in
the field.
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6.2 Backbone Architectures for Feature Extraction

In the context of face recognition systems, backbone architectures provide the core structure
essential for extracting and learning high-level features from raw input data. These archi-
tectures, underpinning the design of face recognition models, significantly influence their
capacity to discern facial features and, consequently, their performance. One of the key
architectures in this domain is the Improved ResNet, or iResNet (Duta et al., 2021). As an
advanced iteration of the ResNet (He et al., 2016) model, iResNet integrates modifications
that aim to resolve issues related to the degradation of deeper networks. It is characterized
by its residual learning framework, which effectively tackles the vanishing gradient problem,
a common challenge with deep neural networks. This allows for the training of networks
with increased depth, thereby facilitating a more profound extraction of facial features. The
modularity of iResNet, which can be adapted to various depths, provides the flexibility to
balance computational efficiency and model accuracy based on the specific requirements of a
given task. This adaptability extends the use of iResNet across different face recognition
models, each leveraging the architecture’s strengths according to their individual design
principles. Other backbone architectures, such as VGGNet (Simonyan and Zisserman, 2014)
and MobileNet (Howard et al., 2017), are also employed in the design of face recognition
models. VGGNet, with its homogeneously stacked convolutional layers, excels in extracting
features from input images of varying complexity. On the other hand, MobileNet, with its
depthwise separable convolutions, offers an efficient, lightweight solution optimal for mobile
and edge computing applications. The choice of backbone architecture significantly influences
the face recognition model’s performance, shaping its ability to extract necessary features,
adapt to varying task complexities, and function efficiently within the given computational
constraints. As such, selecting the most suitable architecture is crucial for the successful
deployment of a face recognition system.

6.3 Datasets for Training and Validation

The viability and robustness of face recognition systems hinge significantly on the quality
and diversity of the datasets used for their training and validation. These datasets supply
a spectrum of facial data crucial for model training, acting as the cornerstone upon which
these systems develop their ability to recognize and differentiate facial features.

The MSCeleb1M dataset (Deng et al., 2019b) is a noteworthy resource in this domain,
providing a comprehensive collection of over a million celebrity images. Its richness in terms
of varied expressions, poses, illumination conditions, and occlusions makes it invaluable for
model training, enhancing the system’s capacity to handle real-world variability.

The WebFace dataset (Zhu et al., 2021), officially known as CASIA-WebFace, provides
a large-scale face dataset for training deep models. With nearly half a million images from
over 10,000 individuals, it offers a diverse range of facial images sourced from the internet.
This dataset has become a staple in the face recognition community for developing and
benchmarking algorithms, particularly because of its real-world diversity and the challenges
it presents in terms of data variability.

The MORPH dataset (Ricanek and Tesafaye, 2006) distinguishes itself with its focus on
longitudinal facial data, charting the progression of facial features over time. The inclusion of
aging-related variations makes this dataset crucial for the development of age-invariant face
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recognition capabilities, an essential attribute for models deployed in dynamic, real-world
scenarios.

The FairFace dataset (Karkkainen and Joo, 2021) is an intervention in the realm of
equitable face recognition. Designed to mitigate racial and demographic biases, it includes a
balanced representation of seven racial groups and a diverse distribution of age and gender
within each group. With approximately 100,000 (exactly 108,501) images, FairFace is a
valuable resource for training and evaluating face recognition systems, ensuring they perform
fairly across different demographics. This dataset is particularly crucial for developing
models that can operate justly in multicultural societies, where fairness and inclusivity are
paramount.

For unconstrained face recognition, the Labeled Faces in the Wild (LFW) (Huang
et al., 2008) and the IARPA Janus Benchmark-C (IJBC) (Maze et al., 2018) datasets
have made significant contributions. The LFW dataset comprises images collected from
the internet, encapsulating the real-world conditions a face recognition system is likely
to encounter, including variability in pose, lighting, and expression. IJBC, on the other
hand, provides a challenging, large-scale evaluation of face recognition technology under
uncontrolled conditions. It includes several variations such as pose, illumination, expression,
race, and age, thereby pushing the boundaries of model performance.

6.4 Metrics Used to Evaluate Face Recognition Model Performance

In this subsection, we will elucidate the key metrics utilized to assess the performance
of face recognition models in our experiments. This elucidation may prove particularly
helpful to readers who lack prior familiarity with the components of biometric systems or
the interpretation of fundamental information-theoretic measures. Readers with existing
knowledge in these areas may choose to bypass this introductory material.

6.4.1 False Match Rate (FMR)

The False Match Rate (FMR), also known as the False Acceptance Rate (FAR), quantifies
the rate at which the system erroneously accepts an imposter’s face as a genuine match. In
other words, it measures the probability of a false positive identification. FMR is calculated
by dividing the number of falsely accepted imposter faces by the total number of verification
attempts on imposter faces.

FMR =
Number of False Acceptances

Total Imposter Verification Attempts
. (35)

Lower FMR values indicate a higher level of security and a reduced likelihood of unauthorized
access. The choice of an appropriate threshold for FMR is essential and often depends on the
specific application and security requirements. A lower threshold increases security but may
lead to higher False Rejection Rates (FRR), which can inconvenience legitimate users.

6.4.2 True Match Rate (TMR)

The True Match Rate (TMR), also known as the True Acceptance Rate (TAR), measures the
system’s ability to correctly identify or verify genuine matches. It quantifies the probability
of a true positive identification, where the system correctly accepts a genuine user. TMR is
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calculated by dividing the number of correctly accepted genuine matches by the total number
of verification attempts on genuine faces.

TMR =
Number of True Acceptances

Total Genuine Verification Attempts
. (36)

Higher TMR values signify a higher level of accuracy in correctly accepting genuine users,
which is desirable in most face recognition applications. However, a high TMR may be
accompanied by an increased risk of false positives (higher FMR) if the threshold is set
too low. Balancing TMR and FMR is crucial to achieve the desired level of security and
convenience in the application.

6.4.3 Accuracy (Acc)

Accuracy is a fundamental metric that provides a holistic view of a face recognition system’s
performance. It encompasses both the TMR and the FMR by considering the correct and
incorrect identifications collectively. Accuracy is calculated by dividing the total number of
correct verifications (true positives and true negatives) by the total number of verification
attempts (all cases).

Acc =
Number of True Positives+ Number of True Negatives

Total Verification Attempts
. (37)

High accuracy values indicate a robust system with a low rate of both false positives and
false negatives. Achieving a high accuracy rate is typically the primary objective in face
recognition applications, as it ensures that the system correctly identifies genuine users while
minimizing the likelihood of unauthorized access.

6.4.4 Shannon Entropy

Entropy is a measure of the randomness or uncertainty of a variable. For a discrete
variable S with a probability mass function PS, the Shannon entropy is defined as H(S) =
−∑

PS log(PS). Entropy enables us to assess the degree of uncertainty within our (sensitive)
labels S. The maximum possible entropy of a discrete random variable is log (|S|), where
|S| represents the cardinality of the variable. For example, if S represents gender (with two
categories), the maximum entropy is log2(2) = 1, while for race (e.g. with four categories),
the maximum entropy is log2(4) = 2. When our calculated entropy is less than the maximum
value of log (|S|), it indicates an imbalance in the distribution of our labels. In other words,
the labels are not uniformly distributed, and there is some degree of predictability or bias in
the variable.

6.4.5 Mutual Information

Mutual information quantifies the extent to which knowledge of one variable reduces uncer-
tainty about another. It is defined as I (S;Z) = H (S)−H(S | |Z). This formula measures
the reduction in uncertainty about the (sensitive) labels (S) when we possess knowledge of
the embeddings (Z). The close proximity of the values of I (S;Z) to H(S) indicates that
knowing the embeddings Z significantly reduces uncertainty about the labels S. Mutual
information is a symmetric measure (I (S;Z) = I (Z;S)). Additionally, it can be expressed
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as I (S;Z) = H(S) + H(Z)−H(S,Z), where H(S,Z) represents the joint entropy of both S
and Z. This equation reveals that mutual information also quantifies the reduction in joint
uncertainty regarding both S and Z when we have information about either variable. It is
essential to emphasize that I (S;Z) ≤ min (H(S), H(Z)). This inequality stems from the fact
that information shared between S and Z cannot exceed the initial uncertainty present in
either S or Z. In simpler terms, mutual information cannot exceed the total information
content in either S or Z.

6.5 Experiments Setup

We consider the state-of-the-art Face Recognition (FR) backbones with three variants of
iResNet (He et al., 2016; Deng et al., 2019a) architecture (iResNet100, iResNet50, and
iResNet18). These architectures have been trained using either the MS1MV3 (Deng et al.,
2019b) or WebFace4M/12M (Zhu et al., 2021) datasets. For loss functions, ArcFace (Deng
et al., 2019a) and AdaFace (Kim et al., 2022) methods were employed. For the training
phase, we utilized pre-trained models sourced from the aforementioned studies. All input
images underwent a standardized pre-processing routine, encompassing alignment, scaling,
and normalization. This was in accordance with the specifications of the pre-trained models.
We then trained our networks using the Morph dataset (Ricanek and Tesafaye, 2006) and
FairFace (Karkkainen and Joo, 2021), focusing on different demographic group combinations
such as race and gender. Figure 7 depicts our framework during the training phase for a
specific setup, which we will explain later. Figure 8 shows the trained modules. Figure 9
illustrates our framework during the inference phase. We will provide more details in Sec. 6.6.

6.5.1 Learning Scenarios

We consider two types of data available for X: (i) raw image samples, and (ii) feature
extractions, commonly referred to as embeddings, from the facial images. In the case of
raw images, we have the option to employ one of two distinct encoder types: (i) a custom
encoder, which will be trained from scratch, or (ii) a backbone encoder that leverages a
pre-trained network and undergoes further refinement via fine-tuning during the training
process. Alternatively, when working with facial image embeddings, we utilize a custom
multi-layer perceptron (MLP) encoder, which is also intended to be trained from scratch.
Based on the utility and uncertainty decoder objectives, we identify two types of decoder
tasks: (i) reconstruction, and (ii) classification tasks. Taking these setups into account, we
investigate three learning scenarios as follows:

End-to-End Raw Data Scratch Learning: In this approach, our objective is to train a
custom encoder model (alongside other networks) from scratch, using raw data samples as
input. The model learns data representations directly from the raw input without relying
on prior knowledge from a pre-trained model. This method is suitable when the dataset is
sufficiently large and diverse to support training a deep neural network from scratch and
when the aim is to learn data representations directly from the raw input.

Raw Data Transfer Learning with Fine-Tuning: In this approach, a pre-trained (base)
model is employed to enhance the performance of a model on a potentially smaller or more
specialized dataset. The pre-trained model serves as the backbone, with a mid-layer selected
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Training Deep DisPF Networks

N ∼ N (0, I)

gψ(N) Dη(Z) ρZ (cz = 1 | z)

One-hot Encoding

Applied Datset: FairFace

Sample X
S : Race

XePre-processing
Pre-trained

Model

Backbone:
iResNet50

Backbone Datset:
WebFace4M

Encoder

Pφ(Z |Xe)
Z

Decoder

Pθ(Xe |Z)
X̂utility

e
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Pξ(S |Z)
S

Dω(Xe) ρX (cx = 1 | xe)

Dτ (S) ρS (cs = 1 | s)

Figure 7: Training the deep variational DisPF model for face recognition experiments,
employing the learning scenario ‘Embedding-Based Data Learning’.

Trained DisPF Module

X
Trained
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Z
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Decoder
Xutility

(a)

Trained GenPF Module

X

S

Trained

Encoder
Z
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Conditional

Generator

Xuncertainty
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Figure 8: The DisPF and GenPF modules have been trained and are designed for integration
in a plug-and-play manner. These modules are characterized by a set of specific parameters:
‘dataset name’ (for example, FairFace), which denotes the dataset utilized; ‘sensitive attribute
name’ (e.g., Race); ‘alpha’ (e.g., 0.1); ‘latent Z dimension’ (e.g., 128); ‘backbone’ (e.g.,
iResNet 50); ‘loss function’ (e.g., arcface); and ‘backbone trained dataset’ (e.g., WebFace12M).

as the latent representation. This method is suitable when the dataset is small and specialized,
and fine-tuning the pre-trained model can offer significant improvement over training a model
from scratch.

Embedding-Based Data Learning: In this approach, our goal is to employ a multi-layer
perceptron (MLP) projector network as our encoder model, which uses extracted features
(embeddings) as input. This method is suitable when a fine-tuned face recognition model has
already learned meaningful (useful) features from a large and diverse dataset. Utilizing these
features as input to a machine learning model can potentially offer an improvement over
training a model from scratch or fine-tuning a pre-trained model. This approach leverages the
pre-trained model’s ability to capture relevant information and may reduce the computational
cost and complexity associated with end-to-end learning from raw data. Figure 7 depicts an
example of our training framework for this setup.

March 27, 2024 DRAFT, Version 1.0



42

Trained Deep DisPF Module
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Figure 9: Evaluating the performance of the deep variational DisPF model, which was trained
on the FairFace dataset, when applied to the IJBC test dataset (cross-dataset evaluation).
This evaluation highlights the use of DisPF as a plug-and-play module within the information
flow of state-of-the-art face recognition models.

6.6 Experiments Results

6.6.1 Evaluation of Morph and FairFace Datasets Before Applying DVPF

Table 1 depicts the Shannon entropy, estimated mutual information between the extracted
embeddings X ∈ R512 and sensitive attributes S, and accuracy of classification of S, for test
and train sets, before applying our DVPF model. A close proximity between I(X;S) and
entropy H(S) indicates that the embeddings considerably mitigate label uncertainty. Given
I(X;S) = H(X) + H(S)−H(X,S), mutual information serves as a measure of the reduced
joint uncertainty about X and S. It’s pivotal to note that I(X;S) ≤ min (H(X), H(S)). For
the Morph/FairFace datasets, the entropy of sensitive attributes (gender or race) remains
consistent across both train/test sets and differing FR model embeddings, emphasizing the
same dataset usage throughout experiments. Both Morph and FairFace datasets, featuring
‘male’ and ‘female’ gender labels, attain a maximum entropy of log2(2) = 1. The Morph
dataset, with four distinct race labels, reaches a maximum entropy of log2(4) = 2, while the
FairFace dataset, with six race labels, tops at log2(6) = 2.585. Within Morph, the mutual
information for gender mirrors its entropy, suggesting notable preservation of sensitive infor-
mation in the embeddings. However, for race, values of approximately 0.92-0.93 underscore
an imbalanced label distribution, as they don’t reach the theoretical log2(4) = 2. In contrast,
the FairFace dataset displays near-maximal entropies for race (∼ 2.517 relative to a potential
2.585) and gender (∼ 0.999 compared to an ideal 1), illustrating well-balanced racial and
gender label distributions.

Table 1: Evaluation of facial recognition models using various backbones and loss functions.
Metrics include entropy, mutual information between embeddings and labels (gender and
race), and recognition accuracy on the ‘Morph’ and ‘FairFace’ datasets.

S: Gender S: Race
H(S) I(X;S) Acc H(S) I(X;S) Acc

Backbone Dataset Backbone Loss Function Applied Dataset Train Test Train Test Train Test Train Test Train Test Train Test
WebFace4M iResNet18 AdaFace Morph

0.619 0.621

0.610 0.620 0.999 0.996

0.924 0.933

0.878 0.924 0.998 0.993
WebFace4M iResNet50 AdaFace Morph 0.610 0.620 0.999 0.996 0.873 0.930 0.998 0.992
WebFace12M iResNet101 AdaFace Morph 0.605 0.622 0.999 0.996 0.873 0.911 0.998 0.992

MS1M-RetinaFace iResNet50 ArcFace Morph 0.600 0.620 0.999 0.996 0.865 0.910 0.997 0.993
MS1M-RetinaFace iResNet100 ArcFace Morph 0.597 0.618 0.999 0.997 0.868 0.905 0.997 0.993

WebFace4M iResNet18 AdaFace FairFace

0.999 0.999

0.930 0.968 0.953 0.923

2.517 2.515

2.099 2.405 0.882 0.763
WebFace4M iResNet50 AdaFace FairFace 0.932 0.968 0.954 0.931 2.113 2.409 0.883 0.769
WebFace12M iResNet101 AdaFace FairFace 0.934 0.969 0.957 0.930 2.151 2.417 0.892 0.765

MS1M-RetinaFace iResNet50 ArcFace FairFace 0.892 0.962 0.950 0.927 1.952 2.355 0.872 0.753
MS1M-RetinaFace iResNet100 ArcFace FairFace 0.889 0.954 0.951 0.927 1.949 2.348 0.875 0.765
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6.6.2 Evaluation of Morph and FairFace Datasets After Applying DVPF

We applied our deep variational DisPF (21) and GenPF (22) models to the embeddings
obtained from the FR models referenced in Table 1. The assessment was initiated with the
pre-trained backbones, followed by our DisPF or GenPF model, which was developed using
embeddings from these pre-trained structures. Figure 7 represents our training framework
for the deep DisPF problem, using iResNet50 as the backbone, WebFace4M as the backbone
dataset, and ArcFace for the FR loss. The applied dataset is FairFace, with race as the
sensitive attribute. We considered a similar embedding-based learning framework for the
deep GenPF problem. Given the consistent accuracy for sensitive attribute S and similar
information leakage I (X;S) observed across various iResNet architectures, we present results
specific to iResNet50. Figure 8 depicts the trained modules that we will use during the
inference phase for both same-dataset evaluations (where the models are tested on unseen
portions of the dataset they were trained on) and cross-dataset evaluations (where the models
are tested on entirely different datasets to assess their ability to generalize to new data)

Table 2: Analysis of the obfuscation-utility trade-off in face recognition models using the
iResNet-50 architecture with (P1) and (P2). Performance is evaluated across varying infor-
mation leakage weights α, with significant differences between α = 0.1 and α = 10. Sensitive
attributes considered are ‘Gender’ and ‘Race’ with a latent dimensionality of dz = 512 (top),
dz = 256 (middle), and dz = 128 (down). Notations: “WF4M” represents “WebFace4M”,
“MS1M-RF” denotes “MS1M-RetinaFace”, and “TMR” represents “TMR@FMR=10e-1”.

(P1) S: Gender S: Race
(dz = 512) α = 0.1 α = 1 α = 10 α = 0.1 α = 1 α = 10

Face Recognition Model TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S

WF4M-i50-Ada-Morph 87.31 0.486 0.985 67.55 0.484 0.946 34.42 0.410 0.847 87.13 0.658 0.997 63.51 0.656 0.997 32.58 0.558 0.997
MS1M-RF-i50-Arc-Morph 95.60 0.473 0.991 83.42 0.468 0.970 60.49 0.416 0.846 95.64 0.573 0.997 83.34 0.566 0.997 60.10 0.554 0.997
WF4M-i50-Ada-FairFace 84.00 0.736 0.916 65.66 0.650 0.807 42.97 0.524 0.582 84.30 1.306 0.942 65.51 1.129 0.893 43.18 0.858 0.756

MS1M-RF-i50-Arc-FairFace 93.78 0.680 0.917 83.99 0.677 0.859 61.03 0.586 0.605 93.81 1.090 0.945 84.03 1.005 0.914 61.44 0.830 0.762

(P1) S: Gender S: Race
(dz = 256) α = 0.1 α = 1 α = 10 α = 0.1 α = 1 α = 10

Face Recognition Model TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S

WF4M-i50-Ada-Morph 91.99 0.464 0.992 46.98 0.444 0.949 29.56 0.388 0.843 91.86 0.628 0.997 47.42 0.705 0.997 30.99 0.550 0.857
MS1M-RF-i50-Arc-Morph 93.30 0.485 0.992 84.08 0.492 0.971 58.62 0.335 0.846 94.01 0.635 0.997 84.10 0.707 0.997 58.24 0.558 0.868
WF4M-i50-Ada-FairFace 92.34 0.638 0.925 63.12 0.653 0.815 39.75 0.367 0.576 92.41 0.866 0.946 58.67 0.950 0.893 38.80 0.595 0.756

MS1M-RF-i50-Arc-FairFace 90.87 0.636 0.915 82.01 0.652 0.860 59.62 0.388 0.598 90.86 0.899 0.947 81.98 0.873 0.919 60.33 0.608 0.766

(P1) S: Gender S: Race
(dz = 128) α = 0.1 α = 1 α = 10 α = 0.1 α = 1 α = 10

Face Recognition Model TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S

WF4M-i50-Ada-Morph 88.20 0.392 0.988 67.55 0.387 0.952 21.76 0.205 0.845 87.70 0.563 0.998 67.50 0.632 0.997 20.85 0.375 0.997
MS1M-RF-i50-Arc-Morph 97.60 0.358 0.988 85.91 0.320 0.974 62.97 0.278 0.848 97.61 0.574 0.998 86.01 0.603 0.997 62.41 0.421 0.996
WF4M-i50-Ada-FairFace 94.38 0.437 0.892 68.70 0.420 0.809 21.47 0.198 0.546 94.49 0.716 0.937 68.49 0.665 0.892 21.36 0.291 0.733

MS1M-RF-i50-Arc-FairFace 98.03 0.425 0.890 86.07 0.412 0.860 61.11 0.284 0.637 97.77 0.631 0.933 86.07 0.657 0.919 61.25 0.551 0.783

(P2) S: Gender S: Race
(dz = 512) α = 0.1 α = 0.5 α = 1 α = 10 α = 0.1 α = 0.5 α = 1 α = 10

Face Recognition Model TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S

WF4M-i50-Ada-Morph 81.68 0.559 0.986 60.90 0.570 0.966 51.86 0.564 0.945 38.20 0.529 0.853 82.22 0.788 0.998 61.07 0.803 0.997 52.18 0.791 0.997 36.26 0.737 0.996
MS1M-RF-i50-Arc-Morph 91.18 0.552 0.991 77.86 0.572 0.978 73.82 0.562 0.962 67.40 0.524 0.876 91.37 0.765 0.998 77.76 0.796 0.977 73.56 0.794 0.997 67.82 0.751 0.996
WF4M-i50-Ada-FairFace 85.56 0.850 0.918 63.75 0.868 0.885 54.94 0.859 0.853 40.42 0.809 0.759 85.43 1.719 0.944 63.89 1.810 0.926 54.38 1.794 0.908 39.47 1.699 0.839

MS1M-RF-i50-Arc-FairFace 92.20 0.819 0.914 78.34 0.869 0.891 74.08 0.863 0.868 68.00 0.827 0.795 92.15 1.547 0.944 78.26 1.796 0.932 73.36 1.745 0.920 67.65 1.708 0.872

(P2) S: Gender S: Race
(dz = 256) α = 0.1 α = 0.5 α = 1 α = 10 α = 0.1 α = 0.5 α = 1 α = 10

Face Recognition Model TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S

WF4M-i50-Ada-Morph 81.88 0.585 0.987 60.65 0.586 0.971 50.92 0.569 0.953 37.57 0.539 0.873 81.90 0.773 0.998 60.66 0.812 0.997 51.51 0.816 0.997 38.08 0.765 0.996
MS1M-RF-i50-Arc-Morph 91.58 0.539 0.991 77.60 0.575 0.981 72.96 0.580 0.968 67.06 0.549 0.899 91.74 0.792 0.998 77.59 0.812 0.997 73.03 0.812 0.997 67.31 0.776 0.996
WF4M-i50-Ada-FairFace 86.67 0.844 0.916 63.64 0.865 0.892 54.41 0.830 0.865 40.61 0.771 0.762 86.61 1.611 0.944 63.62 1.699 0.930 54.43 1.653 0.916 39.75 1.503 0.855

MS1M-RF-i50-Arc-FairFace 92.34 0.845 0.915 77.51 0.863 0.901 73.00 0.853 0.882 67.51 0.779 0.803 92.35 1.528 0.943 77.48 1.701 0.936 72.76 1.678 0.926 66.90 1.571 0.882

(P2) S: Gender S: Race
(dz = 128) α = 0.1 α = 0.5 α = 1 α = 10 α = 0.1 α = 0.5 α = 1 α = 10

Face Recognition Model TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S TMR I(Z;S) Acc on S

WF4M-i50-Ada-Morph 84.06 0.556 0.984 62.62 0.575 0.973 52.05 0.572 0.963 36.76 0.531 0.906 84.14 0.810 0.998 62.94 0.827 0.997 52.34 0.820 0.997 36.26 0.789 0.996
MS1M-RF-i50-Arc-Morph 93.00 0.541 0.987 79.40 0.573 0.981 73.50 0.572 0.974 66.28 0.535 0.927 93.10 0.800 0.998 79.99 0.828 0.997 74.04 0.825 0.997 65.94 0.793 0.996
WF4M-i50-Ada-FairFace 88.51 0.724 0.893 67.43 0.738 0.870 57.44 0.729 0.854 39.27 0.676 0.800 88.55 1.375 0.938 67.34 1.503 0.926 57.28 1.479 0.916 39.60 1.359 0.877

MS1M-RF-i50-Arc-FairFace 94.14 0.700 0.890 81.81 0.749 0.878 75.95 0.743 0.869 67.16 0.719 0.836 94.23 1.136 0.934 81.67 1.381 0.927 75.96 1.404 0.922 67.16 1.368 0.903
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Figure 10: Trade-off between information utility and privacy leakage using DVPF models for
gender attribute: comparing classification accuracy on FairFace and TMR on IJB-C.

In Table 2, we precisely quantify the disclosed information leakage, represented as I(S;Z).
Additionally, we provide a detailed account of the accuracy achieved in recognizing sensitive
attributes from the disclosed representation Z ∈ R256, utilizing a support vector classifier
optimization. These evaluations are based on test sets derived from either the Morph or
FairFace datasets. Consistent with our expectations, as α increases towards infinity (α → ∞),
the information leakage I(S;Z) decreases to zero. At the same time, the recognition accuracy
for the sensitive attribute S approaches 0.5, indicative of random guessing.

6.6.3 TMR Benchmark on IJB-C in FairFace Experiments

To evaluate the generalization of our mechanisms in terms of FR accuracy, we utilized the
challenging IJB-C test dataset (Maze et al., 2018) as a challenging benchmark. Figure 9
depicts our inference framework, which incorporates the DisPF trained module. We employ
a similar inference framework for the GenPF trained module. We detail the TMR of our
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Figure 11: Trade-off between information utility and privacy leakage using DVPF models for
race attribute: comparing classification accuracy on FairFace and TMR on IJB-C.

models in Table 2. It’s imperative to note that all these evaluations are systematically
benchmarked against a predetermined False Match Rate (FMR) of 10−1.When subjecting
the ‘WF4M-i50-Ada’ model to evaluation against the IJB-C dataset—prior to the DVPF
model’s integration—a TMR of 99.40% at FMR = 10e− 1 was observed. Similarly, for the
‘MS1M-RF-i50-Arc’ configuration, a TMR of 99.58% was observed on the IJB-C dataset
before the integration of the DVPF model, with measurements anchored to the same FMR.
In Figure 10 and Figure 11, we demonstrate the interplay between information utility and
privacy leakage across varying information leakage weights α. The right y-axis quantifies the
classification accuracy of the sensitive attribute S, as evaluated on the FairFace dataset. In
contrast, the left y-axis depicts the TMR on the IJB-C test dataset. This measurement is
derived from the performance of trained Deep Variational Privacy Filtering (DVPF) models
(P1) and (P2), initially trained on the FairFace dataset and subsequently tested on the IJB-C
dataset.
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(a) (b) (c) (d)

Figure 12: t-SNE visualizations of the FairFace dataset with S representing ‘race’, using
the (P2) model, setting α = 10 and dz = 128. The visualizations include: (a) AdaFace
original (clean) embeddings, (b) Post-DVPF AdaFace embeddings, (c) ArcFace original
(clean) embeddings, and (d) Post-DVPF ArcFace embeddings.

Figure 10 focuses on the results obtained using the WF4M-i50-Ada-FairFace configuration
(where ‘Backbone Dataset’ is WebFace4M, ‘Backbone Architecture’ is iResNet50, ‘Loss
Function’ is AdaFace, and ‘Applied Dataset’ for training is FairFace, ‘Dataset for Testing
Utility’ (TMR) being IJB-C) and MS1M-RF-i50-Arc-FairFace configuration (with ‘Backbone
Dataset’ as MS1M-RetinaFace, ‘Backbone Architecture’ as iResNet50, ‘Loss Function’ as
ArcFace, and ‘Applied Dataset’ for training as FairFace; ‘Dataset for Testing Utility’ (TMR)
being IJB-C) when the sensitive attribute under consideration for training is gender. Figure 11
presents analogous results, but for cases where the sensitive attribute for training is race.

6.6.4 Visualizing DVPF Effects on FairFace and IJB-C Data with t-SNE

Figure 12 and Figure 13 provide qualitative visualization of the leakage in sensitive attribute
classification on the FairFace database, both before and after applying the DVPF model
with S set as race or gender, respectively. For this, we use t-distributed stochastic neighbor
embedding (t-SNE) (Maaten and Hinton, 2008) to project the underlying space into 2D.
As illustrated, distinct regions associated with six racial classes (Asian, Black, Hispanic,
Indian, Middle-Eastern, White) are evident in the clean embedding. However, after applying
the DVPF (P1) mechanism with α = 10, the sensitive labels become almost uniformly
distributed across the space. This distribution aligns with our interpretation of random
guessing performance on the adversary’s side. This behavior is consistent for both ArcFace
and AdaFace protected embeddings, and for both gender and race as sensitive attributes.
However, for brevity, we present only one example. Figure 14 depicts the normalized confusion
matrices for the FairFace dataset, obtained after applying the DVPF (P1) mechanism. In
these matrices, S is considered as race, and the configuration is MS1M-RF-i50-Arc-FairFace,
with α values set at 0.1 and 10. Notably, as α increases, the diagonal dominance in the
matrices becomes less pronounced, indicating a higher probability of misclassification of the
sensitive attribute.

Figure 15 presents t-SNE visualizations of 10 randomly selected identities from the
IJB-C dataset: (a) and (c) show the original (clean) embeddings from ArcFace and AdaFace,
respectively, while (b) and (d) depict the obfuscated embeddings of the corresponding FR
models using the DVPF (P1) mechanism with α = 0.1. Notably, increasing the information
leakage weight α results in more overlapping regions among identities in this illustrative 2D
visualization method.
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(a) (b) (c) (d)

Figure 13: t-SNE visualizations of the FairFace dataset with S representing ‘gender’, using
the (P2) model, setting α = 10 and dz = 128. The visualizations include: (a) AdaFace
original (clean) embeddings, (b) Post-DVPF AdaFace embeddings, (c) ArcFace original
(clean) embeddings, and (d) Post-DVPF ArcFace embeddings.
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Figure 14: Normalized confusion matrices for the FairFace dataset, considering S as race,
with α values of 0.1 and 10.
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Figure 15: t-SNE visualizations of 16 randomly selected identities on the IJB-C dataset: (a)
ArcFace, (b) ArcFace with DVPF, (c) AdaFace, (d) AdaFace with DVPF.
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6.7 Discussions and Future Directions

6.7.1 Contribution of GenPF for Bias Mitigation

The proposed GenPF model can also contribute to mitigating bias through two distinct
mechanisms:

Generation of Unbiased Synthetic Datasets for Utility Services Training and
Evaluation: Assuming the conditional generator gφ possesses the capability to generate
high-fidelity synthetic data conditioned on a random variable S supported on set S, the
system designer is thus enabled to produce a synthetic dataset encompassing all potential
states of S. The primary objective in this context is to calibrate the entropy H

(
P
S̃

)
to be

equal to log2 |S|. Here, |S| denotes the cardinality, i.e., the total number of unique elements
contained within S.

Learning Invariant Representations with Respect to Variable S: Noting that the
GenPF objective (22) forces the latent representation S to be independent of the sensitive
attribute S by minimizing HU

ϕ,φ (X | S,Z), it promotes the representation Z that is invariant
to the variable S. This is one of the primary goals of the in-processing bias mitigation
techniques in machine learning which is to reduce undesired bias during the model’s training
phase. This approach parallels classical tasks in computer vision, such as identifying features
invariant to covariate factors like image translation, scaling, and rotation (Lowe, 1999). An
analogous concept is seen in the ‘Fader Network’ (Lample et al., 2017), where the encoder is
adversarially trained to ascertain deterministic feature representations, invariant to facial
attributes.

6.7.2 Limitations

Optimal Network Architecture: The pursuit of an optimal network architecture, partic-
ularly for the encoder, utility decoder, and uncertainty decoder, remains a central challenge.
This complexity arises from the need to balance the encoder’s capability to capture nuanced
features with the utility decoder’s and the (conditional) uncertainty decoder’s abilities to
reconstruct utility data and generate conditioned data. Determining the most effective
architecture necessitates a nuanced understanding of the interplay between these components,
which is highly dependent on the specific dataset and application domain under consideration.

Fine-tuning Limitations: The model’s complexity, compounded by the extensive array of
hyper-parameters, introduces significant fine-tuning limitations. These constraints not only
hinder the optimization process but also limit the model’s adaptability to new datasets. The
relationship between hyper-parameter configurations and model performance emphasizes the
necessity for advanced methods in hyper-parameter optimization to navigate this complex
landscape effectively.

Alternative Learning Algorithms: The exploration of alternative learning algorithms
represents a promising direction to address the current model’s architectural and fine-tuning
challenges. Such algorithms could provide more sophisticated mechanisms for managing
the model’s complexity, enhancing its adaptability, and improving scalability across various
datasets.
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Challenges with Fixed Pretrained Backbones: Employing fixed pretrained backbones,
such as those from face recognition models, without the ability to fine-tune, poses specific
challenges. This limitation can significantly impact the model’s flexibility and performance,
underscoring the need for strategies that can adapt to or compensate for the constraints of
using fixed pre-trained models.

6.7.3 Future Directions

Integration with Prior-Independent Privacy Mechanisms: Regarding future direc-
tions, integrating prior-independent privacy mechanisms, such as differential privacy, with
our deep privacy funnel model—whether discriminative or generative—offers a promising re-
search avenue. This integration, effectively combining prior-dependent and prior-independent
mechanisms, could significantly enhance our model’s privacy protections. We can ensure
comprehensive privacy assurances across various scenarios by addressing both ‘context-free’
and ‘context-aware’ privacy definitions.

Expanding Model Capabilities: Future research should also explore extending various
sections of our general model formulation by employing alternative methods in both the
generative and discriminative components. In terms of generative modeling, recent diffusion
models have demonstrated significant generative capabilities compared to other generative
modeling approaches, such as GANs and VAEs, especially regarding the stability of train-
ing and the fidelity of generated data. Similarly, for the discriminative component, the
exploration of other architectures, like Vision Transformers (ViTs), should be considered.
These architectures offer superior representation of the relationships between different parts
of images due to their inherent inductive bias. Such adaptability would enable a broader
range of applications, catering to diverse data types and addressing privacy concerns more
effectively.

7. Conclusion

This study marks the first integration of privacy funnel analysis into face recognition systems,
bridging the gap between information-theoretic privacy and practical deep learning appli-
cations. We introduced the generative privacy funnel (GenPF) alongside the discriminative
privacy funnel (DisPF), offering new insights into synthetic data generation with privacy
guarantees. Our deep variational privacy funnel (DVPF) model, applied to state-of-the-art
face recognition systems, demonstrates a quantifiable balance between information obfusca-
tion and utility. Experimental results using advanced FR architectures and datasets highlight
the effectiveness of our approach, especially in reducing information leakage about sensitive
attributes. Crucially, we evaluated the trained DVPF networks on the challenging IJB-C
test dataset. This work provides a robust framework and versatile tools for future privacy-
preserving research in facial recognition technologies, with an accompanying reproducible
software package facilitating further research exploration and adoption.
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Appendix A. Connecting the Privacy Funnel Method with Other Models

A.1 Connection with Information Bottleneck Model

In contrast to the Privacy Funnel (PF) model, which aims to obtain a representation Z
that minimizes information leakage about S while maximizing information utility about X,
the Information Bottleneck (IB) model (Tishby et al., 2000) focuses on extracting relevant
information from the random variable X about an associated random variable U of interest.
Given two correlated random variables U and X with a joint distribution PU,X, the objective
of the original IB model is to find a representation Z of X through a stochastic mapping
PZ|X that satisfies: (i) U−◦−X−◦−Z, and (ii) representation Z is maximally informative
about U (maximizing I (U;Z)) while being minimally informative about X (minimizing
I (X;Z)). This trade-off can be expressed by the bottleneck functional:

IB (Ru,PU,X) := inf
PZ|X:

U−◦−X−◦−Z

I (X;Z) s.t. I (U;Z) ≥ Ru. (38)

In the IB model, I (U;Z) is referred to as the relevance of Z, and I (X;Z) is called the
complexity of Z. Since mutual information is defined as Shannon information, the complexity
here is quantified by the minimum description length of compressed representation Z. The
IB curve is defined by the values IB (R,PU,X) for different R. Similarly, by introducing a
Lagrange multiplier β ≥ 0, the IB problem can be represented by the associated Lagrangian
functional:

LIB

(
PZ|X,β

)
:= I (X;Z)− β I (U;Z) . (39)

The formulation of the IB method in (Tishby et al., 2000) has inspired numerous
characterizations, generalizations, and applications (Makhdoumi et al., 2014; Tishby and
Zaslavsky, 2015; Alemi et al., 2016; Strouse and Schwab, 2017; Vera et al., 2018; Kolchinsky
et al., 2019; Bang et al., 2019; Amjad and Geiger, 2019; Hu et al., 2019; Wu et al., 2019;
Fischer, 2020; Federici et al., 2020; Ding and Sadeghi, 2019; Hafez-Kolahi and Kasaei, 2019;
Hafez-Kolahi et al., 2020; Kirsch et al., 2020). For a review of recent research on IB models,
we refer the reader to (Voloshynovskiy et al., 2019; Goldfeld and Polyanskiy, 2020; Zaidi
et al., 2020; Asoodeh and Calmon, 2020; Razeghi et al., 2023).

A.2 Connection with Complexity-Leakage-Utility Bottleneck Model

Given three dependent (correlated) random variables U, S and X with joint distribution
PU,S,X , the goal of the CLUB model (Razeghi et al., 2023) is to find a representation Z of X
using a stochastic mapping PZ|X such that: (i) (U,S)−◦−X−◦−Z, and (ii) representation
Z is maximally informative about U (maximizing I (U;Z)) (iii) while being minimally infor-
mative about X (minimizing I (X;Z)) and (iv) minimally informative about S (minimizing
I (S;Z)). We can formulate this three-dimensional trade-off by imposing constraints on the
two of them. That is, for a given information complexity and information leakage constraints,
Rz ≥ 0 and Rs ≥ 0, respectively, this trade-off can be formulated by a CLUB functional:

CLUB (Rz,Rs,PU,S,X) := sup
PZ|X:

(U,S)−◦−X−◦−Z

I (U;Z) s.t. I (X;Z) ≤ Rz, I (S;Z) ≤ Rs. (40)

Setting U ≡ X and Rz ≥ H(PX) in the CLUB objective (40), the CLUB model reduces to
the discriminative (classical) PF model (7).
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A.3 Connection with Image-to-Image Transition Models

Consider two measurable spaces X and Y. Let X ∼ PX and Y ∼ PY be random objects
representing random realizations from these spaces, with distributions PX and PY respectively,
where X ∈ X and Y ∈ Y. Let f : X → Y and g : Y → X denote appropriate mappings (or
functions) that map elements between these spaces.

The objective of the image-to-image translation problem is to find (learn) a mapping
f : X → Y (or vice versa g : Y → X ) such that (i) the distribution of the mapped object
approximates the distribution of the target object, i.e., Pf(X) ≈ PY and/or PX ≈ Pg(Y); and
(ii) the mapping preserves or captures specific characteristics or features of the input images.
This can be formally expressed as a constraint optimization problem, where the mapped
images maintain certain predefined properties or metrics of similarity with the input images.
This is a fundamental aspect of tasks like style transfer, domain adaptation, or generative
modeling.

Let CU
(
Pf(X),Y

)
= dist

(
Pf(X),PY

)
, where dist

(
Pf(X),PY

)
is a discrepancy measure

between Pf(X) and PY. For instance, one can consider dist(Pf(X),PY) = Df(Pf(X)∥PY),
or alternatively, one can use the Maximum Mean Discrepancy (MMD) for a characteristic
positive-definite reproducing kernel (Tolstikhin et al., 2018). Now, we can consider an
optimization problem where the objective is to minimize a loss function that quantifies both
the distributional similarity and the preservation of image characteristics:

min
f ,g

dist
(
Pf(X),PY

)
+ dist(Pg(Y),PX) + λxΦx(X, f (X)) + λyΦy(Y, g (Y)). (41)

We can leverage image-to-image transition models from this perspective within a domain-
preserving privacy funnel method. This method diverges from traditional obfuscation
techniques for the sensitive attribute S. Instead, it involves deliberate manipulation of image
attributes in a random manner. The defender generates and releases a manipulated image
achieved by uniformly selecting a random attribute from the set of events pertinent to S.
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Appendix B. Estimation of Mutual Information via MINE

The Mutual Information Neural Estimation (MINE) (Belghazi et al., 2018) method employs
the Donsker-Varadhan representation of the Kullback-Leibler divergence for estimating mutual
information between variables. This approach is particularly effective in high-dimensional
spaces where traditional methods fall short. The Donsker-Varadhan representation of KL
divergence DKL(P∥Q) between two probability distributions P and Q is defined as follows.

Theorem 4 (Donsker-Varadhan Representation) The KL divergence admits the dual
representation (Donsker and Varadhan, 1983):

DKL(P∥Q) = sup
T∈T

EP [T ]− log(EQ[e
T ]), (42)

where T is a class of measurable functions for which the expectations are finite.

Mutual information I(X;Y) between random objects X and Y is defined using the
KL divergence I(X;Y) = DKL(PXY∥PXPY). In the MINE framework, we utilize a neural
network parameterized by θMINE

8, denoted as TθMINE
, to approximate functions in T . The

estimated mutual information ÎθMINE
(X;Y) is given by:

ÎθMINE
(X;Y) = sup

θMINE ∈Θ
EPXY

[TθMINE
]− log(EPXPY

[eTθMINE ]), (43)

where PXY is the joint distribution of X and Y, and PXPY is the product of their marginal
distributions.

The neural network is trained by maximizing ÎθMINE
(X;Y) using stochastic gradient

descent. This process involves sampling from PXY and PXPY, and iteratively updating
θMINE to enhance the estimated MI. While MINE is a robust estimator for MI, its performance
depends on several factors including the architecture of the neural network, the optimization
strategy, and the choice of hyperparameters. The complexity of the network and the
convergence of the optimization process are critical to achieving accurate estimations of MI.

In our study, we implemented an enhanced version of the MINE method using PyTorch,
focusing on significant improvements for practical use. Key optimizations include a more
organized and readable code structure, a modular design for easy modification, advanced tech-
niques for neural network initialization, and an improved sampling mechanism. Additionally,
the implementation features an adaptive learning rate scheduler and a customizable optimizer,
catering to diverse research needs and improving overall performance and convergence of the
method. The PyTorch Pseudo-Code of algorithm is given in Algorithms 3.

8We use subscript MINE to distinguish it from our parameterized utility decoder θ utilized in our deep
variational privacy funnel model.
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Algorithm 3 PyTorch Pseudo-Code Algorithm for Mutual Information Neural Estimation
Require: dim_x, dim_y, moving_average_rate, hidden_size, network_type, batch_size,

n_iterations, n_verbose, n_window, save_progress
Ensure: Estimated Mutual Information (MI) between two datasets
1: Initialize the neural network (MLP or CNN) based on network_type and hidden_size
2: Apply Xavier initialization to the network’s weights and biases
3: Class MINE:
4: Define the MINE model with the initialized network
5: Initialize moving_average_exp_t as 1.0
6: function ForwardPass(x, y)
7: Concatenate input tensors x and y
8: Pass the concatenated input through the network
9: return the output of the network

10: end function
11: function TrainMINE(dataset)
12: Set the MINE model to training mode
13: Initialize the optimizer (Adam or RMSprop) with learning_rate
14: Initialize the learning rate scheduler
15: Create an array to store MI estimates for n_window iterations
16: Optionally, initialize a tensor to save MI progress
17: for iteration = 1 to n_iterations do
18: Sample joint and marginal batches (x, y, y_tilde) from dataset
19: Forward pass with joint and marginal samples to compute t and exp_t
20: Calculate the loss as the negative lower bound of MI
21: Perform backpropagation and update the model parameters using the optimizer
22: Update the learning rate scheduler
23: Store the current MI estimate
24: if iteration % n_verbose == 0 then
25: Print the average MI over the last n_window iterations
26: end if
27: if save_progress > 0 and iteration % save_progress == 0 then
28: Save the current MI estimate to mi_progress
29: end if
30: end for
31: return the average MI over the last n_window iterations or the mean of mi_progress
32: end function
33: function EvaluateMI(x, y)
34: Split x and y into batches
35: Initialize a variable to accumulate MI estimates
36: for each batch in x and y do
37: Compute the MI estimate for the batch using ForwardPass
38: Accumulate the batch MI estimate
39: end for
40: return the average MI over all batches
41: end function
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Appendix C. Training Details

C.1 The Role of Randomness in DVPF Training

In the DVPF model, we strategically incorporate two key sources of randomness during the
training phase, distinct from the stochasticity introduced by the reparameterization trick.
These sources are vital for maintaining non-determinism in privacy-related aspects of the
model: (i) the addition of noise to the latent representation, and (ii) the implementation of
dropout layers within the intermediate layers.

C.1.1 Integration of Noise in Latent Representation:

The latent representation vector Z ∈ Rn is systematically perturbed by the addition of
Gaussian noise. This noise is encapsulated within the vector N, each component of which
adheres to an independent and identically distributed (i.i.d.) Gaussian distribution. The
variance of this noise distribution is uniformly set to σ2 = 1

2πe , thereby ensuring that each
element of the latent vector Z is subject to noise of identical statistical characteristics.
Formally, the noise vector N follows the distribution N (0,σ2In), with In representing the
identity matrix of dimensions n× n. The differential entropy of the noise vector N, denoted
as h(N), is derived from the general expression for the differential entropy of a multivariate
Gaussian distribution. Given the i.i.d. nature of the components of N and the specified
variance, the entropy calculation simplifies to:

h (N) =
n

2
ln

(
2πe · 1

2πe

)
=

n

2
ln(1) = 0. (44)

The differential entropy of a Gaussian noise vector N with a variance of σ2 = 1
2πe is

mathematically calculated to be zero. This zero entropy value, in the context of a Gaussian
distribution, is a definitive outcome arising from the specific characteristics of the noise
introduced into the model. It is important to clarify that a zero differential entropy for a
Gaussian distribution does not imply the absence of noise or variability. Instead, it reflects
a precise level of variance (σ2) in the noise. In this case, the variance is relatively small,
indicating that the noise introduced into the system is subtle. The addition of this Gaussian
noise to the latent representation Z in a machine learning model is a controlled method
of introducing stochasticity. This stochasticity, despite its low variance and zero entropy,
plays a role in the model’s training process. It can help the model become less sensitive to
small fluctuations in the input data, potentially improving the model’s ability to generalize
from the training data to new, unseen data. This generalization is a key goal in machine
learning, particularly in preventing overfitting, where a model performs well on training data
but poorly on new data.

C.1.2 Application of Dropout in Intermediate Layers:

In conjunction with the integration of Gaussian noise into the latent representation, the DVPF
model judiciously employs dropout within its intermediate layers. This method strategically
deactivates a subset of neurons at random during each training iteration. This implementation
of dropout serves a twofold purpose: it introduces an additional layer of randomness essential
for maintaining privacy and reduces the model’s propensity for overfitting, thereby enhancing

DRAFT, Version 1.0 March 27, 2024



75

its generalization capabilities. Crucially, the introduction of dropout in the intermediate
layers fosters a more robust network architecture. It mitigates the risk of the model developing
a dependence on specific neuron patterns, a phenomenon that could lead to deterministic
mappings and compromise privacy. Concurrently, this approach promotes the learning of
diverse and redundant pathways within the network, contributing significantly to the model’s
ability to generalize effectively to new, unseen data. The intermittent removal of neurons
aids in diversifying the internal representations, ensuring that the network does not settle
into predictable pathways, thereby bolstering both the privacy and adaptability of the model.

C.2 Alpha Scheduler

The AlphaScheduler class is implemented to dynamically control a parameter, α, during
the training of neural networks. This class is initialized with several key parameters:
the total number of training epochs (num_epochs), the initial (alpha_start) and final
(alpha_end) values of α, and the rate of linear increment during the initial phase of training
(linear_increment). The scheduler’s operation is divided into two distinct phases. In
the initial phase, covering approximately the first third of the total epochs, α increases
linearly. The subsequent phase employs a logistic growth model, allowing α to approach
its final value in a controlled and gradual manner, thus avoiding abrupt changes that could
negatively impact the training process. AlphaScheduler allows for adjustments in both the
linear growth rate and the steepness of the logistic curve, facilitating its adaptation to a
variety of training scenarios. Moreover, the scheduler provides functionalities for visualizing
the evolution of α across the training epochs and for logging these values, aiding in the
monitoring and fine-tuning of the training regimen.

Furthermore, the gradual increase in the complexity coefficient α, which is related to
the encoding-rate or compression bit-rate, facilitates continuous learning at varying levels of
complexity. For a specific coefficient α, it is possible to assess both the utility performance
and the privacy leakage for all α values up to and including this threshold. Conversely, when
training and evaluating our model for a complexity coefficient exceeding a particular α value,
we can efficiently build upon the previously trained models. This approach not only ensures
a seamless progression in learning complexity but also contributes to the efficiency and
effectiveness of the model training process by leveraging the foundational work established
at lower complexity levels.

C.3 Uncertainty Decoder (Conditional Generator):

The decoder employs Feature-wise Linear Modulation (FiLM) to dynamically modulate
the internal representations of each layer based on the attribute S. This modulation is
facilitated by dedicated gamma and beta generators, implemented as small MLPs within the
_film_generator method, which produce scaling and shifting parameters for each neuron in a
layer, directly from the uncertainty attribute S. These parameters are then applied to the
activations in each layer, enabling the network to adjust its processing in a manner that is
finely attuned to the inherent uncertainty of each specific input.
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Appendix D. Deep Private Feature Extraction/Generation Experiment

Training Deep GenPF Networks

N ∼ N (0, I)
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Figure D.1: Training the deep variational GenPF model on Colored-MNIST dataset, employing
the learning scenario ‘End-to-End Raw Data Scratch Learning’.
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Figure D.2: Evaluating the performance of the deep variational GenPF model, trained on
the Colored-MNIST dataset, with the digit number as the sensitive attribute and the digit
color as the useful data.
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Figure D.3: Evaluating the performance of the deep variational GenPF model, trained on the
Colored-MNIST dataset, with the digit color as the sensitive attribute and the digit number
as the useful data.
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Figure D.4: Qualitative evaluation of privacy-preserving synthetic samples Xuncertainty

generated by the conditional generator gφ, using a custom Colored-MNIST dataset, where
the sensitive attribute under consideration is the digit color. The setting is defined with
dz = 8. For scenario (a), the color probabilities are set as PS(Red) =

1
2 , PS(Green) =

1
6 ,

and PS(Blue) =
1
3 . In scenario (b), all probabilities are equal with PS(Red) = PS(Green) =

PS(Blue) =
1
3 .
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Figure D.5: Qualitative evaluation of privacy-preserving synthetic samples Xuncertainty

generated by the conditional generator gφ, using a custom Colored-MNIST dataset, where
the sensitive attribute under consideration is the digit number. The setting is defined with
dz = 8. For scenario (a), the color probabilities are set as PS(Red) =

1
2 , PS(Green) =

1
6 ,

and PS(Blue) =
1
3 . In scenario (b), all probabilities are equal with PS(Red) = PS(Green) =

PS(Blue) =
1
3 .
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