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1 Definition

Learning from demonstration (LfD), also called Program-
ming by demonstration (PbD), refers to the process used
to transfer new skills to a machine by relying on demon-
strations from a user. It is inspired by the imitation capa-
bility developed by humans and animals to acquire new
skills. LfD aims at making programming accessible to
novice users by providing them with an intuitive inter-
face they are familiar with, as humans already exchange
knowledge in this way.

2 Overview

In robotics, LfD appeared as a way to reprogram a robot
without having to rely on a computer language or a com-
plex interface. It instead introduces more intuitive skill
transfer interactions with the robot [3, 1]. The goal is to
provide user-friendly interfaces that do not require knowl-
edge in computer programming or robotics. LfD can be
considered at various levels, from the transfer of low-level
motor control to the transfer of high-level symbolic reason-
ing capabilities. For a given skill to be acquired, several
learning strategies can be considered, from the copying
of the demonstrated actions to more elaborated abstrac-
tions, such as the extraction of the underlying objectives
of the actions [13, 36]. The terms behavioral cloning and
inverse optimal control can respectively be used to refer
to these two broad learning strategies. They have con-
nections with imitation mechanisms studied in ethology,
where one can distinguish action-level mimicry to goal-
level emulation (see e.g. [45]).

3 Key Research Findings

The key research developments in LfD cover various fields
of research. Such developments also include the joint ex-
ploitation and organization of these different research as-
pects.

Demonstration modalities In LfD, the demonstra-
tions can take various forms, requiring the design of in-
terfaces, devices, and control techniques that can be used
for efficient collection of data. Some of these can be linked
to the social learning process in human interactions, such
as observational learning and kinesthetic teaching (see
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Fig. 1). The first refers to the visual observation of a
demonstrator achieving a task with the goal of reproduc-
ing it. In robotics, observational learning will typically
exploit vision systems, but it is often conceded that the
perception system can extend to marked-based systems
(mocap) or other forms of motion recording devices (e.g.,
gyroscopes and accelerometers).

Kinesthetic teaching, also called direct teaching, refers
to the process of moving the robot manually, by haptic
interaction, while the robot records the demonstration
through its sensors (proprioception). This is often used
for articulated robots. In this case, the user can demon-
strate the task directly in the workspace of the robot by
constraining the movement to the robot capability. Com-
pared to observational learning, kinesthetic teaching sim-
plifies the correspondence problem [28] (also called motion
retargeting or body mapping, see Fig. 1). The drawback is
that the user does not execute the task on his/her own, and
can control only a limited number of articulations simulta-
neously. In practice, such limitation often restricts kines-
thetic teaching to tasks that do not involve highly dynamic
movements. At a technical level, kinesthetic teaching is of-
ten implemented by having the robot actively compensat-
ing for the effect of gravity (typically implemented with
torque-controlled robots), sometimes also complemented
by compensation of inertia, friction and Coriolis effects.

LfD also considers demonstration modalities dedicated
to robotics, such as devices used in a teleoperation setting.
This includes commands from a graphical user interface,
joysticks, or more elaborated devices such as exoskeletons.
These interfaces either act in a passive way, or they can
be provided with feedback mechanisms. The most sophis-
ticated interfaces exploit recent developments in telepres-
ence to allow the user to demonstrate tasks by feeling as
if she/he was executing it on her/his own.

Movement primitives A key research aspect underly-
ing LfD is the design of compact and adaptive movement
representations that can be used for both analysis and syn-
thesis. The term movement primitives is often employed
in this context to highlight their modularity. The goal of
such encoding strategy is to represent movements as a set
of adaptive building blocks that can be (re)organized in
parallel and in series to create more complex behaviors.
Often, such representation also enables demonstrations
and reproductions to be executed in different situations.
The proposed representations originate from various fields
and gather components from statistical learning, computa-
tional motor control, computational neuroscience, cogni-
tive sciences, developmental psychology, human movement
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Figure 1: Illustration of some of the modalities and challenges of robot learning from demonstration. Observation
learning consists of acquiring skills from visual observation of a demonstrator. Kinesthetic teaching consists of assisting
the learner by haptic guidance, which is typically implemented in robotics as a controller compensating for the effect
of gravity and recording the movement demonstrated by a user physically moving the robot. The correspondence
problems in imitation learning refers to different mapping challenges (also called motion retargeting or transfer learn-
ing), including the adaptation of a learned movement to a different situation (here, an object of different size) or to a
different learner (here, a robot with different kinematics and dynamics properties).

sciences or optimal control.
Examples with a link to motor control and dynamical

systems include dynamical movement primitives (DMPs)
[16]. They represent movements as a controller that modu-
lates a spring-damper system with nonlinear forcing terms
represented as a combination of radial basis functions.
Several extensions of DMPs have been proposed to han-
dle coordination and task variations [10, 33], with the aim
of providing a probabilistic formulation of DMPs enabling
the exploitation of temporal and spatial coordination pat-
terns.

Examples with a link to statistical learning include rep-
resentations based on hidden Markov models (HMMs),
with many variants such as incremental learning exten-
sions [21], the inclusion of dynamic features to retrieve
trajectory distributions [9], the local encoding of state
durations to handle partial demonstrations [47], or the
exploitation of the hierarchical organization capability of
HMMs [20]. Another key challenge closely related to sta-
tistical representations in LfD concerns the problem of
autonomously segmenting and abstracting the continuous
flow of demonstration [40, 31, 19, 23].

Another method to represent movements in LfD is to
encode the entire attractor landscape in the state space
of the observed data. Such approach provides represen-
tations based on time-invariant autonomous systems. It
usually comes at the expense of estimating asymptotically
stable dynamical systems, which can be a difficult con-
strained optimization problem in high-dimensional spaces.
An example of this approach is the stable estimator of dy-
namical systems (SEDS) [18]. Other approaches based on
geometrical diffeomorphic transformation have also been
investigated [30, 34] to solve this challenge.

Exploitation of (co)variations The developed LfD al-
gorithms need to cope with several forms of variations,
which make the problem harder than a simple record and
play process. First, variations can arise from the con-
straints of the task to be transferred (dropping a bouil-
lon cube in a pot requires less precision than dropping

a sugar cube in a cup). Then, variations can arise from
the kinematic structure of the robot (a redundant arm
can achieve the same task in different manners). Most of-
ten, these variations are better described by taking into
account the covariations instead of each dimension sep-
arately. From a statistical perspective, this corresponds
to the use of full covariances instead of diagonal covari-
ances. In high-dimensional problems, the full covariances
will often be considered with a low rank structure (e.g.,
PCA decomposition in joint angle space). From a motor
control perspective, such approach allows the encoding of
coordination patterns and synergies that are of primary
importance in many different skills, and at diverse levels
[17].

One of the challenges of LfD is to exploit the detected
covariations in the demonstrations to retrieve an adaptive
and robust controller for the reproduction of the task.
This can, for example, take the form of competing con-
straints through the weighting of movement primitives ac-
tivated in parallel, or through a hierarchical organization
of the task [20]. This can also be incorporated more di-
rectly within a control strategy by retrieving a controller
following a minimal intervention strategy [43, 6, 47].

Task-adaptive movements An important aspect of
LfD is to enable robots to acquire skills that can be
adapted to new situations. A common approach to achieve
such generalization capability is to associate task vari-
ables (what describes the situation) with movement vari-
ables (what describes the skill) and then use a regression
technique to retrieve new movement variables from new
task variables (see, e.g., [33]). Such regression approach is
generic since the task variables can represent a wide range
of context features organized in a vector form.

An alternative approach is to encode demonstrations
from the perspective of multiple coordinate systems [6].
This is achieved by providing a list of observers that could
be relevant for the movement or the task to transfer.
Such approach is motivated by the observation that skill-
ful movement planning and control often require the or-
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chestration of multiple coordinate systems that can have
varying levels of importance along the task (see, e.g., [2]).
Typical examples are movements in object-, body-, head-,
or gaze-centered frames of reference that can collaborate in
various manners for the different phases of a task. Invari-
ance and coordination extraction in movements are also
closely related to the coordinate systems in which the anal-
ysis takes place [42]. Task-parameterized movement prim-
itives [6] take inspiration from these lines of research to
encode movements from the perspective of multiple coordi-
nate systems, where a statistical analysis is simultaneously
conducted in each coordinate system. Such model encap-
sulates the variations and coordinations in each frame, en-
abling the robot to learn from demonstration information
about the orchestration and transition between the coordi-
nate systems, resulting in improved extrapolation capabil-
ity (e.g., for the adaptation of movements to new positions
of objects involved in a manipulation task). This gener-
alization capability comes at the expense of limiting the
task parameters to be in the form of coordinate systems
or local projection operators.

Learning by interaction In addition to the machine
learning and skill encoding perspectives described above,
another key research perspective concerns the exploitation
of the social learning mechanisms in LfD (see [29] for an
overview). A large part of the efforts in LfD concerns
the development of learning and control algorithms. Such
developments most often assume that expert datasets are
available (e.g., assuming that the provided demonstrations
are relevant solutions to the problem). They often also
explicitly specify the learning strategy to be used, such
as mimicking actions (without understanding the overall
objective), goal-level imitation (inverse optimal control,
extraction of the underlying objectives by discarding the
specific way in which the task is achieved), or refinement
by kinesthetic corrections. While such developments are
important, they do not account for the way in which data
are collected. In contrast to many machine learning ap-
plications in which the learning systems are independent
of the acquired data, a remarkable characteristic of LfD is
that the iterative interaction with the user and the robot
can be exploited to influence the quality and nature of the
collected data. It was observed in robotics that several
learning strategies need to be combined to acquire skills
efficiently (see, e.g., [5]). In the field of machine learn-
ing, this is sometimes referred to as machine teaching or
iterative machine teaching [24].

4 Examples of Application

The development of LfD is motivated by many application
areas and can be applied to various robots. In an indus-
trial context, it is driven by the evolution of the shopfloor
toward quick and cost-effective adaptations of existing as-
sembly lines, as well as the handling of small volumes such
as personalized products. In practice, LfD enables robots
to be reprogrammed by the persons who know the tasks to
achieve, but who do not necessary have expertise in robot
programming. In this context, LfD removes the costly and

timely step of soliciting external expertise each time the
robots need to be reprogrammed.

In service robotics, LfD aims at providing personalized
assistance and services that could not be preprogrammed
in advance due to the broad variety of tasks, persons,
or environments that a robot can encounter. In some of
these applications, LfD can rely on interactive social cues
and on the natural human propensity to teach news skills
to others—a communication behavior we already use to
transfer knowledge.

With humanoids, LfD has been tested with various
adaptive control skills involving both discrete (point-to-
point) and periodic (rhythmic) motions, ranging from
biped locomotion [27] to the transfer of communicative
gestures [22]. Examples for services and entertaining ac-
tivities learned from demonstration include pouring bev-
erages [26], cooking rice [23], or playing the drums [44].
With robot manipulators, the skills investigated in LfD
typically relate to assembly (see, e.g., [40]). Other skills
are considered in lab environments to test and evaluate
the generalization capability of these approaches, ranging
from table tennis strokes [39] to the rolling of pizza dough
[7].

A recent line of work in LfD considers the transfer of
shared control behaviors. In the field of human-robot col-
laboration, examples are the collaborative transportation
of objects [14] and the assistance in the assembly of ob-
jects or furnitures [38, 25]. In such applications, the role of
LfD is to demonstrate the collaborative manipulation so
that the user can then employ the robot as if she/he was
collaborating with the person who demonstrated the skill.
LfD can also be extended to assistive behaviors (learn-
ing assistance by demonstration) in applications such as
surgical interventions [37, 32, 46, 19, 12, 4], feeding tasks
[11, 8], or dressing assistance [35], as well as in the context
of robotic wheelchairs [41] and exoskeletons [15].

Note that only few examples are listed here and that
more complete survey articles like [3, 1] provide a better
overview of LfD applications.

5 Future Directions for Research

LfD is a rich and diverse research field with many open
problems. Examples of ongoing challenges are described
below. These examples are not exhaustive and only
present a subset of potential future research directions.

Learning with small datasets In the field of machine
learning, important efforts are deployed toward develop-
ing learning algorithms dedicated to large datasets and
deep learning strategies. Most of these developments tar-
get problems in which data are readily available or inex-
pensive to acquire. LfD holds a distinct challenge, in the
sense that it often requires the robot to acquire skills from
only few demonstrations and interactions, with strong gen-
eralization demands. On the one side, such system collects
a very large amount of information from a large variety of
sensors, but on the other side, it is limited by the number
of demonstrations that the user can provide to keep the
procedure user-friendly. In LfD, there are strong needs to
develop algorithms that can exploit data as efficiently as
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possible while being acquired. This challenge is connected
to diverse research directions such as online learning, life-
long learning, continual adaptation, or never-ending learn-
ing.

Skill encoding for heterogeneous data with struc-
tures From a skill encoding, decomposition, and organi-
zation perspective, movement primitives have largely been
studied in the context of gestures or motions without con-
tacts. There are currently strong demands toward devel-
oping similar mechanism to handle the transfer of a richer
set of skills, involving contacts with the environment, force
profiles, varying compliance, manipulability ellipsoids, and
priority constraints. In all cases, a modular, adaptive,
and compact representation is required to learn new skills
from demonstration. One of the challenges is to find an
approach that could handle such variety of data for both
analysis and synthesis.

The data handled by LfD have structures and symme-
tries that are currently underexploited in the learning pro-
cess. This is inefficient, because with the low number of
demonstrations in LfD, it would be important to conserve
as much information as possible from each demonstration.
A direction for future work is to develop algorithms that
could efficiently take into account these different struc-
tures, symmetries for both sensing and actuation data.
One potential approach in this direction could be to ex-
ploit knowledge of the manifold from which the data come
from (e.g., with Riemannian geometry). There are numer-
ous of such known geometries in robotics, including stiff-
ness and damping gains, inertia, manipulability ellipsoids
(symmetric positive definite matrices), orientations (unit
quaternions), periodic movements (phase variable on unit
circle manifold), or rotary joints (e.g., a two-link planar
robot forms a torus manifold).

Bridging the gap between symbolic and continu-
ous knowledge Current research in LfD tends to dis-
sociate low-level and high-level learning aspects. On the
one side of the spectrum, continuous representations are
developed in tight links to the low-level control capability
of the robots. On the other side of the spectrum, high-
level learning approaches with discrete representations are
developed to provide the level of abstraction required to
perform cognitive tasks.

There are research efforts toward augmenting low-level
learning methods with the extraction of discrete features
and structural elements. Similarly, there are research ef-
forts to provide high-level learning methods with tech-
niques that more closely exploit the motor control capa-
bility. Research efforts are required to bridge the gap be-
tween symbolic and continuous knowledge in LfD, which
could lead to more flexible and scalable learning of tasks.
It requires the development of models and algorithms ca-
pable of covering a wide spectrum of representations, from
the continuous stream of low-level sensorimotor data to
macro actions, reasoning and high-level symbolic repre-
sentations of skills. One first step in this direction is to
address the problem of learning to organize in series and
in parallel multiple movement primitives (as in transfer
learning, instead of learning each primitive individually)

and to tackle the problem of learning the structures of
these models (instead of setting the structure a priori and
learning the parameters).

Exploiting the social interaction dimension in LfD
In LfD, the way in which the different learning modali-
ties can be organized and coexist remains largely unex-
plored. Questions include how and when a robot should
request feedback from the user, either explicitly (e.g.,
through demonstration requests or spoken questions to
validate hypotheses about motor skill properties) or im-
plicitly (e.g., by exaggerating parts of movements to mea-
sure users reaction). How to autonomously determine
which learning modality is currently the most appropri-
ate/available/efficient to improve the skill to be acquired?
How should this efficiency be measured (e.g., in terms of
interaction duration, in terms of generalization ability)?
Parts of this problem share links with active learning, but
with a distinct and important multimodal social interac-
tion aspect.

In addition to extracting control patterns from prede-
termined learning strategies, one further challenge of LfD
is to acquire interaction patterns and devise efficient ways
of making different learning modalities coexist, such as
assessing autonomously which learning strategy to use in
a given context. One such research direction requires a
better exploitation of the social dimension in LfD, where
both actors can influence the success of skills acquisition.
Another related aspect concerns the extension of LfD to
a richer set of teaching interactions, with interchangeable
roles that would not only involve the human as a teacher
and the robot as a learner, but that would instead consider
varied interactions such as a robot learning from multiple
teachers, a user learning from the robot, or a robot trans-
ferring skills to another robot. Similarly, learning from
counterexamples, or from conflicting, ambiguous, subop-
timal, or unsuccessful demonstrations, is an important re-
search route that still requires further investigation. Fi-
nally, the definition of evaluation metrics and benchmarks
for LfD needs to be strengthened for the evolution of this
research field.
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