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Abstract

This paper describes a multimodal approach for speaker verification. The system
consists of two classifiers, one using visual features and the other using acoustic
features. A lip tracker is used to extract visual information from the speaking face
which provides shape and intensity features. We describe an approach for normal-
izing and mapping different modalities onto a common confidence interval. We also
describe a novel method for integrating the scores of multiple classifiers. Verification
experiments are reported for the individual modalities and for the combined classi-
fier. The performance of the integrated system outperformed each sub-system and

reduced the false acceptance rate of the acoustic sub-system from 2.3% to 0.5%.
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1 Introduction

Automatic verification of a person’s identity is a difficult problem and has
received considerable attention over the last decade. The ability of such a sys-
tem to reject impostors, who claim a false identity, becomes a critical issue in
security applications. The use of multiple modalities like face, profile, motion
or speech is likely to decrease the possibility of false acceptance and to lead
to higher robustness and performance (e.g. Acheroy et al. (1996)). Brunelli
and Falavigna (1995) have previously described a bimodal approach for per-
son identification. The system was based on visual features of the static face
image and on acoustic features of the speech signal. The performance of the

integrated subsystem was shown to be superior to that of each subsystem.

The cognitive aspect of lip movements in speech perception has been stud-
ied extensively and the complementary nature of the visual signal has been
successfully exploited in bimodal speech recognition systems. The fact that
temporal lip information not only contains speech information but also char-
acteristic information about a person’s identity has largely been ignored, until
recently, where Luettin et al. (1996a) have proposed a new modality for person

recognition based on spatio-temporal lip features.

In this paper, we extend this approach and address the combination of the

acoustic and visual speech modality for a speaker verification system. We
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describe the normalization and mapping of different modalities and the deter-
mination of a threshold for rejecting impostors. A scheme for combining the
evidence of both modalities is described and we show that the performance of

the multimodal system outperforms both unimodal subsystems.

2 The Database

The M2VTS audio-visual database has been collected at UCL (Catholic Uni-
versity of Louvain) and is described by Pigeon and Vandendorpe (1997). It
contains 37 speakers (male and female) pronouncing in French the digits from
zero to nine. One recording is a sequence of the ten digits pronounced continu-
ously. Five recordings have been taken of each speaker, at one week intervals to

account for minor face changes like beards and hairstyle. The images contain

the whole head and are sampled at 25 Hz.

We have divided the database into 3 sets : the first three shots were used as
training set, the 4 shot as validation set and the 5 shot as test set. The
5" shot represents the most difficult recordings to recognize. This shot differs
from the others in face variation (head tilted, unshaved), voice variation (poor

voice SNR), or shot imperfections (poor focus, different zoom factor).



3 Lip Feature Extraction

We are interested in facial changes due to speech production and therefore
analyse the mouth region only. Common approaches in face recognition are
often based on geometric features or intensity features, either of the whole
face or of parts of the face (e.g. Chellappa et al. (1995)). We combine both
approaches, assuming that much information about the identity of a speaker is
contained in the lip contours and the grey-level distribution around the mouth
area. During speech production the lip contours deform and the intensities in
the mouth area change due to lip deformation, protrusion and visibility of

teeth and tongue.

These features contain information specific to the speech articulators of a
person and to the way that person speaks. We aim to extract this information
during speech production and to build spatio-temporal models of a speaking

person.

3.1  Lip Model

Our lip model is based on active shape models (e.g. Cootes et al. (1994))
and has been described in detail by Luettin and Thacker (1997). It is used to
locate, track and parameterize the lips over an image sequence of a speaking

person.



Features are recovered from tracking results. They describe the shape of the
inner and outer lip contours and the intensity at the mouth area. The shape
features and the intensity features are both based on principal component

analysis which was performed on a training set.

The intensity model deforms with the lip contours and therefore represents
shape independent intensity information. This is an important property of
the model. We obtain detailed shape information from the shape parameters
and therefore would like the intensity model to describe intensity information

which is independent of the lip shape and lip movements (e.g. Luettin et al.

(1996b)).

3.2 Lip Tracking

Experiments were performed on all 5 shots of the M2VTS database. The
database consists of colour images which were converted to grey-level images
for our experiments. Several subjects have a beard or did not shave between
different recordings. We used examples from the training set to build the lip
model. The model was then used to track the lips over all image sequences of
all three sets. This consisted of analysing over 27 000 images which we believe
is the largest experiment reported so far for lip tracking. It is important to
evaluate the performance of the tracking algorithm and we have previously

attempted to do this by visually inspecting tracking results (e.g. Luettin and



Thacker (1997)). However this task is very laborious and subjective. Here
we omit direct performance evaluation of the tracking algorithm. Instead we
try to evaluate the combined performance of the feature extraction and the
recognition process by evaluating the person recognition performance only.
Person recognition errors might therefore be due to inaccurate tracking results
or due to classification errors. Examples of lip tracking results are shown in

Fig 1.

4 Speaker Verification

4.1 Test Protocol

We use the sequences of the training set (first 3 shots) of the 36 customers
for training the speaker models. The validation set serves for computing the
normalization and mapping function for the rejection threshold and the test
set 1s used for the verification tests. Subject 37 is only used as impostor,
claiming the identity of all 36 customers. Fach customer is also used as an
impostor of the 35 other customers. The verification mode is text-dependent

and based on the whole sequence of ten digits.

For the verification task, we make use of a world model, which represents the
average model of a large number of subjects (500 speakers for the acoustic

model and 36 for the labial one). For each digit we compute the correspond-



ing customer likelihood and the world likelihood. We can so obtain a customer
likelihood L.(O) and a world likelihood L,,(O) for all speech data. The differ-
ence between the ratio of the two scores and the threshold ¢ is then mapped

to the interval [0, 1] using a sigmoid function (e.g. Genoud et al. (1996)) :
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If a final score S(¢) is equal to 0.5, no decision is made; if it is below 0.5, the
speaker is rejected else he is accepted. Several methods have been proposed
in order to find an a priori decision threshold, according to various criteria,
e.g. Equal Error Rate and Furui’s (1994) method. Due to the small amount
of speech data for each speaker we calculated a customer independent thresh-
old, based on a dichotomic method. The use of this method implies that the
function of verification errors is convex. This function is computed on the val-
idation set and the value, for which the number of false acceptance and false

rejection errors is minimum, is used as threshold value.

4.2 Acoustic Speaker Verification

Since the word sequences are known in our experiments, we use a HMM based
speech recognition system to segment the sentences into digits. The recognizer
uses the known sequence of digit word models, which were trained on the

Polyphone database of IDIAP (e.g. Chollet et al. (1995)), to find the word

boundaries.



Each digit HMM has been trained with 110 to 200 examples of 835 speak-
ers. The segmentation is performed on all three sets. The segmented training
set is used to train one model for each digit and speaker. These models are
called customer models. The acoustic parameters are Linear Prediction Cep-
stral Coefficients with first and second order derivatives. Fach vector has 39

components.

We used left-right HMMs with between 2 and 7 emitting states, depending
on the digit length. Fach state is modelled with one single Gaussian mix-
ture with diagonal covariance matrix. The same configuration is used for the
world model. The world model is trained on the Polyphone database using 300

examples from 500 speakers for each digit.

When an access test is performed, the speech is first segmented into digits. The
test protocol described above is applied, where the customer and world likeli-
hoods are obtained by the product of all digit likelihoods, using the customer

and world models, respectively.

The mapping function, obtained from the validation set, is used in the test set
to map the score into the confidence interval. On the test set, we obtain a false
acceptance rate of 2.3% and a false rejection rate of 2.8%. The identification
rate of the 36 speakers was 97.2% (see Fig 2 and Table 1). However, it is
well worth noting that only 36 tests were conduced for identification and false

rejection but 1332 (36 x 37) tests for false acceptance.



4.3 Labial Speaker Verification

For segmenting the labial data we use the previous acoustic segmentation. Lip
features can improve speech recognition results (e.g. Jourlin (1996)), but they
do not provide enough information to segment speech into phonemic units.
Lip movements may be useful in addition to the acoustic signal for segmenting
speech, especially in a noisy acoustic environment (e.g. Mak and Allen (1994) ;
Jourlin et al. (1995)). We did not use visual information for segmentation since
our acoustic models were trained on a very large database and are therefore
more reliable than our labial models. We used the same scoring method for
labial verification as for acoustic verification, except the world model, which
was trained on the 36 customers from the M2VTS database. Labial data has
a four times lower sampling frequency than acoustic data. The number of
emitting states was therefore chosen to be 1 or 2, depending on the digit
length. The parameter vectors consisted of 25 components: 14 shape and 10
intensity parameters and the scale. The same test protocol, which was used
for acoustic experiments, was now used for labial verification. On the test data

set, we obtained a false acceptance rate of 3.0% and a false rejection rate of

27.8%. The identification rate was 72.2% (see Fig 3 and Table 1).



4.4 Acoustic-Labial Verification

The acoustic-labial score is computed as the weighted sum of the acoustic and
the labial scores. Both scores have been normalized as described in the previous
sections. The process uses individual threshold values for each modality and
maps the scores into a common confidence interval. The normalization process
is a critical point in the design of an integration scheme and is necessary to
ensure that different modalities are mapped into the same interval and share
a common threshold value. The different modalities are now normalized but
they provide different levels of confidence. We therefore need to weight the
contribution of each modality according to their confidence level. The weight
is « for the acoustic score and 1 — « for the labial one. The same dichotomic
algorithm, used to compute the thresholds, is now used to find the optimal
weight . The function of verification results on the validation data is used for

the dichotomic search, for the same reasons as described for threshold search.

The following results were obtained on the test set : using a weight of 0.86,
we obtain a false acceptance rate of 0.5%, a false rejection rate of 2.8% and
a correct identification rate of 100.0%. The absolute gain over the acoustic
system is a 1.8% reduction in cumulated verification errors (FA+FR) and
an increase of 2.8% in the identification rate (ID). Fig 4 shows the effects of
weighting on acoustic-labial results, when the acceptance threshold is optimaly

fixed for each modality. Table 1 sums up the results.
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We have followed a data-driven approach for fusion, where data fusion is
present at different levels. At the first stage, learning and decoding of the
labial models use the segmentation obtained from the acoustic models. The
first score normalization is performed by normalizing the scores with respect
to a world model for each modality. The final normalization is obtained by
finding an optimal mapping in the interval [0, 1] for each modality. At this
stage, the two scores are normalized, but we know that each modality has
different levels of reliability. So, the last level of the fusion process is to find

the optimal weight for the two sources of information (see Figure 5).

5 Conclusion

We have described a novel approach for multi-modal person authentication
based on acoustic and visual HMM speaker models. Experiments were per-
formed for speaker identification and verification on one of the largest audio-

visual speech databases.

Results have shown that the performance of the visual system was considerably
lower than the performance of the acoustic system. This could be due to
the lower frame rate of the visual features, lip tracking errors, inappropriate
features, or an inappropriate modelling method. More research is necessary to
investigate these issues. The integrated acoustic-labial system increased the

identification rate of the acoustic system from 97.2% to 100% and reduced the

11



false acceptance rate from 2.3% to 0.5%. These results show that acoustic and
labial features contain complementary information and that the performance
of an acoustic speaker recognition system can be improved by the use of visual

information.
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Fig. 1. Examples of lip tracking results
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Fig. 2. Acoustic verification results (validation set)
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Fig. 3. Labial verification results (validation set)
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Table 1
Results on validation and test set : ID is the correct identification, FA the false

acceptance and FR the false rejection rate.

Type of score Validation Test

ID FA FR ID FA FR
Acoustic 100.0 2.5 0.0 97.2 2.3 28
Labial 82.3 49 8.8 72.2 3.0 278
Bimodal 100.0 0.6 0.0 100.0 0.5 28
Number of tests 36 1332 36 36 1332 36
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Fig. 5. Overview of the acoustic-labial system.
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