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ABSTRACT

The Multi-Stream automatic speech recognition approach

was investigated in this work as a framework for Au-
dio-Visual data fusion and speech recognition. This
method presents many potential advantages for such a
task. It particularly allows for synchronous decoding of
continuous speech while still allowing for some asynchrony
of the visual and acoustic information streams. First,
the Multi-Stream formalism is briefly recalled. Then, on
top of the Multi-Stream motivations, experiments on the
M2VTS multimodal database are presented and discussed.
To our knowledge, these are the first experiments address-
ing multi-speaker continuous Audio-Visual Speech Recog-
nition (AVSR). It is shown that the Multi-Stream approach
can yield improved Audio-Visual speech recognition per-
formance when the acoustic signal is corrupted by noise as
well as for clean speech.

1. INTRODUCTION

The Multi-Stream approach used in this work is a princi-
pled way for merging different sources of information. In
this approach, it is assumed that the speech signal is de-
scribed in terms of multiple input streams, each stream
representing a different characteristic of the input signal.
If the streams are supposed to be entirely synchronous,
they may be accommodated simply. However, it is often
the case that the streams are not synchronous, that they
do not even have the same frame rate and it might be
useful to define models that do not have the same topol-
ogy. The Multi-Stream approach discussed in [2] allows to
deal with this. In this framework, the input streams are
processed independently of each other up to certain anchor
points where they have to synchronize and recombine their
partial segment-based likelihoods. While the phonological
level of recombination has to be defined a priori, the op-
timal temporal anchor points are obtained automatically
during recognition.

The subband-based speech recognition approach, a partic-
ular case of Multi-Stream, was shown on several databases
to yield significantly better noise robustness [3, 10] com-
pared to standard approaches. The general idea of this
subband-based approach is to split the whole frequency
band (represented in terms of critical bands) into a few
subbands on which different recognizers are independently
applied and then recombined at a certain speech unit level
to yield global scores and a global recognition decision.
This subband-based approach has many other motivations,
including the possibility to better accommodate the possi-
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ble asynchrony between different components of the speech
spectrum [12].

Another application that was investigated recently is the
possibility to incorporate multiple time resolutions as part
of a structure with multiple length units, such as phone
and syllable. In the same framework, it is indeed possible
to define subword models composed of several cooperative
HMM models focusing on different dynamic properties of
the speech signal. Preliminary results were presented in [5].

The feature that will be investigated here is the possibility
to combine several information sources. The Multi-Stream
formalism and decoding scheme will indeed be used as
framework for an Audio-Visual continuous speech recog-
nition system.

2. AUTOMATIC AVSR AND THE
MULTI-STREAM APPROACH

Speech-reading as well as integration of auditory and visual
parameters for speech recognition has gained interest in the
scientific community these past few years [7, 8, 11, 9]. This
is probably because Audio-Visual integration offers many
potential advantages for automatic speech recognition sys-
tems. Several studies have indeed shown that the use of lip
movement information, in addition to the acoustics, can
significantly improve the recognition performance in the
case of speech corrupted by acoustic noise. Moreover, it
is acknowledged that the acoustics and the lip movements
carry complementary information. For instance, discrim-
inating between the phonemes /t/ and /p/ can be easier
with the visual information than with the acoustic infor-
mation. A more extensive insight into the problem can be
found in other publications [9].

This work was particularly motivated by the fact that the
Multi-Stream formalism, introduced earlier as framework
for subband-based speech recognition [3] and then used for
multiscale-based speech recognition [5], could be an effi-
cient approach for continuous Audio-Visual speech recogni-
tion. Other contributors, cited in the previous paragraph,
have essentially addressed the problem of isolated word
recognition. The proposed approaches were based on a
recombination of likelihoods from the visual and acoustic
streams at the end of the uttered word, or on the feature
combination at the frame level. Most of these contributions
were mainly focused on finding an appropriate automatic
weighting scheme so as to guarantee good performance in
a wide range of acoustic signal-to-noise ratios.

Compared to isolated word recognition, the problem of
continuous speech recognition is more tricky as we do not



want to wait until the end of the spoken utterance before
recombining the streams. Indeed, this introduces a time
delay and this also requires to generate N-best hypothesis
lists for the two streams. Indeed, one can only recombine
the scores from identical hypothesis. As the best hypoth-
esis for the acoustic stream is not necessarily the same as
the best hypothesis for the visual stream, N-best lists are
required. Identical hypothesis must then be matched to
recombine the scores from the two streams. An alterna-
tive approach would be to generate an N-best list for one
of the two streams, to compute the score of these best hy-
pothesis for the other stream, and finally to recombine the
scores. The Multi-Stream approach does not require to use
such an N-best scheme and is an interesting candidate for
multimodal continuous speech recognition as it allows for:

e synchronous multimodal continuous speech
recognition: by using the HMM recombination or the
two-level decoding schemes [2].

e asynchrony of the visual and acoustic streams:
The Multi-Stream approach can force the two modal-
ities to be synchronous where synchrony is required
and can allow for asynchrony of the visual and acoustic
stream where asynchrony might take place. The level
of required synchrony might be chosen heuristically, as
was done in the experiments presented in this paper,
or might be learned from training data (see Section 4).

e specific audio and video word or sub-word
topologies: The Multi-Stream model is composed of
parallel models which do not necessarily have the same
topologies.

Tomlinson and al. [11] already addressed the issues of vi-
sual and acoustic components asynchrony and continuous
Audio-Visual speech recognition. The technique was based
on HMM decomposition. Under the independence assump-
tion, composite models were defined from independently
trained audio and visual models. Although our work is
related with [11], it allows to consider different recombi-
nation formalisms and enables the decoding of continuous
speech. Moreover, the scope of asynchrony between the
two streams was here extended from the phone level to the
word level.

The next section presents speech recognition experiments
done on the multimodal M2VTS database. In addition
to using the novel Multi-Stream scheme, this work is one
of the first that addresses multi-speaker continuous Audio-
Visual speech recognition.

3. EXPERIMENTS ON THE M2VTS
MULTIMODAL FACE DATABASE

The M2VTS database was collected as part of the
M2VTS project granted by the European ACT'S program.
The primary goal of the M2VTS project (Multi Modal
Verification for Teleservices and Security applications) was
to address the problem of secured access to buildings by
using multimodal identification/verification methods. The
database is thus made of synchronized images and speech
as well as sequences allowing to access multiple views of a
face.

The part of the database we have been using in this work
consists of 37 different persons, each pronouncing 5 times
the sequence of digits from 0’ to ’9’ in French. This is the
only part of the database which can be used for multimodal
speech recognition, the rest of the database consisting of
people rotating their head. The video sequences consist in
286*360 pixel color images with a 25 Hz frame rate and the

audio track was recorded at a 48 kHz sampling frequency
anc[l ]16 bit PCM coding. Further information can be found
in [1].

3.1. Database Partitioning

Although M2VTS is the largest database of its type, it is
still relatively small compared to audio databases used in
the field of speech recognition. To increase the significance
level of our experiments, we used a jack-knife approach.
Five different cuts of the database were used. Each cut
consisted of:

e 3 pronunciations from the 37 speakers as training set.

e 1 pronunciation from the 37 speakers as develop-
ment set. It was used to optimize parameters such
as weighting coefficients between audio and video
streams.

e 1 pronunciation from the 37 speakers as test set.

This procedure allowed to use the whole database as test
set (185 utterances) by developing five independent speech
recognition systems for each of the compared approaches.
These systems could be qualified as multi-speaker (but
speaker dependent) continuous digits recognition systems.
We note here that the digit sequence to be recognized is
always the same (digits from ’0’ to ’9’). This somewhat
simplifies the task of the speech recognition system which
always “see” the pronounced words in the same context.

Systems were first developed to recognize the pronounced
digit sequences using the information conveyed by the au-
dio stream only or by the video stream only.

3.2. Audio-based Speech Recognition

The audio stream was first downsampled to 8 kHz. We
used PLP parameters [6], computed every 10 ms on 30 ms
sample frames. The complete feature vectors consisted of
25 parameters: 12 PLP coefficients, 12 APLP coefficients
and the Aenergy.

We used left-right digit HMM models with between 3 and
9 independent states, depending on the digit mean du-
ration. This yielded a total of 52 states. The digit se-
quences were first segmented into digits using standard
Viterbi alignment with a system trained on the Swiss-
FRENCH POLYPHONE database [4]. Each digit was then
linearly segmented according to the number of states of the
corresponding HMM model. This segmentation was used
to train HMM states, whose emmission probability was
modelled by a mixture of two multi-dimensional Gaussian
distributions with diagonal covariance matrices, yielding a
total of 5200 parameters. Iterative Viterbi alignment and
reestimation of the model parameters was also performed.

System training and test were performed according to the
database partitioning described earlier. Results are sum-
marized in Figure 3 for clean speech as well as for speech
corrupted by additive white noise with different signal-to-
noise ratios. As can be observed, recognition performance
is severely affected by additive noise, even at such moder-
ate noise levels.

3.3. Video-based Speech Recognition

In this case, geometric features and grey-level features from
the mouth region were used, assuming that they carry rel-
evant linguistic information. An appearance based model



of the articulators is learned from example images and is
used to locate, track and recover visual speech features [7].
The method decomposes the lip shape and the grey-level
intensities in the mouth region into a weighted sum of basis
shapes (inner and outer lip contour) and basis intensities,
respectively, using the Karhunen-Loeve expansion. These
features, obtained by lip tracking, were normalized with re-
spect to the mouth center, orientation, and width. The 12
most relevant shape features and the 12 most relevant in-
tensity features together with their temporal difference pa-
rameters, yielding 48 parameters, were used for the HMM
based speech recognition system.

We used the same HMM topologies and the same ini-
tial segmentation as for the previously described acoustic-
based recognition system. In this case, the emission prob-
abilities of the HMM states were modeled by a single mix-
ture multidimensional Gaussian distributions with diago-
nal covariance matrices.

The mean error rate for the five database cuts defined ear-
lier was 43.9%.

Since the visual signal only provides partial information,
the error rate for the video-based system was considerably
higher than for the audio-based system This is mainly due
to the high visual similarity of certain digits like “quatre”,
“cing”, “six”, and “sept”. About half of the errors were
due to substitutions of these highly confusable digits and
the other half were caused by deletion errors.

3.4. Multimodal Speech Recognition

Audio-Visual speech recognition was experimentally inves-
tigated and 2 kinds of model topologies were compared.
These were based on the HMM word topologies already
used in the two previous sections. The differences between
the models lay in the possible asynchrony of the visual
stream with respect to the acoustic stream. In the experi-
ments that were carried out, the word topologies were the
same for the two modalities. Let’s recall however that the
Multi-Stream approach would allow to use specific audio
and video HMM topologies.

The first model (MoDEL 1) did not allow for any desyn-
chronization between the two streams. It corresponds to
a Multi-Stream model with recombination at the state
level and allows to use fusion criteria that weight the two
streams differently according to their respective reliability.

The second model (MODEL 2) was a Multi-Stream model
with recombination of the streams at the word level. This
model thus allows the dynamic programming paths to be
independent from the beginning up to the end of the words.
This relaxes the assumption of piecewise stationarity by
allowing the stationarity of the two streams to occur on
different time regions, while still forcing the modalities
to resynchronize at word boundaries. This also accounts
for the possible asynchrony of the streams inherent to the
speech production mechanism. Indeed, lip movements and
changes in the vocal tract shape are independent up to a
point.

MODEL 2 also allows the transition from silence to speech
and from speech to silence to occur at different time in-
stants for the two streams 2. Indeed, it seems likely that
lip movement can occur before and after sound production
and conversely. Figure 1 shows in parallel a speech spec-
trogram as well as the evolution of the first visual shape

2'Visual silence’ could be defined as a portion of the visual
signal that doesn’t carry any relevant linguistic information.
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Figure 1. Auditory spectrogram (evolution of the
critical band energies) and evolution of the first
visual shape parameter for one portion (’0’ to ’8’)
of an M2VTS utterance.

parameter, mainly representing the changes in the position
of the lower lip contour [7]. It can clearly be seen that the
two signals are partially in synchrony and partially asyn-
chronous. Ideally, we would like to have a model which
forces the streams to be synchronous where synchrony oc-
curs and asynchronous where the signals are typically in
asynchrony. MODEL 2 for a particular vocabulary word
is presented in Figure 2. The model is composed of two
parallel HMMs, associated with the two modalities. The
recombination state () is not a regular HMM state since
it will be responsible for recombining probabilities (or like-
lihoods) accumulated over the same temporal segment for
the acoustic and visual modalities.

Figure 2. Multi-stream model for Audio-Visual
speech recognition with optional silence states
(MobDEL 2).

We used the same parameterization schemes as in the
two previous sections. However, as the visual frame rate
(25 Hz) is a quarter of the acoustic frame rate, visual vec-
tors were artificial added at the probability level (by copy-
ing frames), so that acoustic and video stay synchronous,
simplifying the data fusion implementation.

In this work, recombination of the independent likelihoods
was done linearly, by multiplying segment (sub-units) like-
lihoods from the two streams, thus assuming conditional
independence of the visual and acoustic streams. This was
done according to:

p(X|M) = p(Xacou| Macou) " p(Xuis| Muis) '™, (1)

where p(Xacou|Macou) represents the likelihood of the
time limited acoustic information stream given the
acoustic part of model M (lexical sub-unit model),
P(Xvis|My;s) is the corresponding likelihood for the visual
stream and w is a parameter allowing to weight the two
streams according to their respective reliability. It was op-
timized on the development set. If MODEL 1 is used, this
simply boils down to multiplying local likelihoods. For
the other model (MODEL 2), this multiplication has to be



performed at the word boundaries. This was done in a syn-
chronous way using the HMM recombination algorithm [2],
an adaptation of the HMM decomposition algorithm [13].

System Video | Audio | Audio-Visual
Error rate | 43.9% | 3.4% 2.6%
Table 1. Word error rate of audio-, video- and

Audio-Visual-based (MODEL 2) speech recognition
systems on clean speech.
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Figure 3. Word error rate of audio-, video- and
Audio-Visual-based speech recognition systems at
different acoustic SNR levels. This graph presents
the results obtained after embedded training of the
2 kind of models and of the acoustic-only model
(training on clean speech only). The solid line is for
the acoustic system, the dashed line is for MODELL
and the dotted line is for MODEL 2. The horizontal
line represents the performance of the visual-only
system.

In these experiments, the optimal recombination weight
was optimized on the development set for each of the test
conditions. Consequently, these results do not represent
what could be achieved with a practical system. In prac-
tice, one should design an automatic way of estimating the
recombination parameter. One way could be to define a
mapping between this parameter and an SNR estimate.
From our experiments, it can be seen that the optimal
weight is related almost linearly to the SNR ratio and can
easily be estimated from it.

Results are summarized in Figure 3 for different levels of
noise degradation. In the case of clean speech, using vi-
sual information, in addition to the acoustics, does not
yield significant performance improvement (see Table 1).
The confidence level of the hypothesis test was 0.95. In the
case of speech corrupted with additive stationary Gaussian
white noise, significant performance improvement can be
obtained by using the visual stream as an additional infor-
mation source. The results also clearly show that we can
get a significant performance improvement with MODEL2
compared to MODEL1 by allowing the acoustic and visual
decoding paths to be in asynchronous.

It should be noted, however, that decoding with Multi-
Stream models is somewhat more complex than decoding
using models that constrain the streams to be synchronous
(Multi-Stream with state-level recombination - MODEL 1).
Computational requirements significantly increase but stay
within an order of magnitude above the classical model.
In the next Section, we will propose a method that would
allow to reduce the computational load.

4. CONCLUSIONS

We have presented a framework for the fusion of acoustic
and visual information in an Audio-Visual speech recog-

nition system based on the Multi-Stream approach. Sev-
eral significant advances have been reported in this paper.
Firstly, the method enables synchronous Audio-Visual de-
coding of continuous speech and we have presented one
of the first continuous AV speech recognition experiments.
Secondly, it allows for asynchronous modeling of the two
streams, which is inherent in the acoustic and visual speech
signal and which has been shown to lead to more accu-
rate modeling and to improved performance. Thirdly, the
approach allows to design specific Audio-Visual word or
sub-word topologies. This also includes the modeling of
possible monomodal or multimodal “silence” states.
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