
DYNAMIC BAYESIAN NETWORK BASEDSPEECH RECOGNITION WITH PITCH ANDENERGY AS AUXILIARY VARIABLESTodd A. Stephenson� Jaume Es
ofetyMathew Magimai-Doss� Herv�e Bourlard�Dalle Molle Institute for Per
eptual Arti�
ial Intelligen
e (IDIAP)P. O. Box 592rue du Simplon 4CH-1920 MartignySwitzerlandPhone: +41 27 721 77 11Fax: +41 27 721 77 12Abstra
t. Pit
h and energy are two fundamental features de-s
ribing spee
h, having importan
e in human spee
h re
ognition.However, when in
orporated as features in automati
 spee
h re
og-nition (ASR), they usually result in a signi�
ant degradation onre
ognition performan
e due to the noise inherent in estimating ormodeling them. In this paper, we show experimentally how this
an be 
orre
ted by either 
onditioning the emission distributionsupon these features or by marginalizing out these features in re
og-nition. Sin
e this is not obvious to do with standard hidden Markovmodels (HMMs), this work has been performed in the frameworkof dynami
 Bayesian networks (DBNs), resulting in more 
exibil-ity in de�ning the topology of the emission distributions and inspe
ifying whether variables should be marginalized out.1 INTRODUCTIONThe 
hoi
e of the a
ousti
 features has a large impa
t on ASR performan
e.Mel-frequen
y 
epstral 
oeÆ
ients (MFCCs) are one type of a
ousti
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relevant to spee
h re
ognition, features for pit
h and energy are not usu-ally in
luded with these standard MFCCs in the a
ousti
 feature ve
tor asthey have been found to often degrade performan
e. This degradation 
ouldbe explained by either diÆ
ulty in estimating them or falsely assuming whattheir underlying distribution is. Traditionally, the remedy to the performan
edegradations 
aused by using pit
h and energy has been to not use them atall in any part of developing the system.A
ousti
 modeling in ASR, therefore, 
onsiders for time framesn = 1; : : : ; N , the sequen
e of a
ousti
 ve
torsX = fx1; : : : ; xn; : : : ; xNg, as-so
iated with a sequen
e of hidden, dis
rete states, Q = fq1; : : : ; qn; : : : ; qNg,where ea
h state qn 
an take one of K dis
rete values: f1; : : : ; k; : : : ;Kg,ea
h of these being asso
iated with a spe
i�
 probability distribution. Ea
hdistribution then models the emission of ea
h xn at time frame n:p(xnjqn) (1)Usually, attempts to use pit
h or energy information in ASR were asso
iatingwith ea
h xn an additional variable an, here referred to as an \auxiliaryvariable," yielding the sequen
e A = fa1; : : : ; an; : : : ; aNg. ASR was thenperformed by in
orporating an in the emission distribution:p(xn; anjqn): (2)However, this usually degraded the re
ognition.While a dis
rete valued an is possible, we 
onsider 
ontinuous valued an,whi
h 
an have value an = z and 
an be either pit
h or energy values. We 
allan an auxiliary variable as it 
ontains information that is not itself importantfor re
ognition but whi
h has an impa
t on xn. With these auxiliary variables,we investigate here two approa
hes to properly using them in ASR:1. Conditioning the distribution of xn upon an, as done in [3℄. That is,using emission distributions of the form:p(xnjqn; an); (3)where an appears as a 
ontinuous 
onditional variable.2. Training with an but marginalizing it out (i.e. hiding it) in re
ognition,for example, in the 
ase of (2) with 
ontinuous an:p(xnjqn) = Z p(xn; anjqn) dan (4)We note here that this is similar in spirit to work done in missingfeature ASR [9℄, whi
h marginalizes out features that are assumed to be
orrupted by noise. In the simplest 
ase, it ignores the noisy dimensionsof the feature ve
tor in 
al
ulating the emission likelihood.



These two approa
hes resemble what has already been done in the 
ase ofa dis
rete an representing gender [4℄. One method of using gender model-ing involves 
onditioning the distribution of xn upon the gender{having adistribution for males and a distribution for females, based on (3). The dis-tribution giving the highest likelihood when inserted into the ASR system isthen used. Alternatively, the two distributions 
an be summed for ea
h timeframe, in a parallel manner to the integration in (4).In this paper, we use DBNs as our framework for resear
h into auxiliaryvariables with ASR. They are 
losely related to HMMs but are a more generalframework that allows both the topology and the distributions to be easilymodi�ed (e.g., using (3) instead of (2)). Additionally, they allow the data tobe arbitrarily hidden, thus marginalizing it out, as in (4). This work buildsupon that of [11℄, whi
h used the same training database and similar featuresbut with single (
onditional) Gaussians.In Se
tion 2 we will go into more detail about how an 
an be in
orporatedusing the approa
hes proposed above. We do this work in the 
ontext ofDBNs, whi
h are explained in Se
tion 3. Se
tion 4 then gives more detailsof these pit
h and energy auxiliary features, followed in Se
tion 5 by theexperimental results. We 
on
lude in Se
tion 6.2 AUXILIARY INFORMATIONWith both standard features xn (MFCCs in this work) and auxiliary featuresan (either pit
h or energy in this work) for time frame n, di�erent statisti
alindependen
e assumptions 
an be made between features. Here we proposethat xn needs to be dependent upon an; we then show how the resultingdistributions might be modeled. We also propose an assumption that anneeds to be marginalized out in re
ognition for 
ertain 
ases.Conditional Auxiliary Information.In standard ASR, the distribution of xn is dependent only on the dis
retehidden state qn, using a Gaussian distribution with mean ve
tor �xk and
ovarian
e matrix �xk for ea
h state qn = k:p(xnjqn = k) � Nx(�xk ;�xk) (5)�xk is normally assumed to be a diagonal 
ovarian
e matrix, thus 
ontainingnon-zero elements only along the diagonal. This implies that there is nostatisti
al 
orrelation between the dimensions within the Gaussian and, thus,redu
es the 
omplexity of the system. This Gaussian distribution, as wellas that of (6), (7), and (9) below, is based on Gaussian mixtures in ourexperiments, as is typi
ally done in ASR. The ex
eption here is that wealways model an with a single Gaussian.In attempting to add an to the ASR models, the simplest manner is to



append it to the standard feature ve
tor xn, thus produ
ing the Gaussian:p(xn; anjqn = k) � Nx;a(�x;ak ;�x;ak ) (6)With standard approa
hes, this would also assume a diagonal 
ovarian
e inthe expanded Gaussian, thus suggesting that there is no 
orrelation betweenan and xn. This is indeed the assumption, for example, between MFCCs andpit
h/energy: the MFCCs are assumed to have pit
h and energy removed(assuming that the zeroth 
oeÆ
ient is not used). However, these auxiliaryfeatures are su
h fundamental features of spee
h, that it may be a very er-roneous to assume that they are un
orrelated with xn. So, we propose that,
onversely, there may be 
orrelation between xn and an an of either pit
h orenergy that needs to be modeled.To model the 
orrelation between xn and an, we therefore propose thatan should not be appended to xn as above. Rather, the distribution for xnshould be 
onditioned upon the 
ontinuous value of an, as in (3). However,the modeling of p(xnjqn = k; an = z) is not a straightforward task. Just asthere are many approa
hes to modeling (1), su
h as Gaussians and arti�
ialneural networks (ANNs), there may be many viable approa
hes to model-ing (3). If we had been using a dis
rete valued an with Z dis
rete values, astraightforward way would have been to have K �Z Gaussians for ea
h of thepossible values of (qn = k; an = z), thus resembling the approa
h to gendermodeling with ANNs in [4℄. However, with a 
ontinuous valued an, we needa distribution for value qn = k whi
h adapts itself to the 
ontinuous valuean = z. This adaptation 
ould involve linear methods (e.g., regression) ornon-linear methods (e.g., ANN). Furthermore, in order to be in
orporatedinto the full DBN framework, it should have the ne
essary operators for dis-tributions in DBNs: marginalization to fewer dimensions, 
ombination withother like distributions, et
.We have 
hosen to represent (3) as 
onditional Gaussians, whi
h havealready been in
orporated into the DBN framework [5℄ and have also beenre
ently proposed by others in ASR resear
h [3℄:p(xnjqn = k; an = z) � Nx(uk;�xk); (7)where xn is modeled by a Gaussian whose mean is itself a regression on themean of xn and the value of an: uk = �xk + BTk z. The weight on �xk itself is1 while Bk is the matrix 
ontaining the weights upon z, the value of an. Adrawba
k of this distribution is that �xk itself is not dependent upon z; so,the same �xk will be used no matter what value of uk is 
omputed using theregression. Using only this distribution to 
al
ulate the emission likelihoodsassumes that an itself is independent of qn, that is, p(anjqn) = p(an). (In theimplementation, (7) is a
tually multiplied by this value p(an)).However, with (7) we do have the further possibility of whether an itselfshould be 
onditioned upon qn, as was done in (6). This would be done ifthe evolution of A was assumed to be dependent upon that of Q. A simpleway to model an would be to use a Gaussian for ea
h qn = k:p(anjqn = k) � Na(�ak;�ak): (8)



Thus, the produ
t of (7) and (8) would be used to 
ompute the joint emissionlikelihood of xn and an:p(xnjqn = k; an) � p(anjqn = k) � Nx(uk;�xk)
Na(�ak ;�ak); (9)where 
 is the 
ombination operator for (
onditional) Gaussians, as de�nedin [7℄. The di�eren
e between (9) and (6) is that we have here a

ounted forthe 
orrelation between xn and an.Marginalized Auxiliary Information.Missing feature theory in ASR [9℄ has proposed to marginalize out thosefeatures whi
h are noisy in re
ognition. Likewise, we propose a similar ideawith auxiliary information. We still would want to use the auxiliary infor-mation in training so as to extra
t useful statisti
al information from it inorder to better estimate the parameters in the models. While the data orits supposed model may be noisy, the training has the advantage of having alarge amount of data over whi
h it 
an extra
t relevant statisti
s. However,in re
ognition, there may be a lot of noise asso
iated with the A presentedfor a single utteran
e. Using the estimated A (the \observed" A) in the emis-sion distributions may produ
e a faulty likelihood. In su
h a 
ase, it may bebetter to hide the A, whi
h is a

omplished by marginalizing it out of theemission distribution. In the 
ase of the emission distribution (6), where anis appended to the feature ve
tor, (4) illustrates this marginalization. Afterhaving been trained with 
onditional Gaussians, the emission distributions(7) and (9) may as well have problems with the noisy A. We 
an, therefore,obtain the distribution only for xn by hiding, and, thus, integrating over an:p(xnjqn) = Z p(xn; anjqn) dan = Z p(xnjqn; an) � p(anjqn) dan (10)� Z p(xnjqn; an) � p(an) dan: (11)where (10) applies to (9), where an is dependent upon qn and (11) applies tothe 
ase of (7), where we assume that p(an) = p(anjqn).3 DYNAMIC BAYESIAN NETWORKSIn our work, we in
orporated auxiliary features in the DBN framework asit allows more 
exibility in stru
turing the topology of the distributions andin allowing variables to arbitrarily be observed or hidden. HMMs 
an alsomodel the same distributions and 
an have observed or hidden variables;however, they la
k the generality in their algorithms that allows the topologyof the distributions and the spe
i�
ation of hidden versus observed variablesto be 
hanged easily. So, we here outline what DBNs are and how they arevisualized when using auxiliary information in ASR.As illustrated in Figure 1, a DBN (a type of graphi
al model [1℄) is aprobabilisti
 model 
omposed of three items:



qn anxn qn anxn qn anxnqnxn(a) (d)(b) (
)Figure 1: Portions of DBNs for time frame n (dis
rete variables having bold ver-ti
es), as initially proposed in [13℄: (a) for standard HMM-based ASR; (b) forstandard HMM-based ASR with 
on
atenated an; (
) for ASR with xn 
onditionedon an and an 
onditioned on qn; (d) for ASR with xn 
onditioned on an. Based on(5), (6), (9), and (7), respe
tively.1. A set of variables V = fv11 ; : : : ; vw1 ; : : : ; vW1 ; : : : ; v1N ; : : : ; vwN ; : : : ; vWN g.That is, there are W variables, ea
h of whi
h is modeled over the Ntime frames. The variables in the DBNs in Figure 1 arefq1; a1; x1; : : : ; qN ; aN ; xNg.2. A dire
ted a
y
li
 graph (DAG), with a one-to-one mapping betweenea
h of its verti
es and ea
h vwn 2 V .3. For ea
h vwn 2 V , a lo
al probability distribution whi
h is 
onditionedupon the values of its parents in the DAG:P (vwn jparents(vwn )): (12)For example, the lo
al probability distribution of xn in Figure 1 (
) isp(xnjparents(xn)) = p(xnjqn; an), whi
h is the same as (7).The joint distribution of V is then de�ned as the produ
t of all the lo
alprobability distributions:P (V ) = Yvwn2V P (vwn jparents(vwn )) (13)For a dis
rete vwn with zero or more dis
rete parents, its lo
al probabilitydistribution is de�ned by a table of dis
rete probabilities (it is not allowedto have any 
ontinuous parents in this framework). For a 
ontinuous vwn , itslo
al probability distribution is de�ned by a Gaussian if it has no 
ontinuousparents or by a 
onditional Gaussian if it has 
ontinuous parents; if thereare dis
rete parents, there will be a (
onditional) Gaussian for ea
h possibleinstantiation of the dis
rete parents. In the 
ase of having 
ontinuous parents,the 
onditional Gaussian's mean is a regression on the mean of vwn itself andon the values of the 
ontinuous parents.We use the inferen
e algorithm in [7℄ to 
ompute P (vwn jO), the poste-rior marginal distribution of vwn given all of the observations O, as well asP (OjV ), the likelihood of the observations. For example, if in the DBN inFigure 1 (
), we have the observation an = 2:5, the inferen
e algorithm wouldgive the posterior marginals of P (qnjan = 2:5) and p(xnjan = 2:5) as well as



the likelihood of the observation p(an = 2:5). Any variable 
an be observedor hidden, regardless of whether it is 
ontinuous or dis
rete valued. The 
om-puted posterior marginal distributions 
an be used for the expe
ted 
ountsin expe
tation-maximization (EM) training [6℄ for learning the dis
rete prob-abilities P (�), the means �, the regression weights B, and the 
ovarian
es�.4 PITCH AND ENERGY AS AUXILIARY VARIABLESIn a �rst set of experiments, the auxiliary variable an was de�ned as thepit
h value at time frame n. In our 
ase, this pit
h value, whi
h we de�nedhere as being the fundamental frequen
y F0, was estimated using the simpleinverse �lter tra
king (SIFT) algorithm [8℄, whi
h is based on an inverse�lter formulation. This method retains the advantages of the auto
orrelationand 
epstral analysis te
hniques. The spee
h signal is pre�ltered by a lowpass �lter with a 
ut-o� frequen
y of 800 Hz, and the output of the �lter issampled at 2 kHz before 
omputing the inverse �lter 
oeÆ
ients using theDurbin algorithm. While a fundamental property of the spee
h signal, it isa hard feature to estimate. Thus, any estimation of pit
h will have inherentnoise in it.In a se
ond set of experiments, the auxiliary variable an was de�ned asthe short-term energy and was 
omputed as follows:an = 1C TXt=1 s2n[t℄ � w2[t℄ (14)where fsn[1℄; : : : ; sn[t℄; : : : ; sn[T ℄g is the spee
h signal of T samples asso
i-ated with time frame n, and fw[1℄; : : : ; w[t℄; : : : ; w[T ℄g is a Hamming window,and C is a normalizing 
onstant used to give manageable values for the short-term energy. It is straightforward to estimate in 
lean spee
h but harder toestimate in noisy spee
h.5 EXPERIMENTSUsing the PhoneBook telephone spee
h 
orpus [10℄ with the small train-ing set de�ned in [2℄, we train four types of DBN systems to do speaker-independent, task-independent, small vo
abulary (75 words) isolated-wordre
ognition. There are 41 
ontext-independent, three-state phones in thesesystems, as well as initial silen
e and end silen
e models. Training was doneusing the EM algorithm, using a 
onvergen
e 
riterion of stopping one itera-tion after the log-likelihood of the training data in
reased by less than 0:1%over that of the previous iteration. Ea
h system with auxiliary informationwas tested two times on the test utteran
es de�ned in [2℄.Similarly to [13℄, mel-frequen
y 
epstral 
oeÆ
ients (MFCCs) are ex-tra
ted from the spee
h signal, sampled at 8 kHz, using a window of 25 ms



DBN Eq Mix Obs. Pit
h Hid. Pit
hFigure 1 (a) (Baseline) (5) 4 5.9% (21k)Figure 1 (a) (Baseline) (5) 6 4.3% (32k)Figure 1 (b) (6) 4 60.5% (22k) 19.2% (21k)Figure 1 (
) (9) 4 48.9% (32k) 6.2% (21k)Figure 1 (d) (7) 4 5.3% (32k) 6.0% (21k)Table 1: Pit
h. Word error rates (WERs) (and number of parameters)using Pit
h as an auxiliary variable. The labels of the underlying equa-tions and the number of Gaussian mixtures for xn (an has a single Gaus-sian) are also given. Equation (5) is equivalent to standard HMM-basedASR using only xn while (6) is equivalent to standard HMM-based ASRusing xn and an in a single feature ve
tor (ex
ept that an has a sin-gle Gaussian). Equations (9) and (7) use 
onditional Gaussians, with (7)treating an as independent of qn. With \hidden" an, we are marginaliz-ing it out of the emission distribution. Systems with a similar number ofparameters are to be grouped together for performan
e 
omparisonsagainst the respe
tive baseline system.with a shift of 8.3 ms for ea
h su

essive frame. xn is 
omposed of the fol-lowing MFCC elements: C1; : : : ; C10;�C1; : : : ;�C10;�C0, where Ci is theith MFCC and �Ci is its approximate �rst derivative.The re
ognition results where an is pit
h and where an is short-termenergy, as well as for the baseline xn-only systems, are given in Tables 1 & 2,respe
tively. When marginalizing over an, its parameters are removed, havingbeen merged into the parameters for xn, as shown in (4), (10), and (11). Thus,the WERs with hidden (marginalized out) A show a lower e�e
tive numberof parameters than when A is observed. Therefore, with A marginalized outin an auxiliary system, it has essentially the same stru
ture and parametersas a baseline; the di�eren
e is that the parameters have been trained using anauxiliary variable. This is the reason for two baseline systems: for 
omparingagainst a baseline system, we use a system that has the same e�e
tive numberof parameters. We note that it was not our intention to �nd the number ofmixtures whi
h gives ea
h system its optimum performan
e. Rather, withinea
h set of experiments, we wanted to have systems that were 
omparable inthe number of parameters.These results 
on�rm the diÆ
ulty in in
orporating auxiliary informationin the traditional way, using (6), whi
h provides a very poor re
ognitionWER of 60:5% for pit
h and 28:9% for energy. Furthermore, they showDBN Eq Mix Obs. Energy Hid. EnergyFigure 1 (a) (Baseline) (5) 4 5.9% (21k)Figure 1 (a) (Baseline) (5) 6 4.3% (32k)Figure 1 (b) (6) 4 28.9% (22k) 6.3% (21k)Figure 1 (
) (9) 4 27.4% (32k) 5.9% (21k)Figure 1 (d) (7) 4 5.9% (32k) 19.4% (21k)Table 2: Energy. Word error rates (WERs) using short-term energyas an auxiliary variable, presented as in Table 1.



the great improvement we 
an a
hieve by letting an 
ondition xn's emissiondistribution. That is, by using a 
onditional Gaussian for xn, as in (7),instead of (6), we de
reased the WER by a relative 91% (60:5% to 5:3%) forpit
h and 80% (28:9% to 5:9%) for energy. It is the system with (7) whereobserved pit
h or energy auxiliary information provides its most promisingresults.Marginalization (i.e., using hidden auxiliary information) dramati
allyin
reases the performan
e of the poorly performing systems, those using (6)or (9), with pit
h or energy auxiliary information. Moreover, marginalizingout an on the systems using (9) \re
overs" the performan
e of the baselinesystem with four mixtures. Marginalization of those using (7), however, hasa negative e�e
t on performan
e. As this is done using (11), the prior p(an) isused, whi
h was not learned in training but was just de�ned using the mean(and varian
e) of an a
ross all of the training data. Using a global mean foran may have introdu
ed problems in 
omputing the marginals.6 CONCLUSIONWe have presented a new approa
h for properly in
luding auxiliary variablesin standard ASR. Although it is not yet perfe
t, the results reported heredemonstrate the validity of this approa
h. While the results here do notimprove over the baseline approa
h, earlier results showed how dis
retizedpit
h auxiliary information does bring improvement [12℄. So 
ontinuous aux-iliary information, as was used in the 
urrent work, still has the potential toimprove over the baseline within the 
urrent framework.More work is now required using 
ontinuous auxiliary variables. First,we need to improve the estimation of the auxiliary variables. For example,with energy, this 
ould involve using the logarithm of the energy, using alonger-term energy, or in using the energy of a frequen
y sub-band (as donein [3℄). Se
ond, better distributions (e.g. Gaussian mixtures) may be neededto better model an instead of just single Gaussians. Finally, equivalen
e
lasses (a form of parameter tying [13℄) to model an 
onditioned upon qnmay prove to be more robust; these 
ould be used, for example, to havean 
onditioned on broad 
lasses of qn, su
h as vowels and 
onsonants, thushaving a hybrid between (9) and (7).ACKNOWLEDGMENTSTodd A. Stephenson and Mathew Magimai-Doss are supported by the SwissNational S
ien
e Foundation under grants FN 2000-064172.00/1 and FN2100-057245.99/1, respe
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