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hAbstra
t. This paper presents an improved tra
king based method forretinal vessel segmentation that uses blood vessel morphology to adaptthe tra
king parameters. The method in
ludes bran
hing dete
tion andavoidan
e methods. A bi-level threshold method, based on lo
al vesselinformation, is used for segmentation. Tra
king is based on Kalman �lter-ing. The results are 
ompared with existing ground truth. It is 
on
ludedthat ground truth segmentation is not easily 
omparable.1 Introdu
tionSeveral diseases a�e
t blood vessels in the human body, making blood vesselappearan
e an important indi
ator for many diagnoses [1℄. The retina is onepla
e in the human body where the network of blood vessels 
an be vieweddire
tly in vivo and examined for pathologi
al 
hanges [2℄. The stru
ture of theblood vessels in the retina 
an in this way be used in the grading of diseaseseverity [3℄.Retinal analysis in done through image 
olle
tion. At present the analysis ofthese images 
an only be made by quali�ed medi
al sta�, but there is a shortageof personnel to perform su
h examinations. An automated method to analyzethe images from the retina would be a pre
ious tool. There are two types ofimages that 
an be 
olle
ted of the retinal blood vessels: retinal angiograms andretinal fundus images. Fundus images were used in this work be
ause, althoughhaving lower 
ontrast, they are 
aptured by a non-invasive te
hnique and hen
eare preferred by the medi
al 
ommunity.Two strategies have been employed in the past for the automati
 dete
tionof the retinal blood vessels [4℄: s
anning [5{7℄ and tra
king [4, 8, 9℄. S
anningis normally a two-pass operation. First feature points are enhan
ed, followedby a threshold to obtain a binary image. Chaining 
enterline midpoints is then
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eused to re
ognize the vessel stru
ture while ex
luding isolated points. Tra
kingis a single-pass operation that starts from a given position and extra
ts imagefeatures, gathering stru
tural information, while pro
eeding using the 
ontinuityproperties of the vessel. S
anning methods always provide total image segmen-tation but result in diÆ
ult to extra
t and normally in
omplete stru
tural data.Tra
king methods easily gather stru
tural information but require vessel 
onti-nuity for stable operation, and a sele
ted starting point. S
anning methods aremore 
omputationally intensive than tra
king based methods [4℄.We 
hose to use a tra
king method for its 
omputational eÆ
ien
y and ease ofstru
tural information extra
tion. Kalman �lter [11℄ based tra
king was 
hosensin
e it has proven itself to be adequate in this type of appli
ation [4, 9, 10℄.Retinal stru
ture tra
king methods must segment the image into vessel/non-vessel pixels. Three approa
hes exist: amplitude segmentation [8, 9℄, templatemat
hing [4{6, 12℄ and parametri
 model �tting [10, 15℄. Thresholding is alwaysneeded, either on the �lter response (mat
hing) or on the segmentation level(amplitude segmentation/model �tting).Tra
king methods segment the vessel based on its image intensity transversese
tion (pro�le). The pro�le is normally modelled as deriving from a Gaussianshape, 
aused by the re
e
tion 
urve from the outer layer of a 
ylindri
al 
olumn.In some vessels, due to light refra
tion on the 
olumn of blood within the vessel'swall, light is re
e
ted to the 
amera 
ausing a 'dip' at the top of the Gaussianshape [14℄. Gao et al. [13℄ analyzed several models and 
on
luded that the bestmodel for blood vessel pro�les in retinal fundus images where the 'dip' e�e
to

urs is the di�eren
e of two Gaussian fun
tions.2 MethodsBased on a

epted biologi
al properties the following assumptions have beenmade 
on
erning the appearan
e of vessels on retinal fundus images:Pie
e-Wise Linear Stru
ture: Pie
e-wise linear, i.e. small 
urvature, has beenassumed in all previous tra
king pro
esses [4, 9, 10℄. This assumption enablesthe setting of an upper limit for the 
urvature of the vessel, so that we 
an
onstrain the Kalman �lter to a more stable operation point.Binary Bran
hing Tree: The binary nature of the vessel bran
hing tree 
an beeasily re
ognized in retinal images. Thus, there 
an only be two vessels emanatingfrom a bran
hing point [2℄.Constant Vessel Width Between Bran
hing Points: The average width variationin interbran
h se
tions of the vessel 
an be ignored, in low pathology in
iden
e.Useful in the dete
tion and avoidan
e of pathologies and 
rossing, improving thetra
king stability.Used in past literature without proof [8, 9℄, this property was here veri�ed byobserved results. A total of 520 vessel pro�les were gathered from linear se
tions
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ture Analysis 3of several di�erent vessels with di�erent widths. The variation of those vessels'width was measured. Using the Kolmogorov-Smirnov statisti
al the estimate forthe average width variation is 0�0.32 pixels with a 
on�den
e of 95%.2.1 Blood Vessel Tra
kingThe Kalman �lter implements a predi
tor-
orre
tor type estimator that is op-timal in the sense that it minimizes the estimated error 
ovarian
e in optimal
onditions. Though the 
onditions ne
essary for optimality rarely exist the �lterworks well for many appli
ations [16℄.The 
ase of Kalman �lter tra
king of blood vessels deserves spe
ial attentionsin
e the �lter applied to the tra
king pro
ess is modi�ed so that the 
al
ulationsbe
ome simpler. Pk�1 - Previous vessel profile.Pk - Current vessel profile.Pk+1 - Next vessel profile.P'k+1 - Preliminary vessel profile.Ck�1 - Previous profile 
entre point.Ck - Present profile 
entre point.Ck+1 - Next profile 
entre point.C'k+1- Predi
ted 
entre point.V'k - Predi
ted dire
tion of tra
king.Vk - Dire
tion of tra
king.Vk�1 - Previous dire
tion of tra
king.Fig. 1. Tra
king algorithm s
hemati
s.Fig. 1 shows the spatial s
hemati
s for the used Kalman �lter. The algorithmuses the previous and 
urrent pro�le's 
enter to predi
t the vessel's traje
tory.Measurement is done and a new pro�le is obtained giving the 
orre
t vessel'straje
tory.p̂x(k + 1) = �� px(k) (1)p = " xvxax! ; yvyay!# (2)� = (100 T10 12T 2T1 ) (3) px(k + 1) = p̂x(k + 1) + � � P (k) (4)P (k) =8<: Z(k)1T � 32Z(k) � 2Z(k � 1) + 12Z(k � 2)�1T2 (Z(k) � 2Z(k � 1) + Z(k � 2)) 9=; (5)Equations 1-5 give the applied Kalman �lter mathemati
al stru
ture, whereT is the tra
king step size, px(k) is the state ve
tor, p̂x(k) is the predi
ted stateve
tor, Z(k) is the measurement from the image, � is the �lter mixing gain andk is the 
urrent tra
king step. In literature the gain � is normally one, givingabsolute 
on�den
e to the measurements [9, 10℄. Some authors try to assess avalue depending on the assumed errors in ea
h of the model's variables [4℄.
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e� = �0; 
urrent width variation > 2 � standard deviation1; 
urrent width variation < 2 � standard deviation (6)We here introdu
e a novel tra
king gain that varies as a fun
tion of thevessel's width. Based on the 
onstant width prin
iple introdu
ed in Se
tion 2 weassume that if the width doesn't vary the vessel is being followed 
orre
tly and sowe keep the gain high. Signi�
ant 
hanges in width o

ur only in bran
h points,
rossings or pathology, in those 
ases the �lter's gain is redu
ed, thus 
ausingthe tra
king to follow the predi
ted path without deviation. Gain variation wasimplemented a

ording to the rules presented in equation 6.
(a) (b) (
) (d)Fig. 2. Tra
king examples: (a) and (b) show 
orre
t tra
king resulting from variablegain usage (white line marks the pro�le where gain was varied), 
ontrary to theseresults, �xed gain produ
ed the erroneous results in images (
) and (d).Fig. 2 shows the results from the developed tra
king method. Comparing theresults in (a) and (b) with (
), respe
tively, and (d) its is easy to see that �xedgain methods 
an 
ause both traje
tory (
) and measurement errors (d).Often, after bran
hing or 
rossing, several vessels will be dete
ted vessel. Theproblem of 
hoosing from the several possible vessels is solved based on similaritywith the previously tra
ked vessel. Similarity is measured by eu
lidian distan
ein a two dimensional feature spa
e based on width di�eren
e and traje
torydeviation. The 
hoi
e is 
onstrained to smaller vessel than the one previouslytra
ked sin
e resulting vessels are always thinner [2℄. If no vessel 
an be foundthat �ts the requirements tra
king is terminated and pathology is reported.2.2 Vessel SegmentationThe obje
tive of this work is the analysis of the retinal vessel stru
ture so ana

urate method for vessel segmentation is needed. Mat
hing is known to havelow a

ura
y [12℄. Parameterized model te
hniques presented in [10, 15℄ were in-
apable of providing good results in the presen
e of low 
ontrast or very thinvessels. Single-level dire
t segmentation [8, 9℄ was tested using half-height thresh-old, the results were unsatisfa
tory sin
e it is more prone to produ
e sub-divisionof wider vessel and false positives, as 
an be seen in Fig. 3 (b).
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(a) (b)Fig. 3. Bi-Level versus half height segmentation: (a) shows the results from the bi-level thresholding method developed in this work, (b) shows the result from a normalhalf-height thresholding method as presented in [9℄.Here we present a dire
t segmentation method based on bi-level segmentationwith subsequent agglomeration. The values gathered from the previous pro�lesare used to give the values for thresholding. Information of the last four vesselpro�les (if available) is averaged to obtain the maximum (M) and minimum (m)levels used to set the thresholds.Thresholds are set by equation 7.� t1 = m+ 0:33 � (M �m)t2 = m+ 0:66 � (M �m) (7)Any pixel having intensity above t2 is 
lassi�ed as vessel (
ondition 1) andall points above t1 that have a neighbor above t2 are also 
lassi�ed vessel (
ondi-tion 2). This is repeated until there are no more vessel in 
ondition 2. Fig. 3 (a)show the �nal result of this method.In literature great importan
e is pla
ed upon the reprodu
tion of ground-truth data [5, 12℄. This is logi
al sin
e we are trying to repla
e the human inter-pretation of the retinal images.It was found that, in existing data [5℄, ground-truth segmentation levelsare asymmetri
, as 
an be observed in Fig. 4 (b). Sin
e the used segmenta-tion method produ
es a symmetri
 segmentation, ground truth was impossibleto reprodu
e with the presented method. Fig. 4 (a) shows the ROC 
urves fora symmetri
 and asymmetri
 ground-truth blood vessel respe
tively. In Fig. 4(a) the point of operation of a simple half-height segmentation method on asymmetri
 ground-truth blood vessel is marked by a plus sign.It is believed that the human observer tends to bias its segmentation based onthe illumination of the vessel. The 
ash light used to take the images produ
esshadow on one of the vessel's side and not in the other due to the spheri
algeometry of the retina. This makes the ground truth segmentation 
omplex.
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e

(a) (b)Fig. 4. Ground-truth 
omparison results: (a) shows the resulting ROC 
urves fromsymmetri
 and asymmetri
 ground-truth blood vessels, (b) shows an example of asym-metri
 ground-truth blood vessel segmentation.2.3 Bran
hing Dete
tionMost of the tra
king methods existing in literature [9, 10℄ ignore bran
hing ofvessels or base dete
tion on the lo
al 
urvature of the vessel [4℄. The �rst optiongives reliable results only during linear se
tions of the vessel; the se
ond ignoresall the small vessels that 
an bran
h o� the main vessel.Currently there is no strategy that fully solves this problem: this is be
ausebran
hing is highly irregular and bran
hing rules are not easily gathered fromimages [2℄.
(a) (b)Fig. 5. Bran
hing Dete
tion Method. (a) shows the tra
king of the vessel with twowhite lines at ea
h side of the vessel, this is where the bran
hing vessels are going tobe sear
hed, (b) shows the gathered pixel values and dete
ted vessels in the left sideline.Although the tra
king method presented here dete
ts bran
hing points whi
hwould perturb the tra
king so that they 
an be 
ompensated, there are some ves-
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king or are missed be
ause theyexist between pro�le samples. To solve the problem we propose the 
olle
tion ofthe grey levels in two lines parallel to ea
h side of the vessel, this allows sear
hingfor bran
hing vessels using the bi-level threshold used in the main vessel. Fig. 5shows results of bran
h dete
tion.The dete
ted bran
hes 
an then be used as seed points for the main tra
kingalgorithm.3 ResultsThe performan
e of the variable gain tra
ker when in presen
e of bran
hes or
rossings was proven to be e�e
tive in the available set of images, as 
an beobserved in Fig. 2. This allowed for a better quality in the a
quired stru
turaldata.The introdu
ed blood vessel bi-level threshold dete
tion method was foundto be more e�e
tive than the normally used half-height method [9, 8℄ as 
an beseen in Fig. 3 (a). It 
an be seen that in the presen
e of symmetri
 ground-truththis method has higher segmentation quality.The assumption that blood vessels don't 
hange width between bran
hingpoints was found to be 
orre
t by statisti
al inferen
e and 
onsequential results.4 Dis
ussionThe strategy used to develop this algorithm was found to be adequate for retinalblood vessel segmentation. Tra
king was shown to allow the integration of lo
alstatisti
al information, e�e
tively allowing for improvement in the tra
ker eÆ-
ien
y. The variable gain allowed for the avoidan
e of singularities that otherwisemight disturb tra
king and 
orrupt the stru
tural data.The bi-level threshold te
hnique enabled the 
orre
t dete
tion of the vesseleven in presen
e of signi�
ant 'dip' e�e
ts and nearby smaller vessels.The proposed method for bran
hing dete
tion gave promising results and isbelieved to be a good base for a method 
apable of 
omplete segmentation.The asymmetry of the ground truth made the reprodu
tion of human seg-mentation impossible with the presented method. If the proposed dependen
y ofthe ground-truth data on illumination is proven, the authors believe that 
orre
tsegmentation may by possible even in asymmetri
 
ases. However further studyis needed.5 A
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