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60205 Compiègne cedex, France

grandval@utc.fr
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Abstract

In this paper, we show that the hinge loss can be interpreted as the neg-
log-likelihood of a semi-parametric model of posterior probabilities. From
this point of view, SVMs represent the parametric component of a semi-
parametric model fitted by a maximum a posteriori estimation procedure.
This connection enables to derive a mapping from SVM scores to estimated
posterior probabilities. Unlike previous proposals, the suggested mapping
is interval-valued, providing a set of posterior probabilities compatible with
each SVM score. This framework offers a new way to adapt the SVM
optimization problem when decisions result in unequal losses. Experiments
on an unbalanced classification loss show improvements over state-of-the-
art procedures.

1 Introduction

In this paper, we show that support vector machines (SVMs) are the solution of a relaxed
maximum a posteriori (MAP) estimation problem. This relaxed problem results from fitting
a semi-parametric model [Oakes, 1988] of posterior probabilities. This model is decomposed
into two components: the parametric component, which is a function of the SVM score, and
the non-parametric component which we call a nuisance function. Given a proper binding
of the nuisance function adapted to the considered problem, this decomposition enables to
concentrate on selected ranges of the probability spectrum. The estimation process can thus
allocate model capacity to the neighborhoods of decision boundaries.

The connection to semi-parametric models provides a probabilistic interpretation of SVM
scores, which may have several applications, such as estimating confidences over the predic-
tions, or dealing with unbalanced losses (which occur in domains such as diagnosis, intruder
detection, etc). Several mappings relating SVM scores to probabilities have already been pro-
posed [Sollich, 2000, Platt, 2000], but they are subject to arbitrary choices, which are avoided
here by their integration to the nuisance function.

The paper is organized as follows. Section 2 presents the semi-parametric modeling approach.
Section 3 shows how we can reformulate SVM within this framework. Section 4 proposes
several outcomes of this formulation, including a new method to handle unbalanced losses,
which is then tested empirically in Section 5. Finally, Section 6 briefly concludes the paper.

∗This work was supported in part by the IST Programme of the European Community, under the
PASCAL Network of Excellence IST-2002-506778. This publication only reflects the authors’ views.



2 Semi-Parametric Classification

We address the binary classification problem of estimating a decision rule from a learning
set Ln = {(xi, yi)}

n
i=1, where the ith example is described by the pattern xi ∈ X and the

associated response yi ∈ {−1, 1}. In the framework of maximum likelihood estimation, clas-
sification can be addressed either via generative models, i.e. models of the joint distribution
P (X,Y ), or via discriminative methods modeling the conditional P (Y |X).

2.1 Complete and Marginal Likelihood, Nuisance Functions

Let p(1|x;θ) denote the model of P (Y = 1|X = x), p(x;ψ) the model of P (X) and ti the
binary response variable such that ti = 1 when yi = 1 and ti = 0 when yi = −1. Assuming
independent examples, the complete log-likelihood can be decomposed as

L(θ,ψ;Ln) =

n
∑

i=1

ti log(p(1|xi;θ))+(1− ti) log(1−p(1|xi;θ))+log(p(xi;ψ)) , (1)

where the two first terms of the right-hand side represent the marginal or conditional likeli-
hood, that is, the likelihood of p(1|x;θ).

For classification purposes, the parameter ψ is not relevant, and may thus be qualified as a
nuisance parameter [Lindsay, 1985]. When θ can be estimated independently of ψ, maxi-
mizing the marginal likelihood provides the estimate returned by maximizing the complete
likelihood with respect to θ and ψ. In particular, when no assumption whatsoever is made
on P (X), maximizing the conditional likelihood amounts to maximize the joint likelihood
[McLachlan, 1992]. The density of inputs is then considered as a nuisance function.

2.2 Semi-Parametric Models

Again, for classification purposes, estimating P (Y |X) may be considered as too demanding.
Indeed, taking a decision only requires the knowledge of sign(2P (Y = 1|X = x) − 1). We
may thus consider looking for the decision rule minimizing the empirical classification error,
but this problem is intractable for non-trivial models of discriminant functions.

Here, we briefly explore how semi-parametric models [Oakes, 1988] may be used to reduce
the modelization effort as compared to the standard likelihood approach. For this, we consider
a two-component semi-parametric model of P (Y = 1|X = x), defined as p(1|x;θ) =
g(x;θ) + ε(x), where the parametric component g(x;θ) is the function of interest, and
where the non-parametric component ε is a constrained nuisance function. Then, we address
the maximum likelihood estimation of the semi-parametric model p(1|x;θ)























min
θ,ε

−

n
∑

i=1

ti log(p(1|xi;θ)) + (1 − ti) log(1 − p(1|xi;θ))

s. t. p(1|x;θ) = g(x;θ) + ε(x)
0 ≤ p(1|x;θ) ≤ 1
ε−(x) ≤ ε(x) ≤ ε+(x)

(2)

where ε− and ε+ are user-defined functions, which place constraints on the non-parametric
component ε. According to these constraints, one pursues different objectives, which can
be interpreted as either weakened or focused versions of the original problem of estimating
precisely P (Y |X) on the whole range [0, 1].

At the one extreme, when ε− = ε+, one recovers a parametric maximum likelihood prob-
lem, where the estimate of posterior probabilities p(1|x;θ) is simply g(x;θ) shifted by the
baseline function ε. At the other extreme, when ε−(x) ≤ −g(x) and ε+(x) ≥ 1 − g(x),
p(1|·;θ) perfectly explains (interpolates) any training sample for any θ, and the optimization
problem in θ is ill-posed. Note that the optimization problem in ε is always ill-posed, but this
is not of concern as we do not wish to estimate the nuisance function.
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Figure 1: Two examples of ε−(x) (dashed) and ε+(x) (plain) vs. g(x) and resulting ε-tube
of possible values for the estimate of P (Y = 1|X = x) (gray zone) vs. g(x).

Generally, as ε is not estimated, the estimate of posterior probabilities p(1|x;θ) is only known
to lie within the interval [g(x;θ) + ε−(x), g(x;θ) + ε+(x)]. In what follows, we only
consider functions ε− and ε+ expressed as functions of the argument g(x), for which the
interval can be recovered from g(x) alone. We also require ε−(x) ≤ 0 ≤ ε+(x), in order to
ensure that g(x;θ) is an admissible value of p(1|x;θ).

Two simple examples are displayed in Figure 1. The two first graphs represent ε− and ε+

designed to estimate posterior probabilities up to precision ε, and the corresponding ε-tube
of admissible estimates knowing g(x). The two last graphs represent the same functions for
ε− and ε+ defined to focus on the only relevant piece of information regarding decision:
estimating where P (Y |X) is above 1/2. 1

2.3 Estimation of the Parametric Component

The definitions of ε− and ε+ affect the estimation of the parametric component. Regarding θ,
when the values of g(x;θ)+ε−(x) and g(x;θ)+ε+(x) lie within [0, 1], the semi-parametric
estimation problem (2) is equivalent to the following relaxed maximum likelihood problem











min
θ,ε

−

n
∑

i=1

ti log(g(xi;θ) + εi) + (1 − ti) log(1 − g(xi;θ) − εi)

s. t. ε−(xi) ≤ εi ≤ ε+(xi) i = 1, . . . , n

(3)

where ε is an n-dimensional vector of slack variables. The problem is qualified as relaxed
compared to the the maximum likelihood estimation of posterior probabilities by g(xi;θ),
because modeling posterior probabilities by g(xi;θ) + εi is a looser objective.

The monotonicity of the objective function with respect to εi implies that the constraints
ε−(xi) ≤ εi and εi ≤ ε+(xi) are saturated at the solution of (3) for ti = 0 or ti = 1
respectively. Thus, the loss in (3) is the neg-log-likelihood of the lower or the upper bound on
p(1|xi;θ) respectively, and the optimization problem with respect to θ reduces to

min
θ

−

n
∑

i=1

ti log(g(xi;θ) + ε+(xi)) + (1 − ti) log(1 − g(xi;θ) − ε−(xi)) , (4)

where we assumed that g, ε− and ε+ are defined such that ε−(x) ≤ ε+(x), 0 ≤ g(x) +
ε−(x) ≤ 1 and 0 ≤ g(x) + ε+(x) ≤ 1.

Figure 2 displays the losses for positive examples corresponding to the choices of ε− and ε+

depicted in Figure 1 (the losses are symmetrical around 0.5 for negative examples). Note that
the convexity of the objective function with respect to g depends on the choices of ε− and ε+.
One can show that, providing ε+ and ε− are respectively concave and convex functions of g,
then the loss (4) is convex in g.

1Of course, this naive attempt to minimize the training classification error is doomed to failure.
As shown in the following section, this reformulation of the classification error does not affect its
convexity, hence the optimization problem typically remains NP-hard.
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Figure 2: Losses for positive examples (plain) and neg-log-likelihood of g(x) (dotted) vs.
g(x). Left: for the function ε+ displayed on the left-hand side of Figure 1; right: for the
function ε+ displayed on the right-hand side of Figure 1.

When ε−(x) ≤ 0 ≤ ε+(x), g(x) is an admissible estimate of P (Y = 1|x). However,
the relaxed loss (4) is optimistic, below the neg-log-likelihood of g. This optimism usually
results in a non-consistent estimation of posterior probabilities, a common situation in semi-
parametric modeling [Lindsay, 1985].2 This lack of consistency should not be a concern here,
since the non-parametric component is purposely introduced to address a looser estimation
problem. We should therefore restrict consistency requirements to the primary goal of having
posterior probabilities in the ε-tube [g(x) + ε−(x), g(x) + ε+(x)].

3 Semi-Parametric Formulation of SVMs

Several authors pointed the close relationship between the SVM criterion and the MAP ap-
proach to Gaussian processes (see Sollich [2000] and references therein). However, this sim-
ilarity is not perfect, preventing the unambiguous interpretation of SVM scores as posterior
probabilities. Here, we resolve this difficulty thanks to the additional degrees of freedom
provided by semi-parametric modelling.

3.1 SVMs and Gaussian Processes

In its primal Lagrangian formulation, the SVM optimization problem reads

min
f,b

1

2
‖f‖2

H + C
n
∑

i=1

[1 − yi(f(xi) + b)]+ , (5)

where H is a reproducing kernel Hilbert space with norm ‖ · ‖H, C is a regularization param-
eter and [f ]+ = max(f, 0).

The penalization term in (5) can be interpreted as a Gaussian prior on f , with a covariance
function proportional to the reproducing kernel of H [Sollich, 2000]. Then, the interpretation
of the hinge loss as a marginal log-likelihood requires to identify an affine function of the last
term of (5) with the two first terms of (1). We thus look for two constants c0 and c1 6= 0, such
that, for all values of f(x) + b, there exists a value 0 ≤ p(1|x) ≤ 1 such that

{

p(1|x) = exp−(c0 + c1[1 − (f(x) + b)]+)
1 − p(1|x) = exp−(c0 + c1[1 + (f(x) + b)]+)

. (6)

The system (6) has a solution over the whole range of possible values of f(x) + b if and only
if c0 = log(2) and c1 = 0. Thus, the SVM optimization problem does not implement the
MAP approach to Gaussian processes.

To proceed with a probabilistic interpretation of SVMs, one should thus depart from stan-
dard Gaussian processes. Sollich [2000] proposed a normalized probability model, but the
normalization functional was chosen arbitrarily, and the consequences of this choice on the
probabilistic interpretation was not evaluated. In what follows, we derive an imprecise map-
ping, with interval-valued estimates of probabilities, representing the set of all admissible
semi-parametric formulations of SVM scores.

2That is, g(x) does not converge towards P (Y = 1|X = x) as the sample size goes to infinity.
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Figure 3: Left: lower (dashed) and upper (plain) posterior probabilities [g(x) +
ε−(x), g(x) + ε+(x)] vs. SVM scores f(x) + b; center: corresponding neg-log-likelihood
of g(x) for positive examples vs. f(x)+b. right: lower (dashed) and upper (plain) posterior
probabilities vs. g(x), for g defined in (8).

3.2 SVMs and Semi-Parametric Models

With the semi-parametric models introduced in Section 2.2, one has to identify an affine func-
tion of the hinge loss with the two terms of (4). Compared to the previous situation, the
identification is eased, as one has the freedom to define the slack functions ε− and ε+. The
identification problem is now



















g(x) + ε+(x) = exp−(c0 + c1[1 − (f(x) + b)]+)
1 − g(x) − ε−(x) = exp−(c0 + c1[1 + (f(x) + b)]+)
s.t. 0 ≤ g(x) + ε−(x) ≤ 1

0 ≤ g(x) + ε+(x) ≤ 1
ε−(x) ≤ ε+(x)

. (7)

Provided c0 = 0 and 0 < c1 ≤ log(2), there are functions g, ε− and ε+ such that the
above problem has a solution. Hence, semi-parametric models provide a set of probabilistic
interpretations fully compatible with SVM scores. The subsets of solutions indexed by c1 are
nested, in the sense that, for any x, the length of the uncertainty interval, ε+(x) − ε−(x), is
monotonically decreasing in c1. In other words, the interpretation of SVM scores as posterior
probabilities gets tighter as c1 increases.

The most restricted subset of admissible interpretations, with the shortest uncertainty intervals,
obtained for c1 = log(2), is represented in the left-hand side of Figure 3. The loss incurred
by a positive example is represented on the central graph, where the gray zone represents the
neg-log-likelihood of all admissible solutions of g(x). Note that the hinge loss is proportional
to the neg-log-likelihood of the upper posterior probability g(x) + ε+(x), which is the loss
for positive examples in the semi-parametric model in (4). Conversely, the hinge loss for
negative examples is reached for g(x)+ ε−(x). An important observation, that will be useful
in Section 4.2 is that the neg-log-likelihood of any admissible functions g(x) is tangent to the
hinge loss at f(x) + b = 0.

The solution is unique in terms of the admissible interval [g+ε−, g+ε+], but many definitions
of (ε−, ε+, g) solve (7). For example, g may be defined as

g(x; θ) =
2−[1−(f(x)+b)]+

2−[1+(f(x)+b)]+ + 2−[1−(f(x)+b)]+
, (8)

which is essentially the posterior probability model proposed by Sollich [2000], represented
dotted in the first two graphs of Figure 3.

The last graph of Figure 3 displays the mapping from g(x) to admissible values of p(1|x)
which results from the choice described in (8). Although the interpretation of SVM scores
does not require to specify g, it may worth to list some features common to all options. First,
g(x)+ε−(x) = 0 for all g(x) below some threshold g0 > 0, and conversely, g(x)+ε+(x) =
1 for all g(x) above some threshold g1 < 1. These two features are responsible for the
sparsity of the SVM solution. Second, the estimation of posterior probabilities is accurate at



0.5, and the length of the uncertainty interval regarding p(1|x) monotonically increases in
[g0, 0.5] and then monotonically decreases in [0.5, g1]. These observations corroborate that
the training objective of SVMs is intermediate between the accurate estimation of posterior
probabilities on the whole range [0, 1] and the minimization of the classification risk.

4 Outcomes of the Probabilistic Interpretation

This section gives two consequences of our probabilistic interpretation of SVMs. Further
outcomes, still reserved for future research are listed in Section 6.

4.1 Pointwise Posterior Probabilities from SVM Scores

Platt [2000] proposed to estimate posterior probabilities from SVM scores by fitting a logistic
function over the SVM scores. The only logistic function compatible with the most stringent
interpretation of SVMs in the semi-parametric framework,

g(x; θ) =
1

1 + 4−(f(x)+b))
, (9)

is identical to the posterior probability model proposed by Sollich [2000] (8) when f(x) + b
lies in the interval [−1, 1].

Other logistic functions are compatible with the looser interpretations obtained by letting
c1 < log(2), but their use as pointwise estimates becomes even more questionable, since the
associated interval of admissible posterior probabilities is wider. In particular, these looser
interpretations do not ensure that f(x) + b = 0 corresponds to g(x) = 0.5. Then, the deci-
sion function based on the estimated posterior probabilities by g(x) may differ from the SVM
decision function.

Thus, pointwise estimates of posterior probabilities derived from SVM scores should be in-
terpreted with caution, as they require an arbitrary choice of g(x). As discussed by Zhang
[2004], one should not expect accuracy from these estimates, even asymptotically, except at
f(x) + b = 0, where the estimated posterior probability converges towards 0.5.

The proposed interval-valued estimates of posterior probabilities should be related to the set-
valued function Fφ of Steinwart (reference 7 de Bartlett) Montrer que si la perte φ est convexe,
alors g + ε+ et g + ε− le sont aussi. Montrer que si la perte φ est decision-calibrated, alors
g(P0) = P0, et ε−(P0) = ε+(P0) = 0. Commentaire sur g0, g1: cf. corrolaire 7 de Bartlett.

4.2 Unbalanced Classification Losses

SVMs are known to perform well regarding misclassification error, but they also have been
recognized to provide skewed decision boundaries for unbalanced classification losses, where
the losses associated with incorrect decisions differ according to the true label. The main-
stream approach used to address this problem consists in using different losses for positive
and negative examples [Morik et al., 1999, Veropoulos et al., 1999], i.e.

min
f,b

1

2
‖f‖2

H+C+
∑

{i|yi=1}

[1 − (f(xi) + b)]+ +C−
∑

{i|yi=−1}

[1 + (f(xi) + b)]+ , (10)

where the coefficients C+ and C− are constants, whose ratio is equal to the ratio of the
losses `FN and `FP pertaining to false negatives and false positives, respectively [Lin et al.,
2002].3 Bayes’ decision theory defines the optimal decision rule by positive classification
when P (y = 1|x) > P0, where P0 = `FP

`FP+`FN
. We may thus rewrite C+ = C · (1 − P0)

and C− = C · P0. With such definitions, the optimization problem may be interpreted as an
upper-bound on the classification risk defined from `FN and `FP. However, the machinery of

3False negatives/positives respectively designate positive/negative examples incorrectly classified.
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Figure 4: Left: lower (dashed) and upper (plain) posterior probabilities [g(x) +
ε−(x), g(x)+ε+(x)] vs. SVM scores f(x)+b obtained from (11) with P0 = 0.25; center:
corresponding neg-log-likelihood of g(x) for positive examples vs. f(x) + b. right: lower
(dashed) and upper (plain) posterior probabilities vs. g(x), for g defined by ε+(x) = 0 for
f(x) + b ≤ 0 and ε−(x) = 0 for f(x) + b ≥ 0.

Section 3.2 unveils a major problem: the SVM decision function provided by sign(f(xi)+b)
is not consistent with the probabilistic interpretation of SVM scores.

We address this problem by deriving another criterion, by requiring that the neg-log-likelihood
of any admissible functions g(x) is tangent to the hinge loss at f(x) + b = 0. This leads to
the following problem:

min
f,b

1

2
‖f‖2

H + C





∑

{i|yi=1}

[− log(P0) − (1 − P0)(f(xi) + b)]+ +

∑

{i|yi=−1}

[− log(1 − P0) + P0(f(xi) + b)]+



 . (11)

This loss differs from (10) whatever C+ and C− may be, in the respect that the margin
for positive examples are smaller than the one for negative examples when P0 < 0.5. In
particular, (10) does not affect the SVM solution for separable problems, while in (11), the
decision boundary moves towards positive support vectors when P0 decreases. Note that The
analogue of Figure 3, displayed on Figure 4, shows that one recovers the characteristics of the
standard SVM loss, except that the focus is now on the posterior probability P0 defined by
Bayes’ decision rule.

5 Experiments with Unbalanced Classifications Losses

It is straightforward to modify standard SVM packages to implement (11). For experimenting
with difficult unbalanced two-class problems, we used a subset of the Forest database4 which
is currently the largest available UCI dataset. We consider the subproblem of discriminating
the positive class Krummholz (20510 examples, originally labeled 7) against the negative class
Spruce/Fir (211840 examples, originally labeled 1). The ratio of negative/positive examples
is higher than 10, a feature commonly encountered with unbalanced classification losses.

We randomly selected from the original dataset 3 000 examples for the positive class and 30
0000 for the negative class. Each set of examples was further divided into three equal parts
corresponding to the training, validation and test sets.

The performance is measured by the weighted risk function R = 1
n
(NFN`FN + NFP`FP),

where NFN and NFP are the number of false negatives and false positives, respectively. The
loss `FP was set to one, and `FN was successively set to 1, 10 and 100, in order to penalize
more and more heavily errors from the under-represented class.

4Available at http://kdd.ics.uci.edu/databases/covertype/covertype.data.htm.



All approaches were tested using SVMs with a Gaussian kernel. All hyper-parameters were
tuned on the validation set for each of the `FN values. The bias b was also tuned on the
validation set, to improve the results for the baseline and C+/C− optimizers, which do not
estimate this parameter correctly for `FN 6= `FP. Table 1 compares the risk R obtained with
the three approaches for the different values of `FN.

Table 1: Errors for 3 different criteria and for 3 different models over the Forest database

`FN Baseline, problem (5) C+/C−, problem (10) P0, problem (11)
1 2.52 2.52 2.52

10 11.69 10.73 10.91
100 45.23 36.81 30.67

The first line, with `FN = 1 corresponds to the standard classification error, where all criteria
are equivalent in theory and in practice. For `FN = 10, the models obtained by optimizing
C+/C− (10) and P0 (11) give similar results, better than the baseline. Finally, for the highly
unbalanced loss, the novel approach provides statistically significantly better results (where
significance was tested at the 5% level, using a bootstrap-based statistical test similar to Bolle
et al. [2004]). The new optimization criterion can thus outperform standard approaches for
highly unbalanced problems.

6 Conclusion

This paper introduced a semi-parametric model for classification which provides an inter-
esting viewpoint on SVMs. The non-parametric component provides an intuitive means of
transforming the likelihood into a decision-oriented criterion. This framework was used here
to propose a new parameterization of the hinge loss, dedicated to unbalanced classification
problems, yielding significant improvements over the classical procedure.

Among other prospectives, we plan to apply the same framework to investigate hinge-like
criteria for decision rules including a reject option, where the classifier abstains when a pattern
is ambiguous. We also aim at defining losses encouraging sparsity in probabilistic models,
such as kernelized logistic regression. We could thus build sparse probabilistic classifiers,
providing an accurate estimation of posterior probabilities on a (limited) predefined range of
posterior probabilities. In particular, we could derive decision-oriented criteria for multi-class
probabilistic classifiers. For example, minimizing classification error only requires to find the
class with highest posterior probability, and this search does not require precise estimates of
probabilities outside the interval [1/K, 1/2], where K is the number of classes.
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