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Abstract. Skin cancer is a spreading disease in the western world. Early detection
and treatment are crucial for improving the patient survival rate. In this paper we
present two algorithms for computer assisted diagnosis of melanomas. The first is
the support vector machines algorithm, a state-of-the-art large margin classifier,
which has shown remarkable performances on object recognition and
categorization problems. The second method, spin glass-Markov random fields,
combines results of statistical physics of spin glasses with Markov random fields.
We compared the two approaches using color histograms as features. We
benchmarked our methods with another algorithm presented in the literature,
which uses a sophisticated segmentation technique and a set of features especially
designed for melanoma recognition. To our knowledge, this algorithm represents
the state of the art on skin lesions classification. We show with extensive
experiments that the support vector machines approach outperforms the existing
method and, on two classes out of three, it achieves performances comparable to
those obtained by expert clinicians.
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1. Introduction

Malignant melanoma is a significant public health problem. Its incidence is rising
faster than that of any other cancer in the US and in Europe [1, 2]. Early detection and
treatment are critical and result in improved patient survival rates. The most used
diagnostic technique is called Epiluminescence Microscopy (ELM). It is a non-invasive
technique that allows for a detailed surface analysis of a suspicious skin lesion by using
hand-held device emitting incident light from a light source penetrating the epidermal
skin layer. The diagnosis of early melanoma is based on simple observation of images
by dermatologists, who commonly use the ABCD (Asymmetry, Border, Color and
Dimension) method as clinical guide. So, the diagnosis depends heavily on the
physician’s level of expertise.

An automatic system for melanoma recognition would constitute a valuable
support for physicians in every day clinical practice and should reproduce the
perceptual and cognitive strategy followed by doctors. The last years have witnessed
numerous research on this topic; a key factor for the development and evaluation of
these systems is the availability of a statistically significant database. To our
knowledge the state of the art in melanoma recognition was presented by H. Ganster et
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al. [3]. That paper presented a large database, accompanied by: (a) a segmentation
algorithm for isolating the potential melanoma from the surrounding skin [3]; (b) a set
of features containing shape and radiometric features as well as local and global
parameters, calculated to describe the malignancy of a lesion, from which significant
features are selected by application of statistical feature subset selection methods [3];
(c) a nearest neighbor classification algorithm [3]. In that work the authors
concentrated particularly on the segmentation techinque and the features selection
process. Here we focus instead on the classification algorithm, and we propose the use
of kernel methods for recognition of skin lesion images. Specifically, we focus our
attention on two algorithms: Support Vector Machines (SVM) [4] and Spin Glass-
Markov Random Fields (SG-MRF) [5]. SVM is a state-of-the-art large margin
classifier, where the optimal separating surface is defined by a linear combination of
scalar products between the view to be classified and some support vectors [6, 4]. SG-
MREF is a fully connected MRF which integrates results of statistical mechanics with
Gibbs probability distributions via non linear kernel mapping [5]. The database on
which we will run our experiments is the same introduced by Ganster et al. [3]; our
classification algorithms use binary masks determined by the segmentation algorithm
developed in [3], and color histogram features. The choice of color histograms as
feature types reproduces one of the criteria followed by dermatologists for diagnosis.
We performed several series of experiments for selecting an optimal feature descriptor
and we replicated the experimental setup used in [3] for a benchmark evaluation. Our
results show that SVM obtains remarkably better performances than SG-MRF and
Ganster’s classification method. Furthermore, on two classes out of three, SVM
achieves recognition results comparable to those obtained by skilled clinicians.

In summary, the contributions of this paper are: (1) The introduction of kernel
methods for melanoma recognition, via two approaches: a probabilistic method, and a
well known state-of-the-art classifier. For this second algorithm particularly, we
studied in depth the classification performances with different kernel types. (2) The
benchmark with a method presented in the literature [3], which to the best of our
knowledge represents the state of the art in this field: on the same database and using
the same segmentation masks, we had an improvement of more than 20% of the
experimental results. Moreover our results are very stable and reliable because are
obtained as mean value on five different partitions.

The rest of the paper is organized as follows: Section 2 describes some basic
knowledge on SG-MRF theory and section 3 briefly explains the SVM algorithm.
Section 4 reports on the experiments performed. The paper concludes with a summary
discussion and some possible directions for future research.

2. Spin Glass - Markov Random Fields

In this section we describe the probabilistic method which constitutes one of the kernel
methods proposed here for classification. This technique was introduced first for 3D
object recognition [5], and was then applied to microcalcification detection with
promising results [7].

Consider » visual classes €, j = {1, ... n}, and a set of k observations {x}. xf }

x € R", random samples from the underlying, unknown, probability distribution P(x)
defined on R™. Given an observation X , our goal is to classify X as a sample from €



one of the Q; visual classes. Using a Maximum A Posteriori (MAP) criterion and Bayes
rule we have j = argmax ; P(Q; / X) = argmax ; P(x/ &; ), where P(x/ ) are the
Likelihood Functions (LFs) and P(€)) are the prior probabilities of the classes which
are assumed to be constant.

Spin Glass-Markov Random Fields (SG-MRFs) [5] are a new class of MRFs
which connect SG-like energy functions (mainly the Hopfield one [8]) with Gibbs
distributions via a non linear kernel mapping. The resulting model overcomes many
difficulties related to the design of fully connected MRFs, and enables to use kernels in
a probabilistic framework. The SG-MRF probability distribution is given by
Pscvrr (x/ €)= (1/Z) exp [ — Esc.urr (x /)], Z=%.exp[— Esg.urr (x/€)]

with Esgamr == 20 [K (x,f(/‘))]z, where the function K(x,%)is a generalized
b

Gaussian kernel [6] K(xy) = exp {— p dup(x)}, dup(xy) = i [x"—p*|” and

{3} 1. p,»J € [1, n] are a set of vectors selected (according to a chosen ansatz [5])

from the training data that we call prototypes. The number of prototypes per class must
be finite, and they must satisfy the condition K(;?",Yk):o yforalli, k=1,.p,i#j
and j =0,... n (the interested reader can find a detailed discussion regarding SG-MRF
in [5]). Thus using SG-MRF modelling, the Bayes classifier (1) will become
j*¥ =argmin; Esg.yprr (X7 ;).

3. Support Vector Machines

In this section we briefly describe SVM in the two class case. For further details and
the extension to multiclass settings we refer the reader to [4].

Consider the feature vector X € R™ and its class label y € {-1, +1}. Let (X1, y)),
(X2, ¥3), o » (Xm» y) denote a given set of m training examples. If we assume that the
two classes are linearly separable, there exists a linear function f(X) = wX + b such
that for each training example X;, it yields f(x) >0 for y; = +1 and f{xy) <0 for
y;=—1. The optimal separating hyperplane is the one which has maximum distance to
the closest points in the training set. Mathematically this hyperplane can be found by
solving a constrained minimization problem using Lagrange multipliers o; (i = 1, ...,
m). It results in a classification function f{X) = sgn (Y'5' o, y; WX + b), where a; and
b are found by using an SVC learning algorithm [4]. It turns out that a small number of
the a;s are different from zero; their corresponding data X; are called support vectors.

SVM can be extended to nonlinear problems by using a nonlinear operator @(-) to
map the input feature vectors X; from the original R" into a higher dimensional feature
space H by X — ®(X) € H. Here the mapped data points of the two classes become
linearly separable. Assuming there exists a kernel function K associated with the inner
product of the desired nonlinear mapping such that K (X,y) = ®(x) - ®(y), then a non
linear SVM can be obtained by replacing X -y by the kernel K (X,y) in the decision
function, obtaining then f(X) = sgn (Y=} o; »; K (X; , X) + b). This corresponds to
constructing an optimal separating hyperplane in the feature space.

In this paper we consider four kernel types :
1. Polynomial kernel (“poly”) KXy =@F*x-y)
2. Generalized Gaussian kernel (“gengauss™) K (X,y)=exp { -y *| x*- y?|"}



3. Gaussian kernel (“gauss”) KX y)=exp{-y* x -y|*}
4. Chi-squared kernel (“chi”) K (X, y)=exp { -y * yX(X, y)}.

4. Experiments

In this section we present experiments that show the effectiveness of kernel methods
for melanoma recognition. To this purpose, in a preliminary step, we ran a first series
of experiments for feature selection. Then we used the selected features for an
extensive set of classification experiments. In the rest of the section we describe the
database used, the experimental setup and our experimental findings.

Database: We performed our experiments on the database created by the
Department of Dermatology of the Vienna General Hospital [3]. The whole database
consists of 5380 skin lesion images, divided into three classes (these numbers are not
perfectly coincident with those reported in [3], where the database is said to be of 5363
images, but this difference should not affect the comparison between the two
algorithms): 4277 of these lesions are classified as clearly benign lesions (Class 1),
1002 are classified as dysplastic lesions (Class 2) and 101 lesions are classified as
malignant melanomas (Class 3). The lesions of the classes 2 and 3 were all surgically
excised and the ground truth was generated by means of histological diagnosis [3]. In
order to have statistically significant results, we ran experiments with five different
partitions, then we calculated the mean and the standard deviation of the obtained
recognition rates. This procedure has been adopted for all the experiments which are
reported in this paper.

Experimental Setup: The three key components for an automated melanoma
recognition algorithm are: segmentation, features extraction and classification. We
describe below the general approach followed in this paper for each of these steps:
Segmentation: We used the segmentation method developed by Ganster et al. [3] on
this database. It consists of a binary mask determined by several segmentation
algorithms combined together with a fusion strategy. This choice allows for a fair
comparison between Ganster’s technique and ours.

Feature Extraction: In the ABCD-rule of dermoscopy, the color distribution in the skin
lesion is one of the discriminant features for clinical melanoma recognition, thus we
used color histograms as features. The color histogram was computed by discretizing
the colors within the image and counting the number of pixels for each color. We
performed several experiments for selecting the best features, namely using hue, rg,
RG, RB and GB color histograms. The resolution of the bin axes was varied for each
representation, consisting of 8, 16, 32, 64 (for bidimensional histograms we chose the
resolution of each axis with the same bin value). We found that the GB representation
obtained the best results for all the bin values, thus we used it in all the following
experiments.

Classification. We used SG-MRF and SVM algorithms (see section 2 and 3
respectively). For SG-MRF we learned the kernel parameters during the training stage
using a leave-one-out strategy [S]. For SVM we used the four kernel types described in
section 3. The kernel parameters were chosen via cross validation.

Classification Experiments: All the experiments were performed respecting the
procedure reported by Ganster et al. [3]. The training set consisted of 270 images (90
for each class); the test set consisted of the whole database [3]. Note that training and
test set are not disjoint; once again we underline that this follows the procedure



proposed in [3] which allows for benchmarking. We used the GB features and we ran
experiments for 8, 16, 32 and 64 resolution of bins per axes, with five different
partitions for training and test set, using SG-MRF and SVM with four different kernel
types. Table 1 reports, for SG-MRF and SVM, the recognition rates for each class
averaged on five partitions. We also report the average of the recognition rate obtained
class by class (“Mean Class”), and the overall recognition rate (“Overall”). For sake of
clarity we also report the results obtained in [3]; note that these results were obtained
on a single run.

Table 1. Recognition results for the classification experiments on three classes of lesions obtained from
Ganster et al. [3] and with SG-MRF and SVM methods with different kernels. We report the recognition
rates for the three classes, the overall and the mean recognition rates. Results obtained with SG-MRF and
SVM are mean values from five different runs with their standard deviations. Class 1, Class 2, Class 3
identify the benign, dysplastic and malignant lesions respectively.

Ganster SG-MRF SVM (%)
etal. [3] o ;
(%) (%0) poly gauss | gengauss chi
Class 1 59 48.6+42 | 80.1+13.0 | 71.9+11.1 962+4.0 | 68.6+17.7
Class 2 53 38.8+3.4 157+13.7 | 248+12.7 | 11.0+1.8 24+75
Class 3 73 94.1+£34 | 295+204 | 45.0+285 | 89.5+09 | 62.6+19.7
Mean Class 61 60.5+17.0 | 41.8+19.6 | 47.2+13.6 | 65.6+274 | 512+145
Overall 58 477429 67.1+7.8 62.6+6.2 802+28 | 59.9+129

A first comment is that SVM, with the generalized Gaussian kernel, obtains the
best result with respect to Ganster’s method and SG-MRF. The overall recognition rate
is of 80.2% to be compared with a 58% obtained by Ganster and 47.7% obtained by
SG-MREF. This proves the effectiveness of this technique for melanoma recognition. A
second comment is that SVM performance varies considerably as the overall
recognition rate goes from a minimum of 59.9% for the chi-squared kernel to a
maximum of 80.2% for generalized Gaussian kernel. It is also interesting to note that,
for the overall recognition rate, the kernels which obtains the worst performances tend
to have the highest standard deviations, while the kernel with the best performance has
the smallest one. This illustrates the importance of doing kernel selection in the training
phase; the low standard deviation of the SVM’s best result also shows the stability of
our findings. A final remark should be made on the poor performance of SG-MRF.
This might be due to the dimension of the training set for each class; it might be
possible that the probabilistic method needs a higher statistic in order to estimate
properly the energy function.

Table 2 reports the confusion matrix for SVM with generalized Gaussian kernel
and the confusion matrices obtained by Ganster and the one obtained by
dermatologists, both reported in [3]. We see that for class 1 and class 3 SVM
outperforms Ganster’s method and is comparable with the dermatologists’
performances. It is very interesting to note that, in contrast, SVM performs poorly on
class 2, which corresponds to dysplastic lesions. This might be explained considering
that here we are using only color information, while Ganster used a selection of
different features and dermatologists used the ABCD rule. It is thus possible that color
information only is not discriminant enough in order to recognize correctly dysplastic



lesions, while it seems to be effective for separating benign and malignant lesions. In
the future we will explore this issue by testing different types of informations.

Table 2. Confusion matrices for different classification methods: (a) Confusion matrix for the SVM results
with the “gengauss” kernel. The number of images reported are mean value of the number obtained from 5
different partitions; (b) Confusion matrix obtained with the Ganster’s method [3]; (c) Confusion matrix
obtained from clinical diagnosis, performed from expert dermatologists of the Department of Dermatology at
the Vienna General Hospital [3]. In the tables 1, 2, 3 identify the three classes corresponding to benign,
dysplastic and malignant lesions respectively.

(a) Assigned (b) Assigned () Assigned
True 1 2 3 True | 1 2 3 True | 1 2 |3
1 4112.6 | 112.6 | 50.8 1 2500 | 1347 | 410 1 4161 | 94 | 9
2 874.8 | 110.0 | 17.2 2 324 | 531 | 155 2 42 | 960 | 8
3 10.4 02 | 90.4 3 14 12 |70 3 6 19 | 78

5. Conclusions

In this paper we proposed the use of kernel methods for melanoma recognition, with
two approaches: SG-MRF and SVM. For this second algorithm particularly, we studied
in depth the classification performances with different kernel types. The experiments
showed that SVM, with the generalized Gaussian kernel, obtains an improvement of
more than 20% with respect to the results presented in [3], which to the best of our
knowledge represents the state of the art of the field. Moreover, on two classes out of
three, SVM achieves recognition results comparable to those obtained by skilled
clinicians. In the future we will conduct similar experiments with different descriptors,
such as gray-level textural features and shape descriptors, in order to test the
effectiveness of different types of information and to eventually reproduce the ABCD
method followed by the dermatologists in every day clinical practice.
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