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Abstract. We propose the use of latent space models applied to local
invariant features for object classification. We investigate whether us-
ing latent space models enables to learn patterns of visual co-occurrence
and if the learned visual models improve performance when less labeled
data are available. We present and discuss results that support these hy-
potheses. Probabilistic Latent Semantic Analysis (PLSA) automatically
identifies aspects from the data with semantic meaning, producing un-
supervised soft clustering. The resulting compact representation retains
sufficient discriminative information for accurate object classification,
and improves the classification accuracy through the use of unlabeled
data when less labeled training data are available. We perform experi-
ments on a 7-class object database containing 1776 images.

1 Introduction

The bag-of-words model is one of the most common text document represen-
tations in information retrieval (IR), in which a fixed-size vector stores the oc-
currence of the words present in a document. Although the sequential relations
between words are not preserved, this somewhat drastic simplification allows
simple comparisons between documents, and produces good performance for
document classification and retrieval [1].
A text corpus represented by a bag-of-words is an example of a collection

of discrete data, for which a number of generative probabilistic models have
been recently proposed [5, 2, 3, 6]. The models, able to capture co-occurrence
information between word and documents, have shown promising results in text
dimensionality reduction, feature extraction, and multi-faceted clustering. It is
thus not a surprise that the interest in casting other data sources into this
representation has increased; recent work in computer vision has shown that
images and videos are suitable for a vector-space representation, both for visual
tasks like object matching [14], object classification [17], and cross-media tasks
like image auto-annotation [4, 9, 10].
We propose here to build visual models from images in a similar fashion,

using a quantized version of local image descriptors, dubbed visterms [15, 14].
However, unlike related work, which has only used the basic bag-of-words [14,
17], we propose to use a probabilistic latent space model, namely Probabilistic
Latent Semantic Analysis (PLSA) [5] to build visual models of objects.



The different outcomes of this model are principally unsupervised feature ex-
traction and automatic soft clustering of image datasets, that we recently studied
in the context of scene modeling [12]. Independently, Sivic et al. compared two
latent probabilistic models of discretized local descriptors to discover object cat-
egories in image collections [13]. The approach is closely related to what we
propose in this paper and in [12], but fundamentally differs in the assumption
of the latent structure of the data. In [13], the number of classes is assumed to
be known a priori. In contrast we assume that an image is a mixture of latent
aspects that are not necessarily limited to the number of object categories in
the dataset. We consider latent aspect modeling not as a classification system in
itself, but as a feature extraction process for supervised classification. We show
(qualitatively and quantitatively) the benefits of our formulation, and its advan-
tages over the simple vector-space formulation. Based on the results, we believe
that the approach might be worth exploring in other vision areas.

The paper is organized as follows. Section 2 describes the specific probabilistic
model. In Section 3 we discuss the image representation. Section 4 summarizes
results regarding object clustering and classification, and Section 5 concludes
the discussion.

2 Latent structure analysis

2.1 Bag-of-words: data sparseness

The vector-space approach tends to produce high-dimensional sparse representa-
tions. Sparsity makes the match between similar documents difficult, especially
if ambiguities exist in the vector-space. In the text case for example, different
words might mean the same (synonymy) and a word can have several mean-
ings (polysemy). This potentially leads to ambiguous data representations. In
practice, such situation also occurs with visterms.

To overcome this problem, different probabilistic generative models [5, 2, 3, 6]
have been proposed to learn the co-occurrence between elements in the vector-
space in an unsupervised manner. The idea is to model a latent data structure
from the co-occurrence of elements in a specific dataset, assuming their indepen-
dence given a latent variable. The elements in the vector space are probabilisti-
cally linked through the latent aspect variable, which identifies a disambiguated
lower-dimensional representation. One model that implements this concept is
PLSA, which we briefly review in the following.

2.2 Probabilistic LSA

In a dataset of Nd documents represented as bag-of-words of size Nx, the PLSA
model assumes that the joint probability of a document di and an element xj

from the vector-space is the marginalization of the Nz joint probabilities of di,



xj and an unobserved latent variable zk called aspect :

P (xj , di) =

Nz∑

k=1

P (xj , zk, di)

= P (di)

Nz∑

k=1

P (zk | di)P (xj | zk). (1)

Each document is a mixture of latent aspects, expressed by the conditional prob-
ability distribution of the latent aspects given each document di, P (z | di). Each
latent aspect zk is defined by the conditional probability distribution P (x | zk)
in Eq. 1. The parameters are estimated by the Expectation-Maximization (EM)
procedure described in [5] which maximizes the likelihood of the observation
pairs (xj , di). The E-step estimates the probability of the aspect zk given the
element xj in the document di (Eq. 2).

P (zk | di, xj) =
P (xj | zk)P (zk | di)∑Nz

k=1
P (xj | zk)P (zk | di)

(2)

The M-step then derives the conditional probabilities P (x | zk) (Eq. 3) and
P (z | di) (Eq. 4) from the estimated conditional probabilities of aspects P (zk |
di, xj) and the frequency count of the element xj in image di, n(di, xj).

P (xj | zk) =

∑Nd

i=1
n(di, xj)P (zk | di, xj)∑Nx

m=1

∑Nd

i=1
n(di, xm)P (zk | di, xm)

(3)

P (zk | di) =

∑Nx

j=1
n(di, xj)P (zk | di, xj)

n(di)
(4)

To prevent over-fitting, the number of EM iterations is controlled by an
early stopping criterion based on the validation data likelihood. Starting from
a random initialization of the model parameters, the EM iterations are stopped
when the criterion is reached. The corresponding latent aspect structure defined
by the current conditional probability distributions P (x | zk) is saved. Derived
from the vector-space representation, the inference of P (zk | di) can be seen as
a feature extraction process and used for classification. It also allows to rank
images with respect to a given latent aspect zk, which illustrates the latent
structure learned from the data.

3 Images as bag-of-visterms

Although global features such as global color histograms or global edge direc-
tion histograms are traditionally used to represent images, a promising recent
research direction in computer vision is the use of local image descriptors. The
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Fig. 1. Sorted document frequency counts of the quantized local image patches in the
training set.

combination of interest point detectors and invariant local descriptors has shown
interesting capabilities of describing images and objects. We decided to use the
Difference of Gaussians (DOG) point detector [7] and the Scale Invariant Fea-
ture Transform (SIFT) local descriptors [7], as proposed in recent studies [8].
The SIFT descriptors are local histograms of edge directions and therefore cor-
respond to local image structures. Note that only gray-level information is used
for this process.
The idea is to identify different types of local image patches occurring in

the database to represent an image, similarly to the bag-of-words approach. As
for the word ordering, the spatial information of the local descriptors is not en-
coded in the image representation. Those local image patches are obtained by
a standard K-means quantization of the extracted SIFT descriptors in an im-
age dataset, and are referred to as visterms (visual terms). As an analogy with
text, the image representation is referred to as bag-of-visterms (BOV). We did
not experiment the standard inverse document frequency (idf) weighting, but
restricted our experiments to the unweighted BOV representation. As shown in
Figure 3, the K-means quantization produces much more balanced document
frequencies than what is encountered in text (Zipf’s law), and the BOV repre-
sentation therefore does not need to be compensated.

4 Image modeling with PLSA

4.1 Data description

To create the visterm vocabulary (K-means) we use a 3805-image dataset con-
structed from several sources. This includes 1002 building images (Zubud), 144
images of people and outdoors [11], 435 indoor images with people faces [17],
490 indoor images from the corel collection [16], 1516 city-landscape overlapped
images from Corel [16] and 267 Internet photographic images. Interests points
are identified on each image with the DOG point detector, a SIFT description



of each point is computed and all SIFT descriptors are quantized with K-means
to construct the visterms ’vocabulary’.
We propose to consider a 7-class dataset to evaluate classification [17]. The

image classes are: faces (792), buildings (150), trees (150), cars (201), phones
(216), bikes (125) and books (142), adding up to a total of 1776 images. The size
of the images varies considerably: images can have between 10k and 1,2M pixels
while most image sizes are around 100-150k pixels. We resize all images to 100k
pixels since the local invariant feature extraction process is highly dependent of
the image size. This ensures that no class-dependent image size information is
included in the representation. The dataset is split in 10 test sets, which allows
ten evaluation runs with different training and test sets each time. We decided
to use 1000 visterms to represent each image (size of the BOV).

4.2 Image soft clustering

The latent structure learned by PLSA can be illustrated by the top-ranked im-
ages in a dataset with respect to the posterior probabilities P (zk | di). Fig. 2
shows a ranking of seven out of 20 aspects identified by PLSA on the 7-class
dataset described above. We selected Nz= 20 for a cleaner ranking visualiza-
tion. From Fig. 2, we observe that aspects 3 and 17 seem closely related to face
images. The first ten images ranked with respect to aspect 8 are all bike im-
ages, while top-ranked images for aspect 10 mostly contain phones. Buildings
are present in aspect 5, all images related to aspect 7 are tree images. Aspect 12
does not seem to be related to any specific object category.
To analyze the ranking in more details, the precision and recall curves for the

retrieval of faces, cars, bikes, and trees are shown in Fig. 3. The top left graph
shows that the homogeneous ranking holds on for more than 10 retrieved images
in aspect 3 and 17, confirming the observations made from Fig. 2. We see that
another aspect (13) is closely related to face images. The top right graph from
Fig. 3 shows that aspect number 12 is related to car images if looking deeper in
the ranking, what is not obvious from the observation of Fig. 2. Note however
that the precision/recall values are not as high as for the faces case. The bottom
left graph confirms that aspect 8 is linked to bike images, as well as aspect 1
even if less obvious. The bottom right graph shows that top-ranked images with
respect to aspect 7 are mainly tree images. These results confirm that PLSA can
capture class-related information in an unsupervised manner.

4.3 Images as mixtures of aspects

Our model explicitly considers an image as a mixture of latent aspects expressed
by the P (z | d) distributions learned from PLSA. The same latent structure
with Nz= 20 aspects used for the aspect-based image ranking is considered.
As illustrated by the aspect-based image ranking from Fig. 2, some identified
aspects relate to specific object categories. Within the dataset, different examples
of aspect mixtures can be observed. In Fig. 4 (a) the aspect distribution is mainly
concentrated on the aspect related to ’building’ images. The image only contains



aspect 3 aspect 17 aspect 8 aspect 10 aspect 5 aspect 7 aspect 12

Fig. 2. 10 top-ranked images with respect to P (zk | di) for seven selected as-
pects. Images are cropped for a convenient display. A full ranking is available at
http://www.idiap.ch/∼monay/PASCAL LATENT/
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Fig. 3. Precision and recall curves for the ’face’, ’car’, ’bike’ and ’tree’ categories,
according to an aspect-based unsupervised image ranking. The lowest precision values
on the graph correspond to a random ranking.

building structures, therefore the aspect distribution seems coherent. On the
contrary, the image from Fig. 4 (b) is composed of both ’building’ and ’tree’
-related structures. The corresponding aspect distribution interestingly reflects
this image composition with the most probable aspects related to ’building’ and
’tree’.

It is important to point out that there are cases when the aspect distribution
does not clearly correspond to the image semantic. Fig. 5 (a) shows the close-up
of a bike, but the aspect distribution is not concentrated on aspect 8, previously
related to ’bike’ images. The aspect distribution P (z | d) rather describes the
image as a mixture of several aspects with no specific dominance. This ambiguous
aspect representation could derive from the fact that only a few examples of this
type of close-up appear in the database. In Fig. 5 (b), the image is identified
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Fig. 4. Images and their corresponding aspect distribution P (z | d) for Nz= 20. (a) is
concentrated on aspect 5 (building), while (b) is a mixture of aspects 5 (building), 7
(tree) and aspect 1.

as a mixture of aspect 8 and 7, which perfectly reflects the image composition.
Bikes are located in the image on a tree/vegetation background.

4.4 Feature extraction

The PLSA model can be seen as a feature extraction or dimensionality reduction
process: from the bag-of-visterms, a lower-dimensional aspect-based representa-
tion P (zk | di) is inferred using a previously learned PLSA model. Here we
propose to compare the aspect-based and the bag-of-visterms representations on
the 7-class supervised classification task. The PLSA model is trained on all non-
test images each time and the resulting model is used to extract the aspect-based
representation. To evaluate the quality of the feature extraction, we compare the
classification based on the BOV representation with the aspect-based represen-
tation with the same classification setup: one Support Vector Machine (SVM)
per class is trained with one class against all others.
Table 1 and Table 2 show the confusion matrix for the BOV and the PLSA-

based classification with Nz= 60 aspects. The last column is the per class error.
We see that the classification performance greatly depends on the object class
for both the BOV and the PLSA representations. These differences are caused
by diverse factors. For instance ’trees’ is a well defined class that is dominated
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Fig. 5. Images and their corresponding aspect distribution P (z | d) for Nz= 20. (a) is
a mixture of different aspects, (b) is a mixture of aspect 8 (bikes) and 7 (trees).

by high frequency texture visterms, and therefore does not get confused with
other classes. Similarly, most ’face’ images have an homogeneous background
and consistent layout which will not create ambiguities with other classes in the
BOV representation. This explains the good performance of these two categories.
On the contrary, ’car’ images present a large variability in appearance within

the database. Front, side and rear car views on different types of background can
be found, what makes it a highly complex category for object classification, gen-
erating an important confusion with other classes. ’Phones’, ’books’ and ’build-
ings’ are therefore confused with ’cars’ in both the BOV and the PLSA case.
The ’bike’ class is well classified despite a variability in appearance comparable
to the ’car’ images, because the bike structure generates a discriminative BOV
representation.
Table 3 summarizes the whole set of experiments when we gradually train the

SVM classifiers with less training data. If using all the training data (90% of all
data) for feature extraction and classification, BOV and PLSA achieve a similar
total error score. This proves that while achieving a dimensionality reduction
from 1000 visterms to Nz= 60 aspects, PLSA keeps sufficient discriminative
information for the classification task.
The case in which PLSA is trained on all the training data, while the SVMs

are trained on a reduced data portion of it, it corresponds to a partially labeled
data problem. Being completely unsupervised, the PLSA approach can take



faces buildings trees phones cars bikes books error

faces 772 2 7 3 3 2 3 2.5(0.04)
buildings 6 100 6 5 12 5 16 33.3(1.70)
trees 1 3 141 1 3 1 0 6.0(0.60)
phones 14 0 0 187 6 2 7 13.4(1.20)
cars 18 1 2 12 162 3 3 19.4(1.46)
bikes 0 3 3 1 2 116 0 7.2(0.38)
books 13 8 0 9 9 1 102 28.2(1.86)

Table 1. Confusion matrix for the 7-class object classification problem using the bag-
of-visterms features, summed over 10 runs, and average classification error with the
variance over ten runs indicated in brackets.

faces buildings trees phones cars bikes books error

faces 772 2 5 1 10 1 1 2.5(0.02)
buildings 2 113 3 3 18 5 6 24.6(1.40)
trees 3 3 140 0 2 2 0 6.7(0.40)
phones 9 5 0 166 23 2 11 23.1(0.60)
cars 14 5 0 3 172 4 3 14.4(0.67)
bikes 0 3 4 0 4 113 1 9.6(0.69)
books 7 13 0 6 14 0 102 28.2(1.54)

Table 2. Confusion matrix for the 7-class object classification problem using PLSA
with Nz= 60 aspects as a feature extraction process, summed over 10 runs, and average
classification error with the variance over ten runs indicated in brackets.

advantage of any unlabeled data and build the aspect-based representation from
it. This advantage with respect to supervised strategies is shown in Table 3 for
50%, 10% and 5% training data. Here the comparison between BOV and PLSA is
done for the same reduced number of labeled images to train the SVM classifiers,
while the PLSA model is still trained on the full 90% training data. The total
classification errors show that the features extracted by PLSA outperform the
raw BOV representations for the same amount of labeled data. Note also that
the variance over the splits is smaller, which suggests that the model is more
stable given the reduced dimensionality.

Method 90% 50% 10% 5%

PLSA (Nz= 60) 11.1(1.6) 12.5(1.5) 18.1(2.7) 21.7(1.7)
BOV 11.1(2.0) 13.5(2.0) 21.8(3.6) 26.7(2.8)

Table 3. Comparison between the bag-of-visterms (BOV) and the PLSA-based repre-
sentation (PLSA) for classification with an SVM classifier trained with progressively
less training data on the 7-class problem. The number in brackets is the variance over
the different data splits.



5 Conclusion

For an object classification task, we showed that using PLSA on a bag-of-visterms
representation (BOV) produces a compact, discriminative representation of the
data, outperforming the standard BOV approach in the case of small amount
of training data. Also, we showed that PLSA can capture semantic meaning in
the BOV representation allowing for both unsupervised ranking of object images
and description of images as a mixture of aspects. These results motivate further
investigation of this and other latent space approaches for task related to object
recognition.

6 Acknowledgments

This work was also funded by the European project ”CARTER: Classification
of visual Scenes using Affine invariant Regions and TExt Retrieval methods”
part of ”PASCAL: Pattern Analysis, Statistical Modeling and Computational
Learning”, through the Swiss Federal Office for Education and Science (OFES).
We thank the Xerox Research Center Europe (XRCE) and the University of

Graz for collecting the object images and making the database available in the
context of the Learning for Adaptable Visual Assistant (LAVA) project.
The authors acknowledge financial support provided by the Swiss National

Center of Competence in Research (NCCR) on Interactive Multimodal Informa-
tion Management (IM)2. The NCCR is managed by the Swiss National Science
Foundation on behalf of the Federal Authorities.

References

1. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. ACM Press,
1999.

2. D. Blei, Y. Andrew, and M. Jordan. Latent dirichlet allocation. Journal of Machine

Learning Research, 3:993–1020, 2003.
3. W Buntine. Variational extensions to em and multinomial pca. In Proc. of Europ.

Conf. on Machine Learning, Helsinki, Aug. 2002.
4. P. Duygulu, K. Barnard, N. Freitas, and D. Forsyth. Object recognition as machine
translation: Learning a lexicon for a fixed image vocabulary. In Proc. of IEEE

Europ. Conf. on Computer Vision, Copenhagen, Jun. 2002.
5. T. Hofmann. Unsupervised learning by probabilistic latent semantic analysis. Ma-

chine Learning, 42:177–196, 2001.
6. M. Keller and S. Bengio. Theme topic mixture model: A graphical model for doc-
ument representation. IDIAP Research Report, IDIAP-RR-04-05, January 2004.

7. D. G. Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional Journal of Computer Vision, 60:91–110, 2003.
8. K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In

Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Madison, Jun.
2003.

9. F. Monay and D. Gatica-Perez. On image auto-annotation with latent space mod-
els. In Proc. of ACM Int. Conf. on Multimedia, Berkeley, Nov. 2003.



10. F. Monay and D. Gatica-Perez. PLSA-based image auto-annotation: Constraining
the latent space. In Proc. ACM Int. Conf. on Multimedia, New York, Oct. 2004.

11. A. Opelt, M. Fussenegger, A. Pinz, and P. Auer. Weak hypotheses and boosting
for generic object detection and recognition. In Proc. of IEEE Europ. Conf. on

Computer Vision, Prague, May 2004.
12. P. Quelhas, F. Monay, J.-M. Odobez, D. Gatica-Perez, T. Tuytelaars, and L. V.

Gool. Modeling scenes with local descriptors and latent aspects. In Proc. of IEEE

Int. Conf. on Computer Vision, Beijing, Oct. 2005.
13. J. Sivic, B. C. Russell, A. A. Efros, A. Zisserman, and W. T. Freeman. Discover-

ing object categories in image collections. Technical report, Dept. of Engineering
Science, University of Oxford, 2005.

14. J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In Proc. of IEEE Int. Conf. on Computer Vision, Nice, Oct.
2003.

15. T. Tuytelaars and L. Van Gool. Content-based image retrieval based on local
affinely invariant regions. In Proc. of Visual99, Amsterdam, Jun. 1999.

16. A. Vailaya, M. Figueiredo, A. Jain, and H.J. Zhang. Image classification for
content-based indexing. IEEE Trans. on Image Processing, 10:117–130, 2001.

17. J. Willamowski, D. Arregui, G. Csurka, C. R. Dance, and L. Fan. Categorizing
nine visual classes using local appearance descriptors. In Proc. of ICPR Workshop

on Learning for Adaptable Visal Systems, Cambridge, Aug. 2004.


